"Logical Indexing with a Smaller Array" in matlab [duplicate] - arrays

This question already has an answer here:
Linear indexing, logical indexing, and all that
(1 answer)
Closed 7 years ago.
The matlab help page for matrix indexing says:
Logical Indexing with a Smaller Array
In most cases, the logical indexing array should have the same number
of elements as the array being indexed into, but this is not a
requirement. The indexing array may have smaller (but not larger)
dimensions:
A = [1 2 3;4 5 6;7 8 9]
A =
1 2 3
4 5 6
7 8 9
B = logical([0 1 0; 1 0 1])
B =
0 1 0
1 0 1
isequal(numel(A), numel(B))
ans =
0
A(B)
ans =
4
7
8
What kind of crazy rule is matlab using here?

To understand this behavior, it's necessary to understand how matrices are stored in memory. Matlab stores matrices using column major layout. This means the 2d matrix:
A = 1 2 3
4 5 6
7 8 9
is stored in memory as one dimensional array going down the columns of A:
A = { array = [1 4 7 2 5 8 3 6 9]
n_rows = 3
n_cols = 3 }
The matrix B:
B = 0 1 0
1 0 1
is stored in memory as:
B = { array = [0 1 1 0 0 1]
n_rows = 2
n_cols = 3 }
Let's put the underlying representations next to eachother:
A.array = [1 4 7 2 5 8 3 6 9]
B.array = [0 1 1 0 0 1]
Using logical indexing, A(B) gives you [4, 7, 8] If you think a bit deeper, what's causing the unintuitive result is the combination of: (1) Matlab uses column major layout and (2) the number of columns in A and B are different.
Note: I'm using pseudo code here. A.array isn't valid code etc...
Bonus:
You can see what happens when the reshape command is called. The underlying data array doesn't change, just the n_rows and n_cols associated with the data array.

Related

Matrix transformation in MATLAB

For example, I have a matrix A (Figure 1). When the variable n = 2, I want it to be transformed to the matrix B. The red rectangle shows the transformation rule of every column. According to this rule, when the n = 3, it can become the matrix C.
I have written a script using a for loop method, but it is a waste of time when the matrix A is very large (e.g. 11688* 140000). Is there an efficient way to solve this problem?
Figure 1:
Here is a way using reshape and implicit expansion:
result = reshape(A((1:size(A,1)-n+1) + (0:n-1).', :), n, []);
For example assume that n = 3. Implicit expansion is used to extract indices of rows:
row_ind = (1:size(A,1)-n+1) + (0:n-1).';
The following matrix is created:
1 2
2 3
3 4
Extract the desired rows of A:
A_expanded = A(row_ind, :)
When the matrix row_ind is used as an index it behaves like a vector:
1
2
1 2 3
2 3 -> 2
3 4 3
4
A_expanded =
3 5 7
6 8 9
2 6 3
6 8 9
2 6 3
1 2 1
Now A_expanded can be reshaped to the desired size:
result = reshape(A_expanded, n, []);
>>result =
3 6 5 8 7 9
6 2 8 6 9 3
2 1 6 2 3 1
If you have the Image Processing Toolbox you can use im2col as follows:
result = im2col(A, [n 1], 'sliding');

