Generating a Population for Genetic Algorithm in C - c

I have just learned the basic (more of an introduction) of genetic algorithm. For an assignment, we are to find the value of x that maximizes f(x) = sin (x*pi/ 256) in the interval 0 <= x <= 256.
While I understand how to get the fitness of an individual and how to normalize the fitness, I am a little lost on generating the population. In the text, for the purposes of performing crossover and mutation, represent each individual using 8 bits. Example:
189 = 10111101
35 = 00100011
My questions are this:
Using c, what is the best way to generate the population? I have looked it up and all I could find was using uint8_t. I'm thinking of generating it as an array and then find a way to convert to it's integer representation.
What purposes does normalizing fitness serves?
As this is my first time at writing a program that uses genetic algorithm, is there any advice I should keep in mind?
Thank you for your time.

The usual way is the population to be random, but if you have some preliminary optimization you can form population around results already available.
It is very common to use hybrid algorithms when GA is mixed with altoritmsh like PSO, simulated annealing and so on.

Related

Optimal combination of “baskets” to best approximate target basket?

Say I have some array of length n where arr[k] represents how much of object k I want. I also have some arbitrary number of arrays which I can sum integer multiples of in any combination - my goal being to minimise the sum of the absolute differences across each element.
So as a dumb example if my target was [2,1] and my options were A = [2,3] and B = [0,1], then I could take A - 2B and have a cost of 0
I’m wondering if there is an efficient algorithm for approximating something like this? It has a weird knapsack-y flavour to is it maybe just intractable for large n? It doesn’t seem very amenable to DP methods
This is the (NP-hard) closest vector problem. There's an algorithm due to Fincke and Pohst ("Improved methods for calculating vectors of short length in a lattice, including a complexity analysis"), but I haven't personally worked with it.

Fitness Function altenatives in Genetic Algorithms for game AI

I have created a Gomoku(5 in a row) AI using Alpha-Beta Pruning. It makes moves on a not-so-stupid level. First, let me vaguely describe the grading function of the Alpha-Beta algorithm.
When it receives a board as an input, it first finds all repetitions of stones and gives it a score out of 4 possible values depending on its usefulness as an threat, which is decided by length. And it will return the summation of all the repetition scores.
But, the problem is that I explicitly decided the scores(4 in total), and they don't seem like the best choices. So I've decided to implement a genetic algorithm to generate these scores. Each of the genes will be one of 4 scores. So for example, the chromosome of the hard-coded scores would be: [5, 40000,10000000,50000]
However, because I'm using the genetic algorithm to create the scores of the grading function, I'm not sure how I should implement the genetic fitness function. So instead, I have thought of the following:
Instead of using a fitness function, I'll just merge the selection process together: If I have 2 chromosomes, A and B, and need to select one, I'll simulate a game using both A and B chromosomes in each AI, and select the chromosome which wins.
1.Is this a viable replacement to the Fitness function?
2.Because of the characteristics of the Alpha-Beta algorithm, I need to give the max score to the win condition, which in most cases is set to infinity. However, because I can't use Infinity, I just used an absurdly large number. Do I also need to add this score to the chromosome? Or because it's insignificant and doesn't change the values of the grading function, leave it as a constant?
3.When initially creating chromosomes, random generation, following standard distribution is said to be the most optimal. However, genes in my case have large deviation. Would it still be okay to generate chromosomes randomly?
Is this a viable replacement to the Fitness function?
Yes, it is. It's a fairly common way to define a fitness function for board games. Probably a single round is not enough (but you have to experiment).
A slight variant is something like:
double fitness(Agent_k)
fit = 0
repeat M times
randomly extract an individual Agent_i (i <> k)
switch (result of Agent_k vs Agent_i)
case Agent_k wins: fit = fit + 1
case Agent_i wins: fit = fit - 2
case draw: fit doesn't change
return fit
i.e. an agent plays against M randomly selected opponents from the population (with replacement but avoiding self match).
Increasing M the noise decreases but longer simulation times are required (M=5 is a value used in some chess-related experiments).
2.Because of the characteristics of the Alpha-Beta algorithm...
Not sure of the question. A very large value is a standard approach for a static evaluation function signaling a winning condition.
The exact value isn't very important and shouldn't probably be subject to optimization.
3.When initially creating chromosomes, random generation, following standard distribution is said to be the most optimal. However, genes in my case have large deviation. Would it still be okay to generate chromosomes randomly?
This is somewhat related to the specific genetic algorithm "flavor" you are going to use.
A standard genetic algorithm could work better with not completely random initial values.
Other variants (e.g. Differential Evolution) could be less sensitive to this aspect.
Take also a look at this question / answer: Getting started with machine learning a zero sum game?

