I am trying to use Morton code to produce unique encoding for a given (x,y,z) where x,y,z are double precision floating point numbers. I presume that I can use type cast to convert the floats to integers and run Morton ordering on those integers. For example consider the following C++ code. (I don't now how to do the same in C)
double x=-1.123456789123456E205;
int64_t i = reinterpret_cast<int64_t &>(x);
cout<<i<<endl;
output >>> i = -1548698869907112442
And ditto for the reaming x,y. Once I have the "reinterpreted" values ,I would like to use them as a subroutine for Morton coding.
I checked the above type cast and it worked fine in reverse
double y = reinterpret_cast<double &>(i);
cout<<setprecision(16)<<y<<endl;
output>>-1.123456789123456e+205
I managed to find some codes for Morton coding, even some of them on this forum, but non of them used int64_t in 3D. Hence I am going to need the help of the experts on the forum, how to encode and decode int64_t integers.
I managed to reverse engineer the following code. Unfortunately there is some bug, I am not getting the proper numbers when I run the decode part. I would appreciate any help to figure out what is wrong.
2D morton code encode/decode 64bits.
#include <iostream>
#include <stdint.h>
#include<iomanip>
using namespace std;
uint64_t code_2D_M(double xd,double yd){
uint64_t x = reinterpret_cast<uint64_t& >(xd);
uint64_t y = reinterpret_cast<uint64_t& >(yd);
x = (x | (x << 16)) & 0x0000FFFF0000FFFF;
x = (x | (x << 8)) & 0x00FF00FF00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F0F0F0F0F;
x = (x | (x << 2)) & 0x3333333333333333;
x = (x | (x << 1)) & 0x5555555555555555;
y = (y | (y << 16)) & 0x0000FFFF0000FFFF;
y = (y | (y << 8)) & 0x00FF00FF00FF00FF;
y = (y | (y << 4)) & 0x0F0F0F0F0F0F0F0F;
y = (y | (y << 2)) & 0x3333333333333333;
y = (y | (y << 1)) & 0x5555555555555555;
return x | (y << 1);
}
uint64_t code_3D_M(double xd,double yd,double zd){
uint64_t x = reinterpret_cast<uint64_t& >(xd);
uint64_t y = reinterpret_cast<uint64_t& >(yd);
uint64_t z = reinterpret_cast<uint64_t& >(zd);
x = (x | (x << 16)) & 0x0000FFFF0000FFFF;
x = (x | (x << 8)) & 0x00FF00FF00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F0F0F0F0F;
x = (x | (x << 2)) & 0x3333333333333333;
x = (x | (x << 1)) & 0x5555555555555555;
y = (y | (y << 16)) & 0x0000FFFF0000FFFF;
y = (y | (y << 8)) & 0x00FF00FF00FF00FF;
y = (y | (y << 4)) & 0x0F0F0F0F0F0F0F0F;
y = (y | (y << 2)) & 0x3333333333333333;
y = (y | (y << 1)) & 0x5555555555555555;
z = (y | (y << 16)) & 0x0000FFFF0000FFFF;
z = (y | (y << 8)) & 0x00FF00FF00FF00FF;
z = (y | (y << 4)) & 0x0F0F0F0F0F0F0F0F;
z = (y | (y << 2)) & 0x3333333333333333;
z = (y | (y << 1)) & 0x5555555555555555;
return x | (y << 1) | (z << 2);
}
double decode_M(uint64_t x)
{
x = x & 0x5555555555555555;
x = (x | (x >> 1)) & 0x3333333333333333;
x = (x | (x >> 2)) & 0x0F0F0F0F0F0F0F0F;
x = (x | (x >> 4)) & 0x00FF00FF00FF00FF;
x = (x | (x >> 8)) & 0x0000FFFF0000FFFF;
x = (x | (x >> 16)) & 0xFFFFFFFFFFFFFFFF;
return reinterpret_cast<double& >(x);
}
int main (void){
uint64_t mort;
double x,y,z;
// test input
x=2.123456789123459E205;
y=1.789789123456129E205;
z=9.999999912345779E205;
// echo the input
cout<<setprecision(17)<<x<<endl;
cout<<setprecision(17)<<y<<endl;
cout<<setprecision(17)<<z<<endl;
// encode 2D case
mort = code_2D_M(x,y);
//decode and print the results to see if all was fine
cout<<setprecision(17)<<decode_M(mort>>0)<<endl;
cout<<setprecision(17)<<decode_M(mort>>1)<<endl;
// encode 3D case
mort = code_3D_M(x,y,z);
//decode and print the results to see if all was fine
cout<<setprecision(17)<<decode_M(mort>>0)<<endl;
cout<<setprecision(17)<<decode_M(mort>>1)<<endl;
cout<<setprecision(17)<<decode_M(mort>>2)<<endl;
return 0;
}
I am doing this because I would like not storing the coordinates as a 3D point (x,y,z) but rather as a single long integer and decode them when needed. By doing so I will reduce the size of my coordinate storage array 3-fold.
