How do I generate A-Z randomly to fill an array? - arrays

My assignment is to create a 3 part program which when you press 1, it runs method or "feature" 1, when you press 2, it runs feature 2, press 3, it runs feature 3. The end. I have the second feature figured out, but this feature (feature 1) is supposed to generate A-Z randomly to fill a 10x20 array. The code AS IS generates random integers and correctly fills and DISPLAYS a 10 x 20 grid. HOWEVER, how do I get it to display A-Z characters instead of numbers?
public class ModuleOnefor8 {
public static void main(String[] args) {
int[][] matrix = new int[10][20];
for (int i=0; i<matrix.length; i++) {
for (int j = 0; j<matrix[i].length; j++) {
matrix[i][j] = (int)(Math.random()*'Z'-'A' + 1);
System.out.print(matrix[i][j] + " ");
}
System.out.println();
}
}
}

Add:
public static String numberToAlpha(int number)
{
char[] ls = "ABCDEFGHIJKLMNOPQRSTUVWXYZ".toCharArray();
String r = "";
while(true)
{
r = ls[number % 26] + r;
if(number < 26) {
break;
}
number /= 26;
}
return r;
}
Use:
int min_int = 1;
int max_int = 9999;
string out_alpha = MyClass.numberToAlpha( Math.random() * ( max_int - min_int ) + min_int );

Related

(Is there a O(1) approach.) Given an array of characters, give an algorithm for removing the duplicates [duplicate]

I have an unsorted array, what is the best method to remove all the duplicates of an element if present?
e.g:
a[1,5,2,6,8,9,1,1,10,3,2,4,1,3,11,3]
so after that operation the array should look like
a[1,5,2,6,8,9,10,3,4,11]
Check every element against every other element
The naive solution is to check every element against every other element. This is wasteful and yields an O(n2) solution, even if you only go "forward".
Sort then remove duplicates
A better solution is sort the array and then check each element to the one next to it to find duplicates. Choose an efficient sort and this is O(n log n).
The disadvantage with the sort-based solution is order is not maintained. An extra step can take care of this however. Put all entries (in the unique sorted array) into a hashtable, which has O(1) access. Then iterate over the original array. For each element, check if it is in the hash table. If it is, add it to the result and delete it from the hash table. You will end up with a resultant array that has the order of the original with each element being in the same position as its first occurrence.
Linear sorts of integers
If you're dealing with integers of some fixed range you can do even better by using a radix sort. If you assume the numbers are all in the range of 0 to 1,000,000 for example, you can allocate a bit vector of some 1,000,001. For each element in the original array, you set the corresponding bit based on its value (eg a value of 13 results in setting the 14th bit). Then traverse the original array, check if it is in the bit vector. If it is, add it to the result array and clear that bit from the bit vector. This is O(n) and trades space for time.
Hash table solution
Which leads us to the best solution of all: the sort is actually a distraction, though useful. Create a hashtable with O(1) access. Traverse the original list. If it is not in the hashtable already, add it to the result array and add it to the hash table. If it is in the hash table, ignore it.
This is by far the best solution. So why the rest? Because problems like this are about adapting knowledge you have (or should have) to problems and refining them based on the assumptions you make into a solution. Evolving a solution and understanding the thinking behind it is far more useful than regurgitating a solution.
Also, hash tables are not always available. Take an embedded system or something where space is VERY limited. You can implement an quick sort in a handful of opcodes, far fewer than any hash table could be.
This can be done in amortized O(n) using a hashtable-based set.
Psuedo-code:
s := new HashSet
c := 0
for each el in a
Add el to s.
If el was not already in s, move (copy) el c positions left.
If it was in s, increment c.
If you don't need to keep the original object you can loop it and create a new array of unique values. In C# use a List to get access to the required functionality. It's not the most attractive or intelligent solution, but it works.
int[] numbers = new int[] {1,2,3,4,5,1,2,2,2,3,4,5,5,5,5,4,3,2,3,4,5};
List<int> unique = new List<int>();
foreach (int i in numbers)
if (!unique.Contains(i))
unique.Add(i);
unique.Sort();
numbers = unique.ToArray();
Treat numbers as keys. for each elem in array:
if hash(elem) == 1 //duplicate
ignore it
next
else
hash(elem) = 1
add this to resulting array
end
If you know about the data like the range of numbers and if it is finite, then you can initialize that big array with ZERO's.array flag[N] //N is the max number in the array
for each elem in input array:
if flag[elem - 1] == 0
flag[elem - 1] = 1
add it to resulatant array
else
discard it //duplicate
end
indexOutput = 1;
outputArray[0] = arrayInt[0];
int j;
for (int i = 1; i < arrayInt.length; i++) {
j = 0;
while ((outputArray[j] != arrayInt[i]) && j < indexOutput) {
j++;
}
if(j == indexOutput){
outputArray[indexOutput] = arrayInt[i];
indexOutput++;
}
}
Use a Set implementation.
