Matlab: Creating a binned RGB histogram [duplicate] - arrays

This question already has an answer here:
Content-Based Image Retrieval and Precision-Recall graphs using Color Histograms in MATLAB
(1 answer)
Closed 7 years ago.
I want to implement the following Matlab function:
function hist = binnedRgbHist(im, numChannelBins)
Given an image im and a number between 1 and 256 numChannelBins, it should create a histogram sized (numChannelBins)^3.
For example, if numChannelBins is 2, it should produce the following 8-sized histogram:
Number of pixels with R < 128, G < 128, B < 128
Number of pixels with R < 128, G < 128, B >= 128
Number of pixels with R < 128, G >= 128, B < 128
Number of pixels with R < 128, G >= 128, B >= 128
Number of pixels with R > 128, G < 128, B < 128
Number of pixels with R > 128, G < 128, B >= 128
Number of pixels with R > 128, G >= 128, B < 128
Number of pixels with R > 128, G >= 128, B >= 128
It is like creating a cube where each axis represents one of (R,G and B), where each axis is divided into 2 bins => Finally there are 8 bins in the cube.
My questions:
It there a built-in function for it?
If not, how is it better to implement it in manners of runtinme using the GPU? Should I better iterate over the pixels once and create the histogram manually, or should I better iterate over the bins and each time count the number of pixels which satisfy the bin's conditions?

accumarray is very suited for this. Let
im: input image;
N: number of bins per color component.
Then
result = accumarray(reshape(permute(ceil(im/255*N), [3 1 2]), 3, []).', 1, [N N N]);
How it works
ceil(im/255*N) quantizes each color vaue to 1, 2, ..., N.
reshape(permute(..., [3 1 2]), 3, []).' transforms the quantized image into a three-column matrix where each row is a pixel and each column is a (quantized) color component.
accumarray(..., 1, [N N N]) considers each row of that matrix as 3D index, and counts how many times each index appears, giving filling indices that don't appear with a 0.
Example 1
Data:
>> N = 2;
>> im = randi(256,4,5,3)
im(:,:,1) =
113 152 157 65 229
138 71 215 39 41
13 108 230 160 153
142 128 125 220 214
im(:,:,2) =
208 215 182 27 230
205 161 8 95 180
225 53 73 129 31
103 97 160 83 255
im(:,:,3) =
242 29 185 89 55
202 225 156 174 96
160 197 35 87 113
244 176 146 85 120
Result:
result(:,:,1) =
1 1
3 4
result(:,:,2) =
2 4
3 2
It can be checked for example that there is only 1 pixel with all R,G,B less than 128.
Example 2
Data:
>> im = repmat(150,20,30,3);
>> N = 4;
Result:
result(:,:,1) =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
result(:,:,2) =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
result(:,:,3) =
0 0 0 0
0 0 0 0
0 0 600 0
0 0 0 0
result(:,:,4) =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
In this case all pixels belong to the same 3D-bin:

I see #Luis Mendo gave a great one-liner solution as I was writing this. In case it provides some deeper intuition, my solution makes use of histcounts and accumarray:
im = randi([1 255],[10,5,3]); %// A random 10-by-5 "image"
numChannelBins = 2;
[~,~,binR]=histcounts(im(:,:,1),[1 ceil((1:numChannelBins)*(255/numChannelBins))]);
[~,~,binG]=histcounts(im(:,:,2),[1 ceil((1:numChannelBins)*(255/numChannelBins))]);
[~,~,binB]=histcounts(im(:,:,3),[1 ceil((1:numChannelBins)*(255/numChannelBins))]);
hist=accumarray([binR(:) binG(:) binB(:)],1,[numChannelBins,numChannelBins,numChannelBins])
Explanation:
the three calls to histcounts bin the red, green, blue pixels separately -- the third output [~,~,binX] of histcounts gives the bin index for each pixel
accumarray accumulates all the unique index triplets