Related
i would like to read a 32-bits number from binary file in C. The problem is that the order of bits is reversed. For an example 3 digits number 110 would stand for 3, not for 6. At the beginning we have the least significant bit (2^0), then 2^1 and so on. Is there any simple way to do this in C, or do i have to write all the logic by myself (read the first bit, multiply it by 2^0, add to the sum, repeat to the end)?
you have many possible ways:
Portable:
(not my algorithm)
uint32_t rev(uint32_t x)
{
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
return((x >> 16) | (x << 16));
}
or
uint32_t bit_reverse_4bytes(uint32_t x)
{
x = ((x & 0xF0F0F0F0) >> 4) | ((x & 0x0F0F0F0F) << 4);
x = ((x & 0xCCCCCCCC) >> 2) | ((x & 0x33333333) << 2);
return ((x & 0xAAAAAAAA) >> 1) | ((x & 0x55555555) << 1);
}
Naive
uint32_t naiverevese(uint32_t x)
{
uint32_t result = 0;
for(int i = 0; i < 32; i++)
{
result |= x & 1;
result <<=1;
x >>= 1;
}
return result;
}
or lookup table.
Not portable but the most efficient:
Many processors have a special instructions for it for example:
ARM - rbit and the intrinsic unsigned int __rbit(unsigned int val)
I have a 3D grid/array say u[nx+2][ny+2][nz+2]. The trailing +2 corresponds to two layers of halo cells in each of the three dimension x,y,z. I have another grid which allows for refinement(using quadtree) hence I have the morton index (or the Z order) of each of the cells.
Lets say without refinement the two grids are alike in the physical reality(except the second code doesnt have halo cells), What I want to find is for a cell q with morton id mid what is the corresponding index i , j and k index in the 3D grid. Basically a decoding of the mid or Z-order to get corresponding i,j,k for u matrix.
Looking for a C solution but general comments in any other programming language is also OK.
For forward encoding I am following the magic bits method as shown in
Morton Encoding using different methods
Morton encoding is just interleaving the bits of two or more components.
If we number binary digits in increasing order of significance, so that the least significant binary digit in an unsigned integer is 0 (and binary digit i has value 2i), then binary digit i in component k of N corresponds to binary digit (i N + k) in the Morton code.
Here are two simple functions to encode and decode three-component Morton codes:
#include <stdlib.h>
#include <inttypes.h>
/* This source is in the public domain. */
/* Morton encoding in binary (components 21-bit: 0..2097151)
0zyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyx */
#define BITMASK_0000000001000001000001000001000001000001000001000001000001000001 UINT64_C(18300341342965825)
#define BITMASK_0000001000001000001000001000001000001000001000001000001000001000 UINT64_C(146402730743726600)
#define BITMASK_0001000000000000000000000000000000000000000000000000000000000000 UINT64_C(1152921504606846976)
/* 0000000ccc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc */
#define BITMASK_0000000000000011000000000011000000000011000000000011000000000011 UINT64_C(844631138906115)
#define BITMASK_0000000111000000000011000000000011000000000011000000000011000000 UINT64_C(126113986927919296)
/* 00000000000ccccc00000000cccc00000000cccc00000000cccc00000000cccc */
#define BITMASK_0000000000000000000000000000000000001111000000000000000000001111 UINT64_C(251658255)
#define BITMASK_0000000000000000000000001111000000000000000000001111000000000000 UINT64_C(1030792212480)
#define BITMASK_0000000000011111000000000000000000000000000000000000000000000000 UINT64_C(8725724278030336)
/* 000000000000000000000000000ccccccccccccc0000000000000000cccccccc */
#define BITMASK_0000000000000000000000000000000000000000000000000000000011111111 UINT64_C(255)
#define BITMASK_0000000000000000000000000001111111111111000000000000000000000000 UINT64_C(137422176256)
/* ccccccccccccccccccccc */
#define BITMASK_21BITS UINT64_C(2097151)
static inline void morton_decode(uint64_t m, uint32_t *xto, uint32_t *yto, uint32_t *zto)
{
const uint64_t mask0 = BITMASK_0000000001000001000001000001000001000001000001000001000001000001,