HashSet,TreeSet or LinkedHashSet if its Java.
This is a code segment i created in C++, Try out it
#include <iostream>
using namespace std;
int main()
{
cout << " Delete the duplicate" << endl;
int numberOfLoop = 10;
int loopCount =0;
int indexOfLargeNumber = 0;
int largeValue = 0;
int indexOutput = 1;
//Array to hold the numbers
int arrayInt[10] = {};
int outputArray [10] = {};
// Loop for reading the numbers from the user input
while(loopCount < numberOfLoop){
cout << "Please enter one Integer number" << endl;
cin >> arrayInt[loopCount];
loopCount = loopCount + 1;
}
outputArray[0] = arrayInt[0];
int j;
for (int i = 1; i < numberOfLoop; i++) {
j = 0;
while ((outputArray[j] != arrayInt[i]) && j < indexOutput) {
j++;
}
if(j == indexOutput){
outputArray[indexOutput] = arrayInt[i];
indexOutput++;
}
}
cout << "Printing the Non duplicate array"<< endl;
//Reset the loop count
loopCount =0;
while(loopCount < numberOfLoop){
if(outputArray[loopCount] != 0){
cout << outputArray[loopCount] << endl;
}
loopCount = loopCount + 1;
}
return 0;
}
My solution(O(N)) does not use additional memory, but array must been sorted(my class using insertion sort algorithm, but it doesn't matter.):
public class MyArray
{
//data arr
private int[] _arr;
//field length of my arr
private int _leght;
//counter of duplicate
private int countOfDup = 0;
//property length of my arr
public int Length
{
get
{
return _leght;
}
}
//constructor
public MyArray(int n)
{
_arr = new int[n];
_leght = 0;
}
// put element into array
public void Insert(int value)
{
_arr[_leght] = value;
_leght++;
}
//Display array
public void Display()
{
for (int i = 0; i < _leght; i++) Console.Out.Write(_arr[i] + " ");
}
//Insertion sort for sorting array
public void InsertSort()
{
int t, j;
for (int i = 1; i < _leght; i++)
{
t = _arr[i];
for (j = i; j > 0; )
{
if (_arr[j - 1] >= t)
{
_arr[j] = _arr[j - 1];
j--;
}
else break;
}
_arr[j] = t;
}
}
private void _markDuplicate()
{
//mark duplicate Int32.MinValue
for (int i = 0; i < _leght - 1; i++)
{
if (_arr[i] == _arr[i + 1])
{
countOfDup++;
_arr[i] = Int32.MinValue;
}
}
}
//remove duplicates O(N) ~ O(2N) ~ O(N + N)
public void RemoveDups()
{
_markDuplicate();
if (countOfDup == 0) return; //no duplicate
int temp = 0;
for (int i = 0; i < _leght; i++)
{
// if duplicate remember and continue
if (_arr[i] == Int32.MinValue) continue;
else //else need move
{
if (temp != i) _arr[temp] = _arr[i];
temp++;
}
}
_leght -= countOfDup;
}
}
And Main
static void Main(string[] args)
{
Random r = new Random(DateTime.Now.Millisecond);
int i = 11;
MyArray a = new MyArray(i);
for (int j = 0; j < i; j++)
{
a.Insert(r.Next(i - 1));
}
a.Display();
Console.Out.WriteLine();
a.InsertSort();
a.Display();
Console.Out.WriteLine();
a.RemoveDups();
a.Display();
Console.ReadKey();
}
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
public class testing {
public static void main(String[] args) {
EligibleOffer efg = new EligibleOffer();
efg.setCode("1234");
efg.setName("hey");
EligibleOffer efg1 = new EligibleOffer();
efg1.setCode("1234");
efg1.setName("hey1");
EligibleOffer efg2 = new EligibleOffer();
efg2.setCode("1235");
efg2.setName("hey");
EligibleOffer efg3 = new EligibleOffer();
efg3.setCode("1235");
efg3.setName("hey");
EligibleOffer[] eligibleOffer = { efg, efg1,efg2 ,efg3};
removeDupliacte(eligibleOffer);
}
public static EligibleOffer[] removeDupliacte(EligibleOffer[] array) {
List list = Arrays.asList(array);
List list1 = new ArrayList();
int len = list.size();
for (int i = 0; i <= len-1; i++) {
boolean isDupliacte = false;
EligibleOffer eOfr = (EligibleOffer) list.get(i);
String value = eOfr.getCode().concat(eOfr.getName());
if (list1.isEmpty()) {
list1.add(list.get(i));
continue;
}
int len1 = list1.size();
for (int j = 0; j <= len1-1; j++) {
EligibleOffer eOfr1 = (EligibleOffer) list1.get(j);
String value1 = eOfr1.getCode().concat(eOfr1.getName());
if (value.equals(value1)) {
isDupliacte = true;
break;
}
System.out.println(value+"\t"+value1);
}
if (!isDupliacte) {
list1.add(eOfr);
}
}
System.out.println(list1);
EligibleOffer[] eligibleOffer = new EligibleOffer[list1.size()];
list1.toArray(eligibleOffer);
return eligibleOffer;
}
}
Time O(n) space O(n)