Sorting and making "genes" in output bitstrings from a genetic algorithm

I was wondering if anybody had suggestions as to how I could analyze an output bitstring that is being permuted by a genetic algorithm. In particular it would be nice if I could try to identify patterns of bits (I'm calling them genes here) that seem to yield a desirable cv score. The difficulty comes in trying to examine these datasets because there are a lot of them (I have probably already something like 30 million bitstrings that are 140 bits long and I'll probably hit over 100 million pretty quickly), so after I sort out the desirable data there is still ALOT of potential datasets and doing similarity comparisons by eye is out of the question. My questions are:
How should I compare for similarity between these bitstrings?
How can I identify "genes" in these bitstrings in an algorithmic (aka programmable) way?
As you want to extract common gene-patterns, what about looking at the intersection of the two strings. So if you have
set1 = 11011101110011...
set2 = 11001100000110...
# apply bitwise '=='
set1 && set2 == 11101110000010...
The result now shows what genes are the same, and could be used in further analysis.
For the similarity part you need to do an exclusive-or (XOR). The result of this bit-wise operation will give you the difference between two bit strings, and is probably the most efficient and easy way of doing it (for pair comparison). As an example:
>>> from bitarray import bitarray
>>> a = bitarray('0001100111')
>>> b = bitarray('0100110110')
>>> a ^ b
bitarray('0101010001')
Then you can either count the differences, inspect quickly where the differences lie, etc.
For the second part, it depends on the representation of course, and on the programming language (PL) chosen for the implementation. Most PL libraries will have a search function, that retrieves all or at least the first of the indexes where some pattern is found in a string (or bitstring, or bitstream...). You just have to refer to the documentation of your chosen PL to know more about the performance if you have more than one option for the task.

Algorithm for voice comparison

Given two recorded voices in digital format, is there an algorithm to compare the two and return a coefficient of similarity?
I recommend to take a look into the HTK toolkit for speech recognition http://htk.eng.cam.ac.uk/, especially the part on feature extraction.
Features that I would assume to be good indicators:
Mel-Cepstrum coefficients (general timbre)
LPC (for the harmonics)
Given your clarification I think what you are looking for falls under speech recognition algorithms.
Even though you are only looking for the measure of similarity and not trying to turn speech into text, still the concepts are the same and I would not be surprised if a large part of the algorithms would be quite useful.
However, you will have to define this coefficient of similarity more formally and precisely to get anywhere.
EDIT:
I believe speech recognition algorithms would be useful because they do abstraction of the sound and comparison to some known forms. Conceptually this might not be that different from taking two recordings, abstracting them and comparing them.
From wikipedia article on HMM
"In speech recognition, the hidden
Markov model would output a sequence
of n-dimensional real-valued vectors
(with n being a small integer, such as
10), outputting one of these every 10
milliseconds. The vectors would
consist of cepstral coefficients,
which are obtained by taking a Fourier
transform of a short time window of
speech and decorrelating the spectrum
using a cosine transform, then taking
the first (most significant)
coefficients."
So if you run such an algorithm on both recordings you would end up with coefficients that represent the recordings and it might be far easier to measure and establish similarities between the two.
But again now you come to the question of defining the 'similarity coefficient' and introducing dogs and horses did not really help.
(Well it does a bit, but in terms of evaluating algorithms and choosing one over another, you will have to do better).
There are many different algorithms - the general name for this task is Speaker Identification - start with this Wikipedia page and work from there: http://en.wikipedia.org/wiki/Speaker_recognition
I'm not sure this will work for soundfiles, but it gives you an idea how to proceed i hope. That is a basic way how to find a pattern (image) in another image.
You first have to calculate the fft of both the soundfiles and then do a correlation. In formular it would look like (pseudocode):
fftSoundFile1 = fft(soundFile1);
fftConjSoundFile2 = conj(fft(soundFile2));
result_corr = real(ifft(soundFile1.*soundFile2));
Where fft= fast Fourier transform, ifft = inverse, conj = conjugate complex.
The fft is performed on the sample values of the soundfiles.
The peaks in the result_corr vector will then give you the positions of high correlation.
Note that both soundfiles must in this case be of the same size-otherwise you have to place the shorter one into a file of max(soundFileLength) vector.
Regards
Edit: .* means (in matlab style) a component wise mult, you must not do a vector mult!
Next Edit: Note that you have to operate with complex numbers - but there are several Complex classes out there so I think you don't have to bother about this.