Related

Creative way to create a Matlab array from a textfile with multiple headers

I am trying to parse a molecular dynamics dump file which has headers printed periodically. Between two successive headers, I have data (not guaranteed that the lenght of data is the same between any two successive headers) in a column format which I want to store and post-process. Is there a way I can do this without excessive use of for loops?
The basic gist of it is:
ITEM: TIMESTEP
0
ITEM: NUMBER OF ENTRIES
1079
ITEM: BOX BOUNDS xy xz yz ff ff pp
-1e+06 1e+06 0
-1e+06 1e+06 0
-1e+06 1e+06 0
ITEM: ENTRIES index c_1[1] c_1[2] c_2[1] c_2[2] c_2[3] c_2[4] c_2[5]
1 1 94 0.0399999 0 0.171554 -0.00124379 0
2 1 106 0.0399999 0 -0.0638316 0.116503 0
3 1 204 0.0299999 0 -0.124742 0.0290103 0
4 1 675 0.0299999 0 0.0245382 -0.116731 0
5 2 621 0.03 0 0.0328324 0.00185942 0
6 2 656 0.04 0 -0.0315086 0.016237 0
7 2 671 0.04 0 -0.00291159 -0.0169882 0
8 3 76 0.03 0 0.01775 0.0100646 0
9 3 655 0.03 0 0.00434063 -0.00750336 0
.
.
.
.
.
1076 678 692 100000 0 -0.222481 -1.44632e-06 0
1077 679 692 100000 0 -0.00232206 -8.05951e-09 0
1078 682 691 100000 0 0.0753935 -2.89438e-07 0
1079 687 692 100000 0 -0.0153246 -2.51076e-08 0
ITEM: TIMESTEP
1000
ITEM: NUMBER OF ENTRIES
1078
ITEM: BOX BOUNDS xy xz yz ff ff pp
-1e+06 1e+06 0
-1e+06 1e+06 0
-1e+06 1e+06 0
ITEM: ENTRIES index c_1[1] c_1[2] c_2[1] c_2[2] c_2[3] c_2[4] c_2[5]
1 1 94 0.0399997 0 1.3535 -0.00981109 0
2 1 106 0.0399986 0 -6.36969 11.6275 0
3 1 204 0.0299893 0 -236.114 54.9339 0
4 1 675 0.0299998 0 0.148064 -0.704365 0
.
.
.
.
TIA!
You don't need to write a single for loop to parse this file, MATLAB writes them for you:
[headers, tables] = parseTables('tables.txt')
...
function [headers, tables] = parseTables(filename)
content = fileread(filename); % read whole file
lines = splitlines(content); % split lines
values = cellfun(#str2num, lines, 'UniformOutput', false); % convert lines to float, when possible
headerLines = cellfun(#isempty, values); % lines with no floats
headers = lines(headerLines); % extract headers
startLines = find(headerLines)+1; % indices of first lines of tables
endLines = [startLines(2:end)-1; length(values)]; % indices of last lines of tables
tables = arrayfun(#(i, j) cell2mat(values(i:j)), ...
startLines, endLines, 'UniformOutput', false); % merge table rows to single matrix
end
The results will be stored in cell arrays:
headers =
8×1 cell array
{'ITEM: TIMESTEP' }
{'ITEM: NUMBER OF ENTRIES' }
{'ITEM: BOX BOUNDS xy xz yz ff ff pp' }
{'ITEM: ENTRIES index c_1[1] c_1[2] c_2[1] c_2[2] c_2[3] c_2[4] c_2[5] '}
{'ITEM: TIMESTEP' }
{'ITEM: NUMBER OF ENTRIES' }
{'ITEM: BOX BOUNDS xy xz yz ff ff pp' }
{'ITEM: ENTRIES index c_1[1] c_1[2] c_2[1] c_2[2] c_2[3] c_2[4] c_2[5] '}
tables =
8×1 cell array
{[ 0]}
{[ 1079]}
{ 3×3 double}
{13×8 double}
{[ 1000]}
{[ 1078]}
{ 3×3 double}
{ 4×8 double}

