On the way of finding number of inversions in array by divide-and-conquer approach I faced with a problem of implementing merge-step: we have two sorted arrays, the task is to count the number of cases when an element of the first array is greater than an element from the second.
For example, if the arrays are v1 = [1,2,4], v2 = [0,3,5], we should count 4 inversions.
So, I implemented the merge-step in Matlab, but I stuck with the problem of how to make it fast.
Firstly, I've tried brute-force approach with
tempArray = arrayfun(#(x) length(find(v2>x)), v1)
It works too slow as well as the next snippet
l = 1;
s = 0;
for ii = 1:n1
while(l <= n2 && p1(ii)>p2(l))
l = l + 1;
end
s = s + l - 1;
end
Is there a good way to make it faster?
Edit
Thank you for your answers and approaches! I find interesting things for my further work.
Here is the snippet, which supposed to be the fastest I've tried
n1 = length(vec1); n2 = length(vec2);
uniteOne = [vec1, vec2];
[~, d1] = sort(uniteOne);
[~, d2] = sort(d1); % Find ind-s IX such that B(IX) = A, where B = sort(A)
vec1Slice = d2(1:n1);
finalVecToSolve = vec1Slice - (1:n1);
sum(finalVecToSolve)
Another brute-force approach with bsxfun -
sum(reshape(bsxfun(#gt,v1(:),v2(:).'),[],1))
Or, as #thewaywewalk has mentioned in the comments, use nnz to replacing summing -
nnz(bsxfun(#gt,v1(:),v2(:).'))
Code
n = numel(v1);
[~, ind_sort] = sort([v1 v2]);
ind_v = ind_sort<=n;
result = sum(find(ind_v))-n*(n+1)/2;
Explanation
n denotes the length of the input vectors. ind_v is a vector of length 2*n that represents the values of v1 and v2 sorted together, with one indicating a value from v1 and zero indicating a value from v2. For your example,
v1 = [1,2,4];
v2 = [0,3,5];
we have
ind_v =
0 1 1 0 1 0
The first entry of ind_v is zero. This means that the lowest value from v1 and v2 (which is 0) belongs to v2. Then there is a one because the second-lowest value (which is 1) belongs to v1. The last entry of ind_v is zero because the largest value of the input vectors (which is 5) belongs to v2.
From this ind_v it's easy to compute the result. Namely, we only need to count how many zeros there are to the left of each one, and sum all those counts.
We don't even need to do the counts; we can infer them just from the position of each one. The number of zeros to the left of the first one is the position of that one minus 1. The number of zeros to the left of the second one is its position minus 2. And so on. Thus sum(find(ind_v)-(1:n)) would give the desired result. But sum(1:n) is just n*(n+1)/2, and so the result can be simplified to sum(find(ind_v))-n*(n+1)/2.
Complexity
Sorting the vectors is the limiting operation here, and requires O(2*n*log(2*n)) arithmetic comparisons. Brute force, on the contrary, requires O(n^2) comparisons.
One explicit approach could be to subtract your elements and see where they're negative:
v1 = [1,2,4];
v2 = [0,3,5];
mydiffs = zeros(length(v1), length(v2));
for ii = 1:length(v1)
mydiffs(ii,:) = v2 - v1(ii);
end
test = sum(reshape(mydiffs,[],length(v1)*length(v2)) < 0)
Which returns:
test =
4
This isn't the prettiest approach and there's definitely room for improvement. I also doubt it's faster than the bsxfun approach.
Edit1: An arrayfun approach, which looks tidier but isn't necessarily faster than the loop.
test = arrayfun(#(x) (v2 - x) < 0, v1, 'UniformOutput', false);
inversions = sum([test{:}]);
Edit2: A repmat approach
inversions = nnz(repmat(v2, length(v2), 1) - repmat(v1', 1, length(v1)) < 0)
Related
Input: n arrays of integers of length p.
Output: An array of p integers built by copying contiguous subarrays of the input arrays into matching indices of the output, satisfying the following conditions.
At most one subarray is used from each input array.
Every index of the output array is filled from exactly one subarray.
The output array has the minimum possible sum.
Suppose I have 2 arrays:
[1,7,2]
[2,1,8]
So if I choose a subarray [1,7] from array 1 and subarray [8] from array 2. since these 2 subarrays are not overlapping for any index and are contiguous. We are also not taking any subarray twice from an array from which we have already chosen a subarray.