Remove one element from each row of a matrix, each in a different column

How can I remove elements in a matrix, that aren't all in a straight line, without going through a row at a time in a for loop?
Example:
[1 7 3 4;
1 4 4 6;
2 7 8 9]
Given a vector (e.g. [2,4,3]) How could I remove the elements in each row (where each number in the vector corresponds to the column number) without going through each row at a time and removing each element?
The example output would be:
[1 3 4;
1 4 4;
2 7 9]
It can be done using linear indexing at follows. Note that it's better to work down columns (because of Matlab's column-major order), which implies transposing at the beginning and at the end:
A = [ 1 7 3 4
1 4 4 6
2 7 8 9 ];
v = [2 4 3]; %// the number of elements of v must equal the number of rows of A
B = A.'; %'// transpose to work down columns
[m, n] = size(B);
ind = v + (0:n-1)*m; %// linear index of elements to be removed
B(ind) = []; %// remove those elements. Returns a vector
B = reshape(B, m-1, []).'; %'// reshape that vector into a matrix, and transpose back
Here's one approach using bsxfun and permute to solve for a 3D array case, assuming you want to remove indexed elements per row across all 3D slices -
%// Inputs
A = randi(9,3,4,3)
idx = [2 4 3]
%// Get size of input array, A
[M,N,P] = size(A)
%// Permute A to bring the columns as the first dimension
Ap = permute(A,[2 1 3])
%// Per 3D slice offset linear indices
offset = bsxfun(#plus,[0:M-1]'*N,[0:P-1]*M*N) %//'
%// Get 3D array linear indices and remove those from permuted array
Ap(bsxfun(#plus,idx(:),offset)) = []
%// Permute back to get the desired output
out = permute(reshape(Ap,3,3,3),[2 1 3])
Sample run -
>> A
A(:,:,1) =
4 4 1 4
2 9 7 5
5 9 3 9
A(:,:,2) =
4 7 7 2
9 6 6 9
3 5 2 2
A(:,:,3) =
1 7 5 8
6 2 9 6
8 4 2 4
>> out
out(:,:,1) =
4 1 4
2 9 7
5 9 9
out(:,:,2) =
4 7 2
9 6 6
3 5 2
out(:,:,3) =
1 5 8
6 2 9
8 4 4

Replicate Element-wise in matrix [duplicate]

This question already has answers here:
Element-wise array replication in Matlab
(7 answers)
A similar function to R's rep in Matlab [duplicate]
(4 answers)
Closed 8 years ago.
Let's say, I have:
A=[1 2; 3 4];
I want to use repmat that return:
B = [1 1 2 2; 1 1 2 2; 3 3 4 4; 3 3 4 4]
Kindly need your help. Thank you
I do not know a method using repmat but here is a method using kron
kron([1 2 ; 3 4],[1 1;1 1])
ans =
1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4
An alternative which uses repmat is
A=[1 2; 3 4];
cell2mat(arrayfun(#(x)repmat(x,2,2),A,'UniformOutput',false))
ans =
1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4
arrayfun is used to evaluate each element in A using the anonymous function #(x)repmat(x,2,2) which replicates that single element into a 2x2 matrix.
The result of arrayfun is a 2x2 cell array where each element is a 2x2 matrix. We then convert this cell array into a matrix via cell2mat.
Let the data be defined as
A = [1 2; 3 4];
R = 2; %// number of repetitions of each row
C = 2; %// number of repetitions of each column. May be different from R
Two possible approaches are as follows:
The simplest method is to use indexing:
B = A(ceil(1/R:1/R:size(A,1)), ceil(1/C:1/C:size(A,2)));
If you really want to do it with repmat, you need to play with dimensions using permute and reshape: move original dimensions 1, 2 to dimensions 2, 4 (permute); do the repetition along new dimensions 1, 3 (repmat); collapse dimensions 1, 2 into one dimension and 3, 4 into another dimension (reshape):
[r c] = size(A);
B = reshape(repmat(permute(A, [3 1 4 2]), [R 1 C 1]), [r*R c*C]);
Example result for R=2, C=3 (obtained with any of the two approaches):
B =
1 1 1 2 2 2
1 1 1 2 2 2
3 3 3 4 4 4
3 3 3 4 4 4