#include <iostream>
#include<limits.h>
using namespace std;
void fun(int arr[],int size){
int count=0;
int has[100]={0};
for(int i=0;i<size;i++){
if(!has[arr[i]]){
arr[count++]=arr[i];
has[arr[i]]=1;
}
}
for(int i=0;i<count;i++)
cout<<arr[i]<<" ";
}
int main()
{
//cout << "Hello World!" << endl;
int arr[]={4, 8, 4, 1, 1, 2, 9};
int size=sizeof(arr)/sizeof(arr[0]);
fun(arr,size);
return 0;
}
public class RemoveDuplicateArray {
public static void main(String[] args) {
int arr[] = new int[] { 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 9 };
int size = arr.length;
for (int i = 0; i < size; i++) {
for (int j = i+1; j < size; j++) {
if (arr[i] == arr[j]) {
while (j < (size) - 1) {
arr[j] = arr[j + 1];
j++;
}
size--;
}
}
}
for (int i = 0; i < size; i++) {
System.out.print(arr[i] + " ");
}
}
}
output - 1 2 3 4 5 6 7 9
You can use the "in" and "not in" syntax in python which makes it pretty straight forward.
The complexity is higher than the hashing approach though since a "not in" is equivalent to a linear traversal to find out whether that entry exists or not.
li = map(int, raw_input().split(","))
a = []
for i in li:
if i not in a:
a.append(i)
print a
I am doing it in Python.
array1 = [1,2,2,3,3,3,4,5,6,4,4,5,5,5,5,10,10,8,7,7,9,10]
array1.sort() # sorting is must
print(array1)
current = NONE
count = 0
# overwriting the numbers at the frontal part of the array
for item in array1:
if item != current:
array1[count] = item
count +=1
current=item
print(array1)#[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 5, 5, 5, 6, 7, 7, 8, 9, 10, 10, 10]
print(array1[:count])#[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
The most Efficient method is :
array1 = [1,2,2,3,3,3,4,5,6,4,4,5,5,5,5,10,10,8,7,7,9,10]
array1.sort()
print(array1)
print([*dict.fromkeys(array1)])#[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
#OR#
aa = list(dict.fromkeys(array1))
print( aa)#[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
use an dictionary array and add each items as key
if an item was duplicated , dictionary avoid to add it!
it's the best solution
int[] numbers = new int[] {1,2,3,4,5,1,2,2,2,3,4,5,5,5,5,4,3,2,3,4,5};
IDictionary<int, string> newArray = new Dictionary<int, string>();
for (int i = 0; i < numbers.count() ; i++)
{
newArray .Add(numbers[i] , "");
}

Storing each digit from double to an array

I am a newbie at this and I am not sure on how to go about to store the digits of a double to an array. I have this double value: 0120.1098
I want it to be stored as something like this:
value[1] = 0
value[2] = 1
value[3] = 2
value[4] = 0
value[5] = 1
`
and so on...
How do I do it?
I'm not sure if you really need to extract them, but as I don't know much more about your context, here you go.
You could turn it into a String, split it on . and iterate. This way you get two int arrays. One for the digits before the decimal and on for the digits after de decimal.
public static void main(String[] args) {
double d = 12323.213432;
String asString = String.valueOf(d);
String[] splitOnDecimal = asString.split("\\.");
int[] upperBound = getIntArray(splitOnDecimal[0]);
int[] lowerBound = getIntArray(splitOnDecimal[1]);
System.out.println(Arrays.toString(upperBound));
System.out.println(Arrays.toString(lowerBound));
}
private static int[] getIntArray(String numberString) {
int[] tmpArray = new int[numberString.length()];
for (int i = 0; i < numberString.length(); i++) {
tmpArray[i] = Integer.parseInt(numberString.substring(i, i + 1));
}
return tmpArray;
}
Try this, it will even show your zeroes:
String dbl = "0012300.00109800";
int dblArraylength = dbl.length();
char[] c = dbl.toCharArray();
int dotId= dbl.indexOf(".");
int a[] = new int[dblArraylength-1];
for(int i=0; i<dotId; i++){
a[i]=Integer.parseInt(Character.toString ((char)c[i]));
}
for(int i=dotId; i<a.length; i++){
a[i]=Integer.parseInt(Character.toString ((char)c[i+1]));
}
for(int i=0; i<a.length; i++){
System.out.println("a[" +i+ "] = " + a[i]);
}

Algorithm to iterate N-dimensional array in pseudo random order

I have an array that I would like to iterate in random order. That is, I would like my iteration to visit each element only once in a seemingly random order.