We have the number of elements in the arrays inside the collection = 2 + 1 = 3, which is the same as the length of the individual array (i.e. len(array 1) which is equal to 3). So, this collection is valid.
The sum here for [1,7] and [8] is 1 + 7 + 8 = 16
We have to find a collection of such subarrays such that the total sum of the elements of subarrays is minimum.
A solution to the above 2 arrays would be a collection [2,1] from array 1 and [2] from array 2.
This is a valid collection and the sum is 2 + 1 + 2 = 5 which is the minimum sum for any such collection in this case.
I cannot think of any optimal or correct approach, so I need help.
Some Ideas:
I tried a greedy approach by choosing minimum elements from all array for a particular index since the index is always increasing (non-overlapping) after a valid choice, I don't have to bother about storing minimum value indices for every array. But this approach is clearly not correct since it will visit the same array twice.
Another method I thought was to start from the 0th index for all arrays and start storing their sum up to k elements for every array since the no. of arrays are finite, I can store the sum upto k elements in an array. Now I tried to take a minimum across these sums and for a "minimum sum", the corresponding subarray giving this sum (i.e. k such elements in that array) can be a candidate for a valid subarray of size k, thus if we take this subarray, we can add a k + 1-th element corresponding to every array into their corresponding sum and if the original minimum still holds, then we can keep on repeating this step. When the minima fail, we can consider the subarray up to the index for which minima holds and this will be a valid starting subarray. However, this approach will also clearly fail because there could exist another subarray of size < k giving minima along with remaining index elements from our subarray of size k.
Sorting is not possible either, since if we sort then we are breaking consecutive condition.
Of course, there is a brute force method too.
I am thinking, working through a greedy approach might give a progress in the approach.
I have searched on other Stackoverflow posts, but couldn't find anything which could help my problem.
To get you started, here's a recursive branch-&-bound backtracking - and potentially exhaustive - search. Ordering heuristics can have a huge effect on how efficient these are, but without mounds of "real life" data to test against there's scant basis for picking one over another. This incorporates what may be the single most obvious ordering rule.
Because it's a work in progress, it prints stuff as it goes along: all solutions found, whenever they meet or beat the current best; and the index at which a search is cut off early, when that happens (because it becomes obvious that the partial solution at that point can't be extended to meet or beat the best full solution known so far).
For example,
>>> crunch([[5, 6, 7], [8, 0, 3], [2, 8, 7], [8, 2, 3]])
displays
new best
L2[0:1] = [2] 2
L1[1:2] = [0] 2
L3[2:3] = [3] 5
sum 5
cut at 2
L2[0:1] = [2] 2
L1[1:3] = [0, 3] 5
sum 5
cut at 2
cut at 2
cut at 2
cut at 1
cut at 1
cut at 2
cut at 2
cut at 2
cut at 1
cut at 1
cut at 1
cut at 0
cut at 0
So it found two ways to get a minimal sum 5, and the simple ordering heuristic was effective enough that all other paths to full solutions were cut off early.
def disp(lists, ixs):
from itertools import groupby
total = 0
i = 0
for k, g in groupby(ixs):
j = i + len(list(g))
chunk = lists[k][i:j]
total += sum(chunk)
print(f"L{k}[{i}:{j}] = {chunk} {total}")
i = j
def crunch(lists):
n = len(lists[0])
assert all(len(L) == n for L in lists)
# Start with a sum we know can be beat.
smallest_sum = sum(lists[0]) + 1
smallest_ixs = [None] * n
ixsofar = [None] * n
def inner(i, sumsofar, freelists):
nonlocal smallest_sum
assert sumsofar <= smallest_sum
if i == n:
print()
if sumsofar < smallest_sum:
smallest_sum = sumsofar
smallest_ixs[:] = ixsofar
print("new best")
disp(lists, ixsofar)
print("sum", sumsofar)
return
# Simple greedy heuristic: try available lists in the order
# of smallest-to-largest at index i.
for lix in sorted(freelists, key=lambda lix: lists[lix][i]):
L = lists[lix]
newsum = sumsofar
freelists.remove(lix)
# Try all slices in L starting at i.
for j in range(i, n):
newsum += L[j]
# ">" to find all smallest answers;
# ">=" to find just one (potentially faster)
if newsum > smallest_sum:
print("cut at", j)
break
ixsofar[j] = lix
inner(j + 1, newsum, freelists)
freelists.add(lix)
inner(0, 0, set(range(len(lists))))
How bad is brute force?