MATLAB: Remove sub-arrays from a multidimensional array into an array of ones

I would like to construct a function
[B, ind] = extract_ones(A)
which removes some sub-arrays from a binary array A in arbitrary dimensions, such that the remaining array B is the largest possible array with only 1's, and I also would like to record in ind that where each of the 1's in B comes from.
Example 1
Assume A is a 2-D array as shown
A =
1 1 0 0 0 1
1 1 1 0 1 1
0 0 0 1 0 1
1 1 0 1 0 1
1 1 0 1 0 1
1 1 1 1 1 1
After removing A(3,:) and A(:,3:5), we have the output B
B =
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
which is the largest array with only ones by removing rows and columns of A.
As the fifteen 1's of B corresponds to
A(1,1) A(1,2) A(1,6)
A(2,1) A(2,2) A(2,6)
A(4,1) A(4,2) A(4,6)
A(5,1) A(5,2) A(5,6)
A(6,1) A(6,2) A(6,6)
respectively, or equivalently
A(1) A(7) A(31)
A(2) A(8) A(32)
A(4) A(10) A(34)
A(5) A(11) A(35)
A(6) A(12) A(36)
so, the output ind looks like (of course ind's shape does not matter):
ind = [1 2 4 5 6 7 8 10 11 12 31 32 34 35 36]
Example 2
If the input A is constructed by
A = ones(6,3,4,3);
A(2,2,2,2) = 0;
A(4,1,3,3) = 0;
A(1,1,4,2) = 0;
A(1,1,4,1) = 0;
Then, by deleting the minimum cuboids containing A(2,2,2,2), A(4,1,3,3), A(1,1,4,3) and A(1,1,4,1), i.e. after deleting these entries
A(2,:,:,:)
A(:,1,:,:)
Then the remaining array B will be composed by 1's only. And the ones in B corresponds to
A([1,3:6],2:3,1:4,1:3)
So, the output ind lists the subscripts transformed into indices, i.e.
ind = [7 9 10 11 12 13 15 16 17 18 25 27 28 29 30 31 33 34 35 36 43 45 46 47 48 49 51 52 53 54 61 63 64 65 66 67 69 70 71 72 79 81 82 83 84 85 87 88 89 90 97 99 100 101 102 103 105 106 107 108 115 117 118 119 120 121 123 124 125 126 133 135 136 137 138 139 141 142 143 144 151 153 154 155 156 157 159 160 161 162 169 171 172 173 174 175 177 178 179 180 187 189 190 191 192 193 195 196 197 198 205 207 208 209 210 211 213 214 215 216]
As the array needed to be processed as above is in 8-D, and it should be processed more than once, so can anyone give me opinions on how to composing the program doing this task fast?
My work so far [Added at 2 am (GMT-4), 2nd Aug 2017]
My idea was that I delete the sub-arrays with the largest proportion of zero one by one. And here is my work so far:
Inds = reshape(1:numel(A),size(A)); % Keep track on which 1's survive.
cont = true;
while cont
sz = size(A);
zero_percentage = 0;
Test_location = [];
% This nested for loops are for determining which sub-array of A has the
% maximum proportion of zeros.
for J = 1 : ndims(A)
for K = 1 : sz(J)
% Location is in the form of (_,_,_,...,_)
% where the J-th blank is K, the other blanks are colons.
Location = strcat('(',repmat(':,',1,(J-1)),int2str(K),repmat(',:',1,(ndims(A)-J)),')');
Test_array = eval(strcat('A',Location,';'));
N = numel(Test_array);
while numel(Test_array) ~= 1
Test_array = sum(Test_array);
end
test_zero_percentage = 1 - (Test_array/N);
if test_zero_percentage > zero_percentage
zero_percentage = test_zero_percentage;
Test_location = Location;
end
end
end
% Delete the array with maximum proportion of zeros
eval(strcat('A',Test_location,'= [];'))
eval(strcat('Inds',Test_location,'= [];'))
% Determine if there are still zeros in A. If there are, continue the while loop.
cont = A;
while numel(cont) ~= 1
cont = prod(cont);
end
cont = ~logical(cont);
end
But I encountered two problems:
1) It may be not efficient to check all arrays in all sub-dimensions one-by-one.
2) The result does not contain the most number of rectangular ones. for example, I tested my work using a 2-dimensional binary array A
A =
0 0 0 1 1 0
0 1 1 0 1 1
1 0 1 1 1 1
1 0 0 1 1 1
0 1 1 0 1 1
0 1 0 0 1 1
1 0 0 0 1 1
1 0 0 0 0 0
It should return me the result as
B =
1 1
1 1
1 1
1 1
1 1
1 1
Inds =
34 42
35 43
36 44
37 45
38 46
39 47
But, instead, the code returned me this:
B =
1 1 1
1 1 1
1 1 1
Inds =
10 34 42
13 37 45
14 38 46
*My work so far 2 [Added at 12noon (GMT-4), 2nd Aug 2017]
Here is my current amendment. This may not provide the best result.
This may give a fairly OK approximation to the problem, and this does not give empty Inds. But I am still hoping that there is a better solution.
function [B, Inds] = Finding_ones(A)
Inds = reshape(1:numel(A),size(A)); % Keep track on which 1's survive.
sz0 = size(A);
cont = true;
while cont