mask1 = BITMASK_0000001000001000001000001000001000001000001000001000001000001000,
mask2 = BITMASK_0001000000000000000000000000000000000000000000000000000000000000,
mask3 = BITMASK_0000000000000011000000000011000000000011000000000011000000000011,
mask4 = BITMASK_0000000111000000000011000000000011000000000011000000000011000000,
mask5 = BITMASK_0000000000000000000000000000000000001111000000000000000000001111,
mask6 = BITMASK_0000000000000000000000001111000000000000000000001111000000000000,
mask7 = BITMASK_0000000000011111000000000000000000000000000000000000000000000000,
mask8 = BITMASK_0000000000000000000000000000000000000000000000000000000011111111,
mask9 = BITMASK_0000000000000000000000000001111111111111000000000000000000000000;
uint64_t x = m,
y = m >> 1,
z = m >> 2;
/* 000c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c */
x = (x & mask0) | ((x & mask1) >> 2) | ((x & mask2) >> 4);
y = (y & mask0) | ((y & mask1) >> 2) | ((y & mask2) >> 4);
z = (z & mask0) | ((z & mask1) >> 2) | ((z & mask2) >> 4);
/* 0000000ccc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc */
x = (x & mask3) | ((x & mask4) >> 4);
y = (y & mask3) | ((y & mask4) >> 4);
z = (z & mask3) | ((z & mask4) >> 4);
/* 00000000000ccccc00000000cccc00000000cccc00000000cccc00000000cccc */
x = (x & mask5) | ((x & mask6) >> 8) | ((x & mask7) >> 16);
y = (y & mask5) | ((y & mask6) >> 8) | ((y & mask7) >> 16);
z = (z & mask5) | ((z & mask6) >> 8) | ((z & mask7) >> 16);
/* 000000000000000000000000000ccccccccccccc0000000000000000cccccccc */
x = (x & mask8) | ((x & mask9) >> 16);
y = (y & mask8) | ((y & mask9) >> 16);
z = (z & mask8) | ((z & mask9) >> 16);
/* 0000000000000000000000000000000000000000000ccccccccccccccccccccc */
if (xto) *xto = x;
if (yto) *yto = y;
if (zto) *zto = z;
}
static inline uint64_t morton_encode(uint32_t xsrc, uint32_t ysrc, uint32_t zsrc)
{
const uint64_t mask0 = BITMASK_0000000001000001000001000001000001000001000001000001000001000001,
mask1 = BITMASK_0000001000001000001000001000001000001000001000001000001000001000,
mask2 = BITMASK_0001000000000000000000000000000000000000000000000000000000000000,
mask3 = BITMASK_0000000000000011000000000011000000000011000000000011000000000011,
mask4 = BITMASK_0000000111000000000011000000000011000000000011000000000011000000,
mask5 = BITMASK_0000000000000000000000000000000000001111000000000000000000001111,
mask6 = BITMASK_0000000000000000000000001111000000000000000000001111000000000000,
mask7 = BITMASK_0000000000011111000000000000000000000000000000000000000000000000,
mask8 = BITMASK_0000000000000000000000000000000000000000000000000000000011111111,
mask9 = BITMASK_0000000000000000000000000001111111111111000000000000000000000000;
uint64_t x = xsrc,
y = ysrc,
z = zsrc;
/* 0000000000000000000000000000000000000000000ccccccccccccccccccccc */
x = (x & mask8) | ((x << 16) & mask9);
y = (y & mask8) | ((y << 16) & mask9);
z = (z & mask8) | ((z << 16) & mask9);
/* 000000000000000000000000000ccccccccccccc0000000000000000cccccccc */
x = (x & mask5) | ((x << 8) & mask6) | ((x << 16) & mask7);
y = (y & mask5) | ((y << 8) & mask6) | ((y << 16) & mask7);
z = (z & mask5) | ((z << 8) & mask6) | ((z << 16) & mask7);
/* 00000000000ccccc00000000cccc00000000cccc00000000cccc00000000cccc */
x = (x & mask3) | ((x << 4) & mask4);
y = (y & mask3) | ((y << 4) & mask4);
z = (z & mask3) | ((z << 4) & mask4);
/* 0000000ccc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc */
x = (x & mask0) | ((x << 2) & mask1) | ((x << 4) & mask2);
y = (y & mask0) | ((y << 2) & mask1) | ((y << 4) & mask2);
z = (z & mask0) | ((z << 2) & mask1) | ((z << 4) & mask2);
/* 000c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c */
return x | (y << 1) | (z << 2);
}
The functions work symmetrically. To decode, binary digits and digit groups are shifted to larger consecutive units; to encode, binary digit groups are split and spread by shifting. Examine the masks (the BITMASK_ constants are named after their binary digit pattern), and the shift operations, to understand in detail how the encoding and decoding happens.