Determining which inputs to weigh in an evolutionary algorithm

I once wrote a Tetris AI that played Tetris quite well. The algorithm I used (described in this paper) is a two-step process.
In the first step, the programmer decides to track inputs that are "interesting" to the problem. In Tetris we might be interested in tracking how many gaps there are in a row because minimizing gaps could help place future pieces more easily. Another might be the average column height because it may be a bad idea to take risks if you're about to lose.
The second step is determining weights associated with each input. This is the part where I used a genetic algorithm. Any learning algorithm will do here, as long as the weights are adjusted over time based on the results. The idea is to let the computer decide how the input relates to the solution.
Using these inputs and their weights we can determine the value of taking any action. For example, if putting the straight line shape all the way in the right column will eliminate the gaps of 4 different rows, then this action could get a very high score if its weight is high. Likewise, laying it flat on top might actually cause gaps and so that action gets a low score.
I've always wondered if there's a way to apply a learning algorithm to the first step, where we find "interesting" potential inputs. It seems possible to write an algorithm where the computer first learns what inputs might be useful, then applies learning to weigh those inputs. Has anything been done like this before? Is it already being used in any AI applications?
In neural networks, you can select 'interesting' potential inputs by finding the ones that have the strongest correlation, positive or negative, with the classifications you're training for. I imagine you can do similarly in other contexts.
I think I might approach the problem you're describing by feeding more primitive data to a learning algorithm. For instance, a tetris game state may be described by the list of occupied cells. A string of bits describing this information would be a suitable input to that stage of the learning algorithm. actually training on that is still challenging; how do you know whether those are useful results. I suppose you could roll the whole algorithm into a single blob, where the algorithm is fed with the successive states of play and the output would just be the block placements, with higher scoring algorithms selected for future generations.
Another choice might be to use a large corpus of plays from other sources; such as recorded plays from human players or a hand-crafted ai, and select the algorithms who's outputs bear a strong correlation to some interesting fact or another from the future play, such as the score earned over the next 10 moves.
Yes, there is a way.
If you choose M selected features there are 2^M subsets, so there is a lot to look at.
I would to the following:
For each subset S
run your code to optimize the weights W
save S and the corresponding W
Then for each pair S-W, you can run G games for each pair and save the score L for each one. Now you have a table like this:
feature1 feature2 feature3 featureM subset_code game_number scoreL
1 0 1 1 S1 1 10500
1 0 1 1 S1 2 6230
...
0 1 1 0 S2 G + 1 30120
0 1 1 0 S2 G + 2 25900
Now you can run some component selection algorithm (PCA for example) and decide which features are worth to explain scoreL.
A tip: When running the code to optimize W, seed the random number generator, so that each different 'evolving brain' is tested against the same piece sequence.
I hope it helps in something!

Resources