Bad. A brute force way to compute it: say there are n lists each with p elements. The code's ixsofar vector contains p integers each in range(n). The only constraint is that all occurrences of any integer that appears in it must be consecutive. So a brute force way to compute the total number of such vectors is to generate all p-tuples and count the number that meet the constraints. This is woefully inefficient, taking O(n**p) time, but is really easy, so hard to get wrong:
def countb(n, p):
from itertools import product, groupby
result = 0
seen = set()
for t in product(range(n), repeat=p):
seen.clear()
for k, g in groupby(t):
if k in seen:
break
seen.add(k)
else:
#print(t)
result += 1
return result
For small arguments, we can use that as a sanity check on the next function, which is efficient. This builds on common "stars and bars" combinatorial arguments to deduce the result:
def count(n, p):
# n lists of length p
# for r regions, r from 1 through min(p, n)
# number of ways to split up: comb((p - r) + r - 1, r - 1)
# for each, ff(n, r) ways to spray in list indices = comb(n, r) * r!
from math import comb, prod
total = 0
for r in range(1, min(n, p) + 1):
total += comb(p-1, r-1) * prod(range(n, n-r, -1))
return total
Faster
Following is the best code I have for this so far. It builds in more "smarts" to the code I posted before. In one sense, it's very effective. For example, for randomized p = n = 20 inputs it usually finishes within a second. That's nothing to sneeze at, since:
>>> count(20, 20)
1399496554158060983080
>>> _.bit_length()
71
That is, trying every possible way would effectively take forever. The number of cases to try doesn't even fit in a 64-bit int.
On the other hand, boost n (the number of lists) to 30, and it can take an hour. At 50, I haven't seen a non-contrived case finish yet, even if left to run overnight. The combinatorial explosion eventually becomes overwhelming.
OTOH, I'm looking for the smallest sum, period. If you needed to solve problems like this in real life, you'd either need a much smarter approach, or settle for iterative approximation algorithms.
Note: this is still a work in progress, so isn't polished, and prints some stuff as it goes along. Mostly that's been reduced to running a "watchdog" thread that wakes up every 10 minutes to show the current state of the ixsofar vector.
def crunch(lists):
import datetime
now = datetime.datetime.now
start = now()
n = len(lists[0])
assert all(len(L) == n for L in lists)
# Start with a sum we know can be beat.
smallest_sum = min(map(sum, lists)) + 1
smallest_ixs = [None] * n
ixsofar = [None] * n
import threading
def watcher(stop):
if stop.wait(60):
return
lix = ixsofar[:]
while not stop.wait(timeout=600):
print("watch", now() - start, smallest_sum)
nlix = ixsofar[:]
for i, (a, b) in enumerate(zip(lix, nlix)):
if a != b:
nlix.insert(i,"--- " + str(i) + " -->")
print(nlix)
del nlix[i]
break
lix = nlix
stop = threading.Event()
w = threading.Thread(target=watcher, args=[stop])
w.start()
def inner(i, sumsofar, freelists):
nonlocal smallest_sum
assert sumsofar <= smallest_sum
if i == n:
print()
if sumsofar < smallest_sum:
smallest_sum = sumsofar
smallest_ixs[:] = ixsofar
print("new best")
disp(lists, ixsofar)
print("sum", sumsofar, now() - start)
return
# If only one input list is still free, we have to take all
# of its tail. This code block isn't necessary, but gives a
# minor speedup (skips layers of do-nothing calls),
# especially when the length of the lists is greater than
# the number of lists.
if len(freelists) == 1:
lix = freelists.pop()
L = lists[lix]
for j in range(i, n):
ixsofar[j] = lix
sumsofar += L[j]
if sumsofar >= smallest_sum:
break
else:
inner(n, sumsofar, freelists)
freelists.add(lix)
return
# Peek ahead. The smallest completion we could possibly get
# would come from picking the smallest element in each
# remaining column (restricted to the lists - rows - still
# available). This probably isn't achievable, but is an
# absolute lower bound on what's possible, so can be used to
# cut off searches early.
newsum = sumsofar
for j in range(i, n): # pick smallest from column j
newsum += min(lists[lix][j] for lix in freelists)
if newsum >= smallest_sum:
return
# Simple greedy heuristic: try available lists in the order
# of smallest-to-largest at index i.
sortedlix = sorted(freelists, key=lambda lix: lists[lix][i])