Would it be possible to implement an iterator that would iterate elements like this without storing the order or other data in a lookup table first?
Would it be possible to do it for N-dimensional arrays where N>1?
UPDATE: Some of the answers mention how to do this by storing indices. A major point of this question is how to do it without storing indices or other data.
I decided to solve this, because it annoyed me to death not remembering the name of solution that I had heard before. I did however remember in the end, more on that in the bottom of this post.
My solution depends on the mathematical properties of some cleverly calculated numbers
range = array size
prime = closestPrimeAfter(range)
root = closestPrimitiveRootTo(range/2)
state = root
With this setup we can calculate the following repeatedly and it will iterate all elements of the array exactly once in a seemingly random order, after which it will loop to traverse the array in the same exact order again.
state = (state * root) % prime
I implemented and tested this in Java, so I decided to paste my code here for future reference.
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;
public class PseudoRandomSequence {
private long state;
private final long range;
private final long root;
private final long prime;
//Debugging counter
private int dropped = 0;
public PseudoRandomSequence(int r) {
range = r;
prime = closestPrimeAfter(range);
root = modPow(generator(prime), closestPrimeTo(prime / 2), prime);
reset();
System.out.println("-- r:" + range);
System.out.println(" p:" + prime);
System.out.println(" k:" + root);
System.out.println(" s:" + state);
}
// https://en.wikipedia.org/wiki/Primitive_root_modulo_n
private static long modPow(long base, long exp, long mod) {
return BigInteger.valueOf(base).modPow(BigInteger.valueOf(exp), BigInteger.valueOf(mod)).intValue();
}
//http://e-maxx-eng.github.io/algebra/primitive-root.html
private static long generator(long p) {
ArrayList<Long> fact = new ArrayList<Long>();
long phi = p - 1, n = phi;
for (long i = 2; i * i <= n; ++i) {
if (n % i == 0) {
fact.add(i);
while (n % i == 0) {
n /= i;
}
}
}
if (n > 1) fact.add(n);
for (long res = 2; res <= p; ++res) {
boolean ok = true;
for (long i = 0; i < fact.size() && ok; ++i) {
ok &= modPow(res, phi / fact.get((int) i), p) != 1;
}
if (ok) {
return res;
}
}
return -1;
}
public long get() {
return state - 1;
}
public void advance() {
//This loop simply skips all results that overshoot the range, which should never happen if range is a prime number.
dropped--;
do {
state = (state * root) % prime;
dropped++;
} while (state > range);
}
public void reset() {
state = root;
dropped = 0;
}
private static boolean isPrime(long num) {
if (num == 2) return true;
if (num % 2 == 0) return false;
for (int i = 3; i * i <= num; i += 2) {
if (num % i == 0) return false;
}
return true;
}
private static long closestPrimeAfter(long n) {
long up;
for (up = n + 1; !isPrime(up); ++up)
;
return up;
}
private static long closestPrimeBefore(long n) {
long dn;
for (dn = n - 1; !isPrime(dn); --dn)
;
return dn;
}
private static long closestPrimeTo(long n) {
final long dn = closestPrimeBefore(n);
final long up = closestPrimeAfter(n);
return (n - dn) > (up - n) ? up : dn;
}
private static boolean test(int r, int loops) {
final int array[] = new int[r];
Arrays.fill(array, 0);
System.out.println("TESTING: array size: " + r + ", loops: " + loops + "\n");
PseudoRandomSequence prs = new PseudoRandomSequence(r);
final long ct = loops * r;
//Iterate the array 'loops' times, incrementing the value for each cell for every visit.
for (int i = 0; i < ct; ++i) {
prs.advance();
final long index = prs.get();
array[(int) index]++;
}
//Verify that each cell was visited exactly 'loops' times, confirming the validity of the sequence
for (int i = 0; i < r; ++i) {
final int c = array[i];
if (loops != c) {
System.err.println("ERROR: array element #" + i + " was " + c + " instead of " + loops + " as expected\n");
return false;
}
}
//TODO: Verify the "randomness" of the sequence
System.out.println("OK: Sequence checked out with " + prs.dropped + " drops (" + prs.dropped / loops + " per loop vs. diff " + (prs.prime - r) + ") \n");
return true;
}
//Run lots of random tests
public static void main(String[] args) {
Random r = new Random();
r.setSeed(1337);
for (int i = 0; i < 100; ++i) {
PseudoRandomSequence.test(r.nextInt(1000000) + 1, r.nextInt(9) + 1);
}
}
}
As stated in the top, about 10 minutes after spending a good part of my night actually getting a result, I DID remember where I had read about the original way of doing this. It was in a small C implementation of a 2D graphics "dissolve" effect as described in Graphics Gems vol. 1 which in turn is an adaption to 2D with some optimizations of a mechanism called "LFSR" (wikipedia article here, original dissolve.c source code here).