While two functions are quite efficient, they are not optimized.
The above functions have been verified tested to work using a few billion round-trips using random 21-bit unsigned integer components: decoding a Morton-encoded value yields the original three components.
How to encode/decode morton codes(z-order) given [x, y] as 32bit unsigned integers producing 64bit morton code, and vice verse ?
I do have xy2d and d2xy but only for coordinates that are 16bits wide producing 32bit morton number. Searched a lot in net, but couldn't find. Please help.
If it is possible for you to use architecture specific instructions you'll likely be able to accelerate the operation beyond what is possible using bit-twiddeling hacks:
For example if you write code for the Intel Haswell and later CPUs you can use the BMI2 instruction set which contains the pext and pdep instructions. These can (among other great things) be used to build your functions.
Here is a complete example (tested with GCC):
#include <immintrin.h>
#include <stdint.h>
// on GCC, compile with option -mbmi2, requires Haswell or better.
uint64_t xy_to_morton(uint32_t x, uint32_t y)
{
return _pdep_u32(x, 0x55555555) | _pdep_u32(y,0xaaaaaaaa);
}
void morton_to_xy(uint64_t m, uint32_t *x, uint32_t *y)
{
*x = _pext_u64(m, 0x5555555555555555);
*y = _pext_u64(m, 0xaaaaaaaaaaaaaaaa);
}
If you have to support earlier CPUs or the ARM platform not all is lost. You may still get at least get help for the xy_to_morton function from instructions specific for cryptography.
A lot of CPUs have support for carry-less multiplication these days. On ARM that'll be vmul_p8 from the NEON instruction set. On X86 you'll find it as PCLMULQDQ from the CLMUL instruction set (available since 2010).
The trick here is, that a carry-less multiplication of a number with itself will return a bit-pattern that contains the original bits of the argument with zero-bits interleaved. So it is identical to the _pdep_u32(x,0x55555555) shown above. E.g. it turns the following byte:
+----+----+----+----+----+----+----+----+
| b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 |
+----+----+----+----+----+----+----+----+
Into:
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
| 0 | b7 | 0 | b6 | 0 | b5 | 0 | b4 | 0 | b3 | 0 | b2 | 0 | b1 | 0 | b0 |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
Now you can build the xy_to_morton function as (here shown for CLMUL instruction set):
#include <wmmintrin.h>
#include <stdint.h>
// on GCC, compile with option -mpclmul
uint64_t carryless_square (uint32_t x)
{
uint64_t val[2] = {x, 0};
__m128i *a = (__m128i * )val;
*a = _mm_clmulepi64_si128 (*a,*a,0);
return val[0];
}
uint64_t xy_to_morton (uint32_t x, uint32_t y)
{
return carryless_square(x)|(carryless_square(y) <<1);
}
_mm_clmulepi64_si128 generates a 128 bit result of which we only use the lower 64 bits. So you can even improve upon the version above and use a single _mm_clmulepi64_si128 do do the job.
That is as good as you can get on mainstream platforms (e.g. modern ARM with NEON and x86). Unfortunately I don't know of any trick to speed up the morton_to_xy function using the cryptography instructions and I tried really hard for several month.
void xy2d_morton(uint64_t x, uint64_t y, uint64_t *d)
{
x = (x | (x << 16)) & 0x0000FFFF0000FFFF;
x = (x | (x << 8)) & 0x00FF00FF00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F0F0F0F0F;
x = (x | (x << 2)) & 0x3333333333333333;
x = (x | (x << 1)) & 0x5555555555555555;
y = (y | (y << 16)) & 0x0000FFFF0000FFFF;
y = (y | (y << 8)) & 0x00FF00FF00FF00FF;
y = (y | (y << 4)) & 0x0F0F0F0F0F0F0F0F;
y = (y | (y << 2)) & 0x3333333333333333;
y = (y | (y << 1)) & 0x5555555555555555;
*d = x | (y << 1);
}
// morton_1 - extract even bits
uint32_t morton_1(uint64_t x)
{
x = x & 0x5555555555555555;
x = (x | (x >> 1)) & 0x3333333333333333;
x = (x | (x >> 2)) & 0x0F0F0F0F0F0F0F0F;
x = (x | (x >> 4)) & 0x00FF00FF00FF00FF;
x = (x | (x >> 8)) & 0x0000FFFF0000FFFF;
x = (x | (x >> 16)) & 0x00000000FFFFFFFF;
return (uint32_t)x;
}
void d2xy_morton(uint64_t d, uint64_t &x, uint64_t &y)
{
x = morton_1(d);
y = morton_1(d >> 1);
}
The naïve code would be the same irregardless of the bit count. If you don't need super fast bit twiddling version, this will do
uint32_t x;
uint32_t y;
uint64_t z = 0;
for (int i = 0; i < sizeof(x) * 8; i++)
{
z |= (x & (uint64_t)1 << i) << i | (y & (uint64_t)1 << i) << (i + 1);
}
If you need faster bit twiddling, then this one should work. Note that x and y have to be 64bit variables.