sz = size(A);
zero_percentage = 0;
Test_location = [];
% This nested for loops are for determining which sub-array of A has the
% maximum proportion of zeros.
for J = 1 : ndims(A)
for K = 1 : sz(J)
% Location is in the form of (_,_,_,...,_)
% where the J-th blank is K, the other blanks are colons.
Location = strcat('(',repmat(':,',1,(J-1)),int2str(K),repmat(',:',1,(ndims(A)-J)),')');
Test_array = eval(strcat('A',Location,';'));
N = numel(Test_array);
Test_array = sum(Test_array(:));
test_zero_percentage = 1 - (Test_array/N);
if test_zero_percentage > zero_percentage
eval(strcat('Testfornumel = numel(A',Location,');'))
if Testfornumel < numel(A) % Preventing the A from being empty
zero_percentage = test_zero_percentage;
Test_location = Location;
end
end
end
end
% Delete the array with maximum proportion of zeros
eval(strcat('A',Test_location,'= [];'))
eval(strcat('Inds',Test_location,'= [];'))
% Determine if there are still zeros in A. If there are, continue the while loop.
cont = A;
while numel(cont) ~= 1
cont = prod(cont);
end
cont = ~logical(cont);
end
B = A;
% command = 'i1, i2, ... ,in'
% here, n is the number of dimansion of A.
command = 'i1';
for J = 2 : length(sz0)
command = strcat(command,',i',int2str(J));
end
Inds = reshape(Inds,numel(Inds),1); %#ok<NASGU>
eval(strcat('[',command,'] = ind2sub(sz0,Inds);'))
% Reform Inds into a 2-D matrix, which each column indicate the location of
% the 1 originated from A.
Inds = squeeze(eval(strcat('[',command,']')));
Inds = reshape(Inds',length(sz0),numel(Inds)/length(sz0));
end
It seems a difficult problem to solve, since the order of deletion can change a lot in the final result. If in your first example you start with deleting all the columns that contain a 0, you don't end up with the desired result.
The code below removes the row or column with the most zeros and keeps going until it's only ones. It keeps track of the rows and columns that are deleted to find the indexes of the remaining ones.
function [B,ind] = extract_ones( A )
if ~islogical(A),A=(A==1);end
if ~any(A(:)),B=[];ind=[];return,end
B=A;cdel=[];rdel=[];
while ~all(B(:))
[I,J] = ind2sub(size(B),find(B==0));
ih=histcounts(I,[0.5:1:size(B,1)+0.5]); %zero's in rows
jh=histcounts(J,[0.5:1:size(B,2)+0.5]); %zero's in columns
if max(ih)>max(jh)
idxr=find(ih==max(ih),1,'first');
B(idxr,:)=[];
%store deletion
rdel(end+1)=idxr+sum(rdel<=idxr);
elseif max(ih)==max(jh)
idxr=find(ih==max(ih),1,'first');
idxc=find(jh==max(jh),1,'first');
B(idxr,:)=[];
B(:,idxc)=[];
%store deletions
rdel(end+1)=idxr+sum(rdel<=idxr);
cdel(end+1)=idxc+sum(cdel<=idxc);
else
idxc=find(jh==max(jh),1,'first');
B(:,idxc)=[];
%store deletions
cdel(end+1)=idxc+sum(cdel<=idxc);
end
end
A(rdel,:)=0;
A(:,cdel)=0;
ind=find(A);
Second try: Start with a seed point and try to grow the matrix in all dimensions. The result is the start and finish point in the matrix.
function [ res ] = seed_grow( A )
if ~islogical(A),A=(A==1);end
if ~any(A(:)),res={};end
go = true;
dims=size(A);
ind = cell([1 length(dims)]); %cell to store find results
seeds=A;maxmat=0;
while go %main loop to remove all posible seeds
[ind{:}]=find(seeds,1,'first');
S = [ind{:}]; %the seed
St = [ind{:}]; %the end of the seed
go2=true;
val_dims=1:length(dims);
while go2 %loop to grow each dimension
D=1;
while D<=length(val_dims) %add one to each dimension
St(val_dims(D))=St(val_dims(D))+1;
I={};
for ct = 1:length(S),I{ct}=S(ct):St(ct);end %generate indices
if St(val_dims(D))>dims(val_dims(D))
res=false;%outside matrix
else
res=A(I{:});
end
if ~all(res(:)) %invalid addition to dimension
St(val_dims(D))=St(val_dims(D))-1; %undo
val_dims(D)=[]; D=D-1; %do not try again
if isempty(val_dims),go2=false;end %end of growth
end
D=D+1;
end
end
%evaluate the result
mat = prod((St+1)-S); %size of matrix
if mat>maxmat
res={S,St};
maxmat=mat;
end
%tried to expand, now remove seed option
for ct = 1:length(S),I{ct}=S(ct):St(ct);end %generate indices
seeds(I{:})=0;
if ~any(seeds),go=0;end
end
end
I tested it using your matrix:
A = [0 0 0 1 1 0
0 1 1 0 1 1
1 0 1 1 1 1
1 0 0 1 1 1
0 1 1 0 1 1
0 1 0 0 1 1
1 0 0 0 1 1
1 0 0 0 0 0];
[ res ] = seed_grow( A );
for ct = 1:length(res),I{ct}=res{1}(ct):res{2}(ct);end %generate indices
B=A(I{:});
idx = reshape(1:numel(A),size(A));
idx = idx(I{:});
And got the desired result:
B =
1 1
1 1
1 1
1 1
1 1
1 1
idx =
34 42
35 43
36 44
37 45
38 46
39 47