You could collect all possible indices in a list and then remove a random indece to visit. I know this is sort of like a lookup table, but i don't see any other option than this.
Here is an example for a one-dimensional array (adaption to multiple dimensions should be trivial):
class RandomIterator<T> {
T[] array;
List<Integer> remainingIndeces;
public RandomIterator(T[] array) {
this.array = array;
this.remainingIndeces = new ArrayList<>();
for(int i = 0;i<array.length;++i)
remainingIndeces.add(i);
}
public T next() {
return array[remainingIndeces.remove((int)(Math.random()*remainingIndeces.size()))];
}
public boolean hasNext() {
return !remainingIndeces.isEmpty();
}
}
On a side note: If this code is performance relevant, this method would perform worse by far, as the random removing from the list triggers copies if you use a list backed by an array (a linked-list won't help either, as indexed access is O(n)). I would suggest a lookup-structure (e.g. HashSet in Java) that stores all visited indices to circumvent this problem (though that's exactly what you did not want to use)
EDIT: Another approach is to copy said array and use a library function to shuffle it and then traverse it in linear order. If your array isn't that big, this seems like the most readable and performant option.
You would need to create a pseudo random number generator that generates values from 0 to X-1 and takes X iterations before repeating the cycle, where X is the product of all the dimension sizes. I don't know if there is a generic solution to doing this. Wiki article for one type of random number generator:
http://en.wikipedia.org/wiki/Linear_congruential_generator
Yes, it is possible. Imagine 3D array (you not likely use anything more than that). This is like a cube and where all 3 lines connect is a cell. You can enumerate your cells 1 to N using a dictionary, you can do this initialization in loops, and create a list of cells to use for random draw
Initialization
totalCells = ... (xMax * yMax * zMax)
index = 0
For (x = 0; x < xMax ; x++)
{
For (y = 0; y < yMax ; y++)
{
For (z = 0; z < zMax ; z++)
{
dict.Add(i, new Cell(x, y, z))
lst.Add(i)
i++
}
}
}
Now, all you have to do is iterate randomly
Do While (lst.Count > 0)
{
indexToVisit = rand.Next(0, lst.Count - 1)
currentCell = dict[lst[indexToVisit]]
lst.Remove(indexToVisit)
// Do something with current cell here
. . . . . .
}
This is pseudo code, since you didn't mention language you work in
Another way is to randomize 3 (or whatever number of dimensions you have) lists and then just nested loop through them - this will be random in the end.

Weird Output in the Main Method

I need to generate 5 + 1 UNIQUE random numbers and store them into array which is then returned. Here's my code
public static int[] drawNumbers(int number)
{
int[] unique = new int[7];
int x = 0;
int y = 0;
while(x < unique.length)
{
unique[x] = (int)(Math.random()*45+1);
while(y < x)
{
if(unique[x] == unique[y])
{
x--;
break;
}
y++;
}
x++;
}
return unique;
}
I don't know what's wrong with my code but when I do this in the main method:
System.out.print(drawNumbers(parameter) + " ");
I get outputs like this:
" [I#4a5e88f7 "
drawNumbers returns an array of integers, but System.out.print can't print out an entire array. Instead, you need to print each item seperately, like so:
for (int x : drawNumbers(parameter)) {
System.out.print(x + " ");
}

Find all subsets of length k in an array

Given a set {1,2,3,4,5...n} of n elements, we need to find all subsets of length k .
For example, if n = 4 and k = 2, the output would be {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.
I am not even able to figure out how to start. We don't have to use the inbuilt library functions like next_permutation etc.
Need the algorithm and implementation in either C/C++ or Java.
Recursion is your friend for this task.
For each element - "guess" if it is in the current subset, and recursively invoke with the guess and a smaller superset you can select from. Doing so for both the "yes" and "no" guesses - will result in all possible subsets.
Restraining yourself to a certain length can be easily done in a stop clause.
Java code:
private static void getSubsets(List<Integer> superSet, int k, int idx, Set<Integer> current,List<Set<Integer>> solution) {
//successful stop clause
if (current.size() == k) {
solution.add(new HashSet<>(current));
return;
}
//unseccessful stop clause
if (idx == superSet.size()) return;
Integer x = superSet.get(idx);
current.add(x);
//"guess" x is in the subset
getSubsets(superSet, k, idx+1, current, solution);
current.remove(x);
//"guess" x is not in the subset
getSubsets(superSet, k, idx+1, current, solution);
}
public static List<Set<Integer>> getSubsets(List<Integer> superSet, int k) {
List<Set<Integer>> res = new ArrayList<>();
getSubsets(superSet, k, 0, new HashSet<Integer>(), res);
return res;
}
Invoking with:
List<Integer> superSet = new ArrayList<>();
superSet.add(1);
superSet.add(2);
superSet.add(3);
superSet.add(4);
System.out.println(getSubsets(superSet,2));
Will yield:
[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
Use a bit vector representation of the set, and use an algorithm similar to what std::next_permutation does on 0000.1111 (n-k zeroes, k ones). Each permutation corresponds to a subset of size k.