uint64_t x;
uint64_t y;
uint64_t z = 0;
x = (x | (x << 16)) & 0x0000FFFF0000FFFF;
x = (x | (x << 8)) & 0x00FF00FF00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F0F0F0F0F;
x = (x | (x << 2)) & 0x3333333333333333;
x = (x | (x << 1)) & 0x5555555555555555;
y = (y | (y << 16)) & 0x0000FFFF0000FFFF;
y = (y | (y << 8)) & 0x00FF00FF00FF00FF;
y = (y | (y << 4)) & 0x0F0F0F0F0F0F0F0F;
y = (y | (y << 2)) & 0x3333333333333333;
y = (y | (y << 1)) & 0x5555555555555555;
z = x | (y << 1);
The first function encodes [x, y] as 64bit wide Morton code where x and y are 32bit wide integers using Interleave bits by Binary Magic Numbers.
What would be the reverse function ?
void xy2d_morton_64bits(uint64_t x, uint64_t y, uint64_t *d)
{
x = (x | (x << 16)) & 0x0000FFFF0000FFFF;
x = (x | (x << 8)) & 0x00FF00FF00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F0F0F0F0F;
x = (x | (x << 2)) & 0x3333333333333333;
x = (x | (x << 1)) & 0x5555555555555555;
y = (y | (y << 16)) & 0x0000FFFF0000FFFF;
y = (y | (y << 8)) & 0x00FF00FF00FF00FF;
y = (y | (y << 4)) & 0x0F0F0F0F0F0F0F0F;
y = (y | (y << 2)) & 0x3333333333333333;
y = (y | (y << 1)) & 0x5555555555555555;
*d = x | (y << 1);
}
void d2xy_morton_64bits(uint64_t d, uint64_t *x, uint64_t *y)
{
????
}
This question was answered here.
Split d into evens and odds then use a similar set of shifts and masks to compress the bits back together:
x = d&0x5555555555555555;
x = (x|x>>1)&0x3333333333333333; //converts 0a0b0c0d.. -> 00ab00cd...
x = (x|x>>2)&0x0f0f0f0f0f0f0f0f; //converts 00ab00cd.. -> 0000abcd...
//etc.
I need to make a routine that counts bits in a word that does not involve loops (only bit operations), and does not use large constants.
int x = 0xFFFFFFFF;
x += (~((x >> 1) & 0x55555555)+1);
x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
x = (((x >> 4) + x) & 0x0F0F0F0F);
x += (x >> 8);
x += (x >> 16);
return(x & 0x0000003F);
This I found on bit twiddling hacks, but the largest constant I can use is 0xFF... Not sure how to do this otherwise.
Thanks folks.
You can for example use a constant array COUNTS[16] which is the number of set bits in the binary representation of numbers from 0 to 15. Then:
static inline int byte_count (int x) {
static const int COUNTS[16] = { 0, 1, 1, 2, 1, /* fill in the rest manually */ };
return COUNTS[x & 15] + COUNTS[x >> 4];
}
int count(int x) {
return byte_count(x >> 24) + byte_count((x >> 16) & 255) + byte_count((x >> 8) & 255) + byte_count(x & 255);
}
No loops and no constants larger than 255.
Using your algorithm:
int x = 0xFF;
x |= (x << 8); // x = 0xFFFF
x |= (x << 16); // x = 0xFFFFFFFF
and then the rest of the code - provided it works.
Recursive solution:
int foo ( int x )
{
if ( x == 0 )
return 0;
return (x & 1) + foo ( x/2 );
}
your question is already answered here
int NumberOfSetBits(int i)
{
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}