how to generate an image in the format of the mnist database?

I need to make a handwritten image to be tested with a neural network in Matlab. When I see the data contained in the training images from the MNIST I see that it is an array of different gray scales like:
Columns 343 through 351
0 -0.0240 0.4002 0.6555 0.0235 -0.0062 0 0 0
Columns 352 through 360
0 0 0 0 0 0 0 0 0
Columns 361 through 369
0 0 0 -0.0079 0.1266 0.3272 -0.0233 0.0005
corresponding to a 20x20 image, unrolled into a 1*400 dimensional array.
I have downloaded an image in jpeg format and did the following:
im=imread('image.jpg');
gi=rgb2gray(im);
gi=gi(:);
gi=gi';
that generates me an array gi that says <1*400 uint8>, the last part of uint8 does not appear in the MNIST samples when I put it in Matlab. When I check it up my array it appear the following values:
Columns 289 through 306
58 105 128 133 142 131 76 21 1 0 3 0 2 4 17 12 7 0
Columns 307 through 324
1 15 42 75 97 105 98 73 31 4 1 0 0 0 0 2 4 3
Columns 325 through 342
0 0 1 4 21 37 55 59 46 26 9 0 0 0 0 0 0 0
Columns 343 through 360
1 1 0 0 0 1 7 14 21 21 14 5 0 0 0 0 0 0
Columns 361 through 378
0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 2 0 0
when I visualize them all is fine, but when I want to run my program the following message appears:
??? Error using ==> mtimes
MTIMES is not fully supported for integer classes. At least one input must be scalar.
Error in ==> predict at 15
h1 = sigmoid([ones(m, 1) X] * Theta1');
Error in ==> ex4 at 241
pred = predict(Theta1, Theta2, gi);
situation that does not occur when I test my program even with one random sample ofc the MNIST data; any help?
You could try something like this:
imfile = 'image.jpg';
im = double(rgb2gray(imread(imfile))); % double and convert to grayscale
im = imresize(im,[20,20]); % change to 20 by 20 dimension
im = im(:); % unroll matrix to vector
im = im./max(im);
Note the MNIST dataset is intended to be a good dataset to require minimal preprocessing and the images were actually originally black and white (bilevel) whereas you are using color image. Also they do normalisation and other preprocessing to make nice 28 by 28 image dataset, my brief snippet of code above is unlikely to be anywhere near as good as MNIST dataset and is just intended to attempt to fix your error.
Your specific error is likely because you don't use double().
You may also get further errors because your code needs right dimensions, which can be achieved using imresize.
More information on MNIST dataset here:
http://yann.lecun.com/exdb/mnist/