This is python. Sorry for the spanish ;)
from pprint import pprint
conjunto = [1,2,3,4, 5,6,7,8,9,10]
k = 3
lista = []
iteraciones = [0]
def subconjuntos(l, k):
if k == len(l):
if not l in lista:
lista.append(l)
return
for i in l:
aux = l[:]
aux.remove(i)
result = subconjuntos(aux, k)
iteraciones[0] += 1
if not result in lista and result:
lista.append( result)
subconjuntos(conjunto, k)
print (lista)
print ('cant iteraciones: ' + str(iteraciones[0]))
Check out my solution
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Set;
public class Subset_K {
public static void main(String[]args)
{
Set<String> x;
int n=4;
int k=2;
int arr[]={1,2,3,4};
StringBuilder sb=new StringBuilder();
for(int i=1;i<=(n-k);i++)
sb.append("0");
for(int i=1;i<=k;i++)
sb.append("1");
String bin=sb.toString();
x=generatePerm(bin);
Set<ArrayList <Integer>> outer=new HashSet<ArrayList <Integer>>();
for(String s:x){
int dec=Integer.parseInt(s,2);
ArrayList<Integer> inner=new ArrayList<Integer>();
for(int j=0;j<n;j++){
if((dec&(1<<j))>0)
inner.add(arr[j]);
}
outer.add(inner);
}
for(ArrayList<?> z:outer){
System.out.println(z);
}
}
public static Set<String> generatePerm(String input)
{
Set<String> set = new HashSet<String>();
if (input == "")
return set;
Character a = input.charAt(0);
if (input.length() > 1)
{
input = input.substring(1);
Set<String> permSet = generatePerm(input);
for (String x : permSet)
{
for (int i = 0; i <= x.length(); i++)
{
set.add(x.substring(0, i) + a + x.substring(i));
}
}
}
else
{
set.add(a + "");
}
return set;
}
}
I am working on a 4 element set for test purpose and using k=2. What I try to do is initially generate a binary string where k bits are set and n-k bits are not set. Now using this string I find all the possible permutations of this string. And then using these permutations I output the respective element in the set. Would be great if someone could tell me about the complexity of this problem.
#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
vector<int> v;
vector<vector<int> > result;
void subset(int arr[],int k,int n,int idx){
if(idx==n)
return;
if(k==1){
for(int i=idx;i<n;i++)
{
v.push_back(arr[i]);
result.push_back(v);
v.pop_back();
}
}
for(int j=idx;j<n;j++) {
v.push_back(arr[j]);
subset(arr,k-1,n,j+1);
v.pop_back();
}
}
int main(){
int arr[] = {1,2,3,4,5,6,7};
int k = 4;
int n =sizeof(arr)/sizeof(arr[0]);
subset(arr,k,n,0);
for(int i = 0;i<result.size();i++)
{
for(int j = 0;j<result[i].size();j++)
{
cout << result[i][j] << " ";
}
cout << endl;
}
}
Another intresting solution.
#include<bits/stdc++.h>
using namespace std;
long factorial(int n) { return (n==1|| n==0|| n < 0) ? 1 : n *factorial(n-1) ;}
void printS(int set[],int n,int k)
{
long noofsubset = factorial(n) / (factorial(n-k)*factorial(k));
bitset<32> z ((1 << (k)) - 1);
string s = z.to_string();
int i = 0;
while(i<noofsubset)
{
for (int j = 0; j < n;j++)
{
if(s[(32-n)+j] == '1')
cout << set[j]<<" ";
}
cout << endl;
next_permutation(s.begin(),s.end());
i++;
}
}
void printSubsetsOfArray(int input[], int size) {
int k = 3;
printS(input,size,k) ;
}
Slight improvement for #amit top voted answer:
His code keep checking combinations even when there won't be any chance for them to reach the wanted length. We can stop creating combinations much earlier:
e.g. for [1,2,3,4,5,6,7,8,9,10] , length = 8 , the code will still try all combinations of length 7,6,5,4,3,2,1 although they will obviously just be thrown away, halting only when idx reaches the end of the list.