Vectorized Reshaping of Columns in an Array

I have an array A, and want to reshape the last four elements of each column into a 2x2 matrix. I would like the results to be stored in a cell array B.
For example, given:
A = [1:6; 3:8; 5:10]';
I would like B to contain three 2x2 arrays, such that:
B{1} = [3, 5; 4, 6];
B{2} = [5, 7; 6, 8];
B{3} = [7, 9; 8, 10];
I can obviously do this in a for loop using something like reshape(A(end-3:end, ii), 2, 2) and looping over ii. Can anyone propose a vectorized method, perhaps using something similar to cellfun that can apply an operation repeatedly to columns of an array?
The way I do this is to look at the desired indices and then figure out a way to generate them, usually using some form of repmat. For example, if you want the last 4 items in each column, the (absolute) indices into A are going to be 3,4,5,6, then add the number of rows to that to move to the next column to get 9,10,11,12 and so on. So the problem becomes generating that matrix in terms of your number of rows, number of columns, and the number of elements you want from each column (I'll call it n, in your case n=4).
octave:1> A = [1:6; 3:8; 5:10]'
A =
1 3 5
2 4 6
3 5 7
4 6 8
5 7 9
6 8 10
octave:2> dim=size(A)
dim =
6 3
octave:3> n=4
n = 4
octave:4> x=repmat((dim(1)-n+1):dim(1),[dim(2),1])'
x =
3 3 3
4 4 4
5 5 5
6 6 6
octave:5> y=repmat((0:(dim(2)-1)),[n,1])
y =
0 1 2
0 1 2
0 1 2
0 1 2
octave:6> ii=x+dim(1)*y
ii =
3 9 15
4 10 16
5 11 17
6 12 18
octave:7> A(ii)
ans =
3 5 7
4 6 8
5 7 9
6 8 10
octave:8> B=reshape(A(ii),sqrt(n),sqrt(n),dim(2))
B =
ans(:,:,1) =
3 5
4 6
ans(:,:,2) =
5 7
6 8
ans(:,:,3) =
7 9
8 10
Depending on how you generate x and y, you can even do away with the multiplication, but I'll leave that to you. :D
IMO you don't need a cell array to store them either, a 3D matrix works just as well and you index into it the same way (but don't forget to squeeze it before you use it).
I gave a similar answer in this question.

Element-wise array replication according to a count [duplicate]

This question already has answers here:
Repeat copies of array elements: Run-length decoding in MATLAB
(5 answers)
Closed 8 years ago.
My question is similar to this one, but I would like to replicate each element according to a count specified in a second array of the same size.
An example of this, say I had an array v = [3 1 9 4], I want to use rep = [2 3 1 5] to replicate the first element 2 times, the second three times, and so on to get [3 3 1 1 1 9 4 4 4 4 4].
So far I'm using a simple loop to get the job done. This is what I started with:
vv = [];
for i=1:numel(v)
vv = [vv repmat(v(i),1,rep(i))];
end
I managed to improve by preallocating space:
vv = zeros(1,sum(rep));
c = cumsum([1 rep]);
for i=1:numel(v)
vv(c(i):c(i)+rep(i)-1) = repmat(v(i),1,rep(i));
end
However I still feel there has to be a more clever way to do this... Thanks
Here's one way I like to accomplish this:
>> index = zeros(1,sum(rep));
>> index(cumsum([1 rep(1:end-1)])) = 1;
index =
1 0 1 0 0 1 1 0 0 0 0
>> index = cumsum(index)
index =
1 1 2 2 2 3 4 4 4 4 4
>> vv = v(index)
vv =
3 3 1 1 1 9 4 4 4 4 4
This works by first creating an index vector of zeroes the same length as the final count of all the values. By performing a cumulative sum of the rep vector with the last element removed and a 1 placed at the start, I get a vector of indices into index showing where the groups of replicated values will begin. These points are marked with ones. When a cumulative sum is performed on index, I get a final index vector that I can use to index into v to create the vector of heterogeneously-replicated values.
To add to the list of possible solutions, consider this one:
vv = cellfun(#(a,b)repmat(a,1,b), num2cell(v), num2cell(rep), 'UniformOutput',0);
vv = [vv{:}];
This is much slower than the one by gnovice..
What you are trying to do is to run-length decode. A high level reliable/vectorized utility is the FEX submission rude():
% example inputs
counts = [2, 3, 1];
values = [24,3,30];
the result
rude(counts, values)
ans =
24 24 3 3 3 30
Note that this function performs the opposite operation as well, i.e. run-length encodes a vector or in other words returns values and the corresponding counts.
accumarray function can be used to make the code work if zeros exit in rep array
function vv = repeatElements(v, rep)
index = accumarray(cumsum(rep)'+1, 1);
vv = v(cumsum(index(1:end-1))+1);
end
This works similar to solution of gnovice, except that indices are accumulated instead being assigned to 1. This allows to skip some indices (3 and 6 in the example below) and remove corresponding elements from the output.
>> v = [3 1 42 9 4 42];
>> rep = [2 3 0 1 5 0];
>> index = accumarray(cumsum(rep)'+1, 1)'
index =
0 0 1 0 0 2 1 0 0 0 0 2
>> cumsum(index(1:end-1))+1
ans =
1 1 2 2 2 4 5 5 5 5 5
>> vv = v(cumsum(index(1:end-1))+1)
vv =
3 3 1 1 1 9 4 4 4 4 4

Resources