How to populate binary matrices with all the combinations?

I want to have 2^n matrices with all the combinations of 0 and 1 in them. For example, for n=6 (n=#rows x #columns) array{1}=[0 0 0; 0 0 0],array{2}=[0 0 0; 0 0 1]... array{64}=[1 1 1;1 1 1]. I am using MATLAB and I came across with combn.m (M = COMBN(V,N) returns all combinations of N elements of the elements in vector V. M has the size (length(V).^N)-by-N.), dec2bin() but I can't get it quite right. Another idea of mine was to create a large matrix and then split it into 2^n matrices. For instance,for n=6( 2 x 3), i did this M=combn([0 1],3) which gives me:
M =
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
Then, use this M to create a larger matrix like this M2=combn(M,2), but this produces the wrong results. However, if i concatenate M row like this:
M=combn([000;010;100;001;110;011;101;111],2)' I get something closer to what I expect i.e
M =
Columns 1 through 21
0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 100 100 100 100 100
0 10 100 1 110 11 101 111 0 10 100 1 110 11 101 111 0 10 100 1 110
Columns 22 through 42
100 100 100 1 1 1 1 1 1 1 1 110 110 110 110 110 110 110 110 11 11
11 101 111 0 10 100 1 110 11 101 111 0 10 100 1 110 11 101 111 0 10
Columns 43 through 63
11 11 11 11 11 11 101 101 101 101 101 101 101 101 111 111 111 111 111 111 111
100 1 110 11 101 111 0 10 100 1 110 11 101 111 0 10 100 1 110 11 101
Column 64
111
111
where I can get each column and convert it separately into 64 matrices.So, for example column 1 would be converted from [0;0] to [0 0 0;0 0 0] etc. However, i believe it is a much easier problem which it can be solved in less time, elegantly.
Using dec2bin:
r = 2; %// nunber of rows
c = 3; %// number of columns
M = dec2bin(0:2^(r*c)-1)-'0'; %// Or: M = de2bi(0:2^(r*c)-1);
M = reshape(M.',r,c,[]);
M is a 3D-array of size r x c x 2^(r*c), such that M(:,:,1) is the first matrix, M(:,:,2) is the second etc.
How it works:
dec2bin gives a binary string representation of a number. So dec2bin(0:2^(r*c)-1) gives all numbers from 0 to 2^(r*c)-1 expressed in binary, each in one row. The -'0' part just turns the string into a numeric vector of 0 and 1 values. Then reshape puts each of those rows into a r x c form, to make up each of the the desired matrices.