We can improve the running time by stopping earlier, when we already know the set we build + the optional remaining digits will still be too short.
change :
//unsuccessful stop clause
if (idx == superSet.size()) return;
into:
// unsuccessful stop clause
Integer maxFutureElements = superSet.size() - idx;
if (current.size() + maxFutureElements < length) return;
Please check my solution:-
private static void printPermutations(List<Integer> list, int subSetSize) {
List<Integer> prefixList = new ArrayList<Integer>();
printPermutations(prefixList, list, subSetSize);
}
private static void printPermutations(List<Integer> prefixList, List<Integer> list, int subSetSize) {
if (prefixList.size() == subSetSize) {
System.out.println(prefixList);
} else {
for (int i = 0; i < list.size(); i++) {
Integer removed = list.remove(i);
prefixList.add(removed);
printPermutations(prefixList, list, subSetSize);
prefixList.remove(removed);
list.add(i, removed);
}
}
}
This is similar to String permutations:-
private static void printPermutations(String str) {
printAllPermutations("", str);
}
private static void printAllPermutations(String prefix, String restOfTheString) {
int len = restOfTheString.length();
System.out.println(prefix);
for (int i = 0; i < len; i++) {
printAllPermutations(prefix + restOfTheString.charAt(i), restOfTheString.substring(0, i) + restOfTheString.substring(i + 1, len));
}
}
This is an implemation in F#:
// allSubsets: int -> int -> Set<Set<int>>
let rec allSubsets n k =
match n, k with
| _, 0 -> Set.empty.Add(Set.empty)
| 0, _ -> Set.empty
| n, k -> Set.union (Set.map (fun s -> Set.add n s) (allSubsets (n-1) (k-1)))
(allSubsets (n-1) k)
You can try it in the F# REPL:
> allSubsets 3 2;;
val it : Set<Set<int>> = set [set [1; 2]; set [1; 3]; set [2; 3]]
> allSubsets 4 2;;
val it : Set<Set<int>> = set [set [1; 2]; set [1; 3]; set [1; 4]; set [2; 3]; set [2; 4]; set [3; 4]]
This Java class implements the same algorithm:
import java.util.HashSet;
import java.util.Set;
public class AllSubsets {
public static Set<Set<Integer>> allSubsets(int setSize, int subsetSize) {
if (subsetSize == 0) {
HashSet<Set<Integer>> result = new HashSet<>();
result.add(new HashSet<>());
return result;
}
if (setSize == 0) {
return new HashSet<>();
}
Set<Set<Integer>> sets1 = allSubsets((setSize - 1), (subsetSize - 1));
for (Set<Integer> set : sets1) {
set.add(setSize);
}
Set<Set<Integer>> sets2 = allSubsets((setSize - 1), subsetSize);
sets1.addAll(sets2);
return sets1;
}
}
If you do not like F# or Java then visit this website. It lists solutions to your particular problem in various programming languages:
http://rosettacode.org/wiki/Combinations
JavaScript implementation:
var subsetArray = (function() {
return {
getResult: getResult
}
function getResult(array, n) {
function isBigEnough(value) {
return value.length === n;
}
var ps = [
[]
];
for (var i = 0; i < array.length; i++) {
for (var j = 0, len = ps.length; j < len; j++) {
ps.push(ps[j].concat(array[i]));
}
}
return ps.filter(isBigEnough);
}
})();
var arr = [1, 2, 3, 4,5,6,7,8,9];
console.log(subsetArray.getResult(arr,2));
Here is an iterative version in python. Essence of it is increment_counters() function which returns all possible combinations. We know it needs to be called C(n,r) times.
def nchooser(n,r):
"""Calculate the n choose r manual way"""
import math
f = math.factorial
return f(n) / f(n-r) / f(r)
def increment_counters(rc,r,n):
"""This is the essense of the algorithm. It generates all possible indexes.
Ex: for n = 4, r = 2, rc will have values (0,1),(0,2),(0,3),(1,2),(1,3),(2,3).
You may have better understanding if you print all possible 35 values for
n = 7, r = 3."""
rc[r-1] += 1 # first increment the least significant counter
if rc[r-1] < n: # if it does not overflow, return
return
# overflow at the last counter may cause some of previous counters to overflow
# find where it stops (ex: in n=7,r=3 case, 1,2,3 will follow 0,5,6)
for i in range(r-2,-1,-1): # from r-2 to 0 inclusive
if rc[i] < i+n-r:
break
# we found that rc[i] will not overflow. So, increment it and reset the
# counters right to it.
rc[i] += 1
for j in range(i+1,r):
rc[j] = rc[j-1] + 1
def combinations(lst, r):
"""Return all different sub-lists of size r"""
n = len(lst)
rc = [ i for i in range(r) ] # initialize counters
res = []
for i in range(nchooser(n,r)): # increment the counters max possible times
res.append(tuple(map(lambda k: lst[k],rc)))
increment_counters(rc,r,n)
return res
Here is a Java version of what I think Simple is talking about, using a binary representation of all sets in the power set. It's similar to how Abhiroop Sarkar did it, but I think a boolean array makes more sense than a string when you are just representing binary values.