Perl Nested Loop: Arrays - Calculating Minimum Distance

temp.bgf
ATOM 218 CB ASN 1 34 -7.84400 -9.19900 -5.03100 C_3 4 0 -0.18000 0 0
ATOM 221 CG ASN 1 34 -7.37700 -7.83400 -4.55200 C_R 3 0 0.55000 0 0
ATOM 226 C ASN 1 34 -9.18200 -10.62100 -6.58300 C_R 3 0 0.51000 0 0
ATOM 393 CB THR 2 69 -3.33000 -7.97700 -7.72000 C_3 4 0 0.14000 0 0
ATOM 397 CG2 THR 2 69 -4.75300 -8.54400 -7.67200 C_3 4 0 -0.27000 0 0
ATOM 401 C THR 2 69 -2.58000 -9.55700 -5.85500 C_R 3 0 0.51000 0 0
ATOM 417 CB THR 2 71 1.99100 -9.86800 -2.77000 C_3 4 0 0.14000 0 0
ATOM 421 CG2 THR 2 71 2.86300 -10.15400 -1.55700 C_3 4 0 -0.27000 0 0
ATOM 425 C THR 2 71 -0.19100 -10.14200 -1.62900 C_R 3 0 0.51000 0 0
ATOM 492 CB CYS 2 77 -5.17100 -14.77100 4.04000 C_3 4 0 -0.11000 0 0
ATOM 495 SG CYS 2 77 -6.29600 -14.88500 2.59500 S_3 2 2 -0.23000 0 0
ATOM 497 C CYS 2 77 -4.65100 -13.75800 6.12000 C_R 3 0 0.51000 0 0
ATOM 2071 CB SER 7 316 -3.87300 -2.15900 1.02300 C_3 4 0 0.05000 0 0
ATOM 2076 C SER 7 316 -4.79700 -1.16500 -1.10800 C_R 3 0 0.51000 0 0
target.bgf
ATOM 575 CB ASP 2 72 -2.80100 -7.45000 -2.09400 C_3 4 0 -0.28000 0 0
ATOM 578 CG ASP 2 72 -3.74900 -6.45900 -1.31600 C_R 3 0 0.62000 0 0
ATOM 581 C ASP 2 72 -3.19300 -9.62400 -0.87900 C_R 3 0 0.51000 0 0
I got two files of data. The first file contains data for the residues I want to calculate the distance to. The second file contains the coordinates for the target residue.
I want to calculate the minimum distance between the two quantities (i.e. ASP and the residues in the temp.bgf). I haven't been able to come up with an optimal way to store the x,y,z values and compare the distance in temp.bgf.
There have been questions as to how the calculation should be done. Here is the idea I have
#asp_atoms
#asn_atoms
$asnmin, aspmin
foreach $ap (#asp_atoms)
{
foreach $an (#asn_atoms)
{
dist = dist($v..$g...);
if($dist < $min)
{
$min = $dist;
}
}
}
I hope that clarifies questions as to how to implement the code. However, the problem I am having is how to store the values in the array and traverse through the file.
Also, to clarify how exactly(i.e. what numbers will be used for distance, here is an example of what I want to do).
For the ASP CB atoms with the following coordinates: -2.80100 -7.45000 -2.09400
I want to calculate the distance between the ASN CB, ASN CG, ASN C atoms. The minimum is the value printed out. Unfortunately, I don't have an exact value as to what that minimum would be, but I have to print out values less than 5 units of distance. Then, the ASP CG atoms distance would be calculated to all the ASN atoms to see the min. So I am trying to find the min distance here.
You can solve this by simply splitting each row from your file on white spaces, then storing the results in arrays of arrays and then slicing out only the parameters you need in loops (in this case x,y,z). This is not a complete answer to your problem but it should give you an idea of how this can be accomplished.
open (my $temp,"<","temp.bgf");
open (my $target,"<","target.bgf");
my #temps = create_ar($temp);
my #targets = create_ar($target);
sub create_ar {
my $filehan = shift;
my #array;
foreach (<$filehan>) {
push #array,[split(/\s+/,$_)];
}
return #array;
}
foreach my $ap (#targets) {
my ($target_X,$target_Y,$target_Z) = #{$ap}[6,7,8];
foreach my $an (#temps) {
my ($temp_X,$temp_Y,$temp_Z) = #{$an}[6,7,8];
...
}
}

Resources