private ArrayList<ArrayList<Object>> getSubsets(int m, Object[] objects){
// m = size of subset, objects = superset of objects
ArrayList<ArrayList<Object>> subsets = new ArrayList<>();
ArrayList<Integer> pot = new ArrayList<>();
int n = objects.length;
int p = 1;
if(m==0)
return subsets;
for(int i=0; i<=n; i++){
pot.add(p);
p*=2;
}
for(int i=1; i<p; i++){
boolean[] binArray = new boolean[n];
Arrays.fill(binArray, false);
int y = i;
int sum = 0;
for(int j = n-1; j>=0; j--){
int currentPot = pot.get(j);
if(y >= currentPot){
binArray[j] = true;
y -= currentPot;
sum++;
}
if(y<=0)
break;
}
if(sum==m){
ArrayList<Object> subsubset = new ArrayList<>();
for(int j=0; j < n; j++){
if(binArray[j]){
subsubset.add(objects[j]);
}
}
subsets.add(subsubset);
}
}
return subsets;
}
If you are looking for Iterator pattern answer then here you go.
public static <T> Iterable<List<T>> getList(final Iterable<? extends T> list) {
List<List<T>> listOfList = new ArrayList<>();
for (T t: list)
listOfList.add(Collections.singletonList(t));
return listOfList;
}
public static <T> Iterable<List<T>> getIterable(final Iterable<? extends T> list, final int size) {
final List<T> vals = new ArrayList<>();
int numElements = 0;
for (T t : list) {
vals.add(t);
numElements++;
}
if (size == 1) {
return getList(vals);
}
if (size == numElements) {
return Collections.singletonList(vals);
}
return new Iterable<List<T>>() {
#Override
public Iterator<List<T>> iterator() {
return new Iterator<List<T>>() {
int currPos = 0;
Iterator<List<T>> nextIterator = getIterable(
vals.subList(this.currPos + 1, vals.size()), size - 1).iterator();
#Override
public boolean hasNext() {
if ((this.currPos < vals.size()-2) && (this.currPos+size < vals.size()))
return true;
return false;
}
#Override
public List<T> next() {
if (!nextIterator.hasNext()) {
this.currPos++;
nextIterator = getIterable(vals.subList(this.currPos+1, vals.size()), size-1).iterator();
}
final List<T> ret = new ArrayList<>(nextIterator.next());
ret.add(0, vals.get(this.currPos));
return ret;
}
};
}
};
}
Here's a short python algorithm. I haven't used any predefined functions as such so I believe it could be easily translated to Java/C
def subs(l,n):
if(len(l)<k):
return []
elif(k==0):
return [[]]
else:
lis=[[l[0]]+b for b in (subs(l[1:],k-1))]
return (lis+subs(l[1:],k))
Here l is the list [1,2,...,m]
Here is a simple algorithm to enumerate all k-subsets of [n]={0,...,n-1} in lexicographic order. That is, the first of these subsets is S0=(0,1,2...,k-1), and the last is Slast=(n-k, n-k+1,...,n-1). For any k-subset S and for any 0 < j < k, we have S[j-1] < S[j] <= n+j-k.
For example, if n=10 and k=4, S0=(0,1,2,3) and Slast=(6,7,8,9). Notice, for example, that no combination can have S[1]>7 (in which case we'd have S[j]>n+j-k), since then there would be not enough values left to fill thr remaining positions j=2..3.
The idea of the algorithm is to start with the first combination S0, and then call next() repeatedly to generate the next k-subset each time. The function next() traverses the current k-subset backwards, starting from the last position j=k-1 down to 0, until it finds an entry S[j] that has not yet reached its maximum allowed value n+j-k and can thus be increased. Then it increases this position by one and fills the remaining positions, j+1..k-1 with consecutive values from S[j]+1. The algorithm stops as soon as no position can be further increased.
For example, suppose we have S=(3,7,8,9). Starting from j=3, we see that S[3],S[2],S[1] have reached their maximum values. Thus, the rightmost position that can still be increased is S[0]. This value is updated to S[0]+1=4, and the following positions are updated to 5,6,7. Hence the next k-subset will be S=(4,5,6,7).
#include <stdlib.h>
#include <stdbool.h>
#include <stdio.h>
bool next(int *S, int k, int n) {
int j = k-1;
while (j >= 0 && S[j] == n + j - k)
j--;
if (j < 0) return false;
S[j] += 1;
for (int i = j+1; i < k ; i++)
S[i] = S[i-1] + 1;
return true;
}
int main(int argc, char *argv[])
{
int n = 10;
int k = 4;
int *S = (int *)calloc(k, sizeof(int));
for (int j = 0; j < k; S[++j] = j); //first k-subset
int no = 0;
do {
printf("subset #%d: ",no++);
for (int j=0; j < k; j++) {
printf("%d ", S[j]);
}
printf("\n");
} while(next(S, k, n));
return 0;
}

Resources