# What's the next int in the previous slice? As soon as we
# hit an int at least that large, we can do at least as well
# by just returning, to let the caller extend the previous
# slice instead.
if i:
prev = lists[ixsofar[i-1]][i]
else:
prev = lists[sortedlix[-1]][i] + 1
for lix in sortedlix:
L = lists[lix]
if prev <= L[i]:
return
freelists.remove(lix)
newsum = sumsofar
# Try all non-empty slices in L starting at i.
for j in range(i, n):
newsum += L[j]
if newsum >= smallest_sum:
break
ixsofar[j] = lix
inner(j + 1, newsum, freelists)
freelists.add(lix)
inner(0, 0, set(range(len(lists))))
stop.set()
w.join()
Bounded by DP
I've had a lot of fun with this :-) Here's the approach they were probably looking for, using dynamic programming (DP). I have several programs that run faster in "smallish" cases, but none that can really compete on a non-contrived 20x50 case. The runtime is O(2**n * n**2 * p). Yes, that's more than exponential in n! But it's still a minuscule fraction of what brute force can require (see above), and is a hard upper bound.
Note: this is just a loop nest slinging machine-size integers, and using no "fancy" Python features. It would be easy to recode in C, where it would run much faster. As is, this code runs over 10x faster under PyPy (as opposed to the standard CPython interpreter).
Key insight: suppose we're going left to right, have reached column j, the last list we picked from was D, and before that we picked columns from lists A, B, and C. How can we proceed? Well, we can pick the next column from D too, and the "used" set {A, B, C} doesn't change. Or we can pick some other list E, the "used" set changes to {A, B, C, D}, and E becomes the last list we picked from.
Now in all these cases, the details of how we reached state "used set {A, B, C} with last list D at column j" make no difference to the collection of possible completions. It doesn't matter how many columns we picked from each, or the order in which A, B, C were used: all that matters to future choices is that A, B, and C can't be used again, and D can be but - if so - must be used immediately.
Since all ways of reaching this state have the same possible completions, the cheapest full solution must have the cheapest way of reaching this state.
So we just go left to right, one column at a time, and remember for each state in the column the smallest sum reaching that state.
This isn't cheap, but it's finite ;-) Since states are subsets of row indices, combined with (the index of) the last list used, there are 2**n * n possible states to keep track of. In fact, there are only half that, since the way sketched above never includes the index of the last-used list in the used set, but catering to that would probably cost more than it saves.
As is, states here are not represented explicitly. Instead there's just a large list of sums-so-far, of length 2**n * n. The state is implied by the list index: index i represents the state where:
i >> n is the index of the last-used list.
The last n bits of i are a bitset, where bit 2**j is set if and only if list index j is in the set of used list indices.
You could, e.g., represent these by dicts mapping (frozenset, index) pairs to sums instead, but then memory use explodes, runtime zooms, and PyPy becomes much less effective at speeding it.
Sad but true: like most DP algorithms, this finds "the best" answer but retains scant memory of how it was reached. Adding code to allow for that is harder than what's here, and typically explodes memory requirements. Probably easiest here: write new to disk at the end of each outer-loop iteration, one file per column. Then memory use isn't affected. When it's done, those files can be read back in again, in reverse order, and mildly tedious code can reconstruct the path it must have taken to reach the winning state, working backwards one column at a time from the end.
def dumbdp(lists):
import datetime
_min = min
now = datetime.datetime.now
start = now()
n = len(lists)
p = len(lists[0])
assert all(len(L) == p for L in lists)
rangen = range(n)
USEDMASK = (1 << n) - 1
HUGE = sum(sum(L) for L in lists) + 1
new = [HUGE] * (2**n * n)
for i in rangen:
new[i << n] = lists[i][0]
for j in range(1, p):
print("working on", j, now() - start)
old = new
new = [HUGE] * (2**n * n)
for key, g in enumerate(old):
if g == HUGE:
continue
i = key >> n
new[key] = _min(new[key], g + lists[i][j])
newused = (key & USEDMASK) | (1 << i)
for i in rangen:
mask = 1 << i
if newused & mask == 0:
newkey = newused | (i << n)
new[newkey] = _min(new[newkey],
g + lists[i][j])
result = min(new)
print("DONE", result, now() - start)
return result
I have two vectors of different size. Just as an example:
Triggs = [38.1680, 38.1720, 38.1760, 38.1800, 38.1840, 38.1880, 38.1920, 38.1960, 38.2000, 38.2040, 38.2080, 38.2120, 38.2160, 38.2200, 38.2240, 38.2280, 38.2320, 38.2360, 38.2400, 38.2440, 38.2480, 38.2520, 38.2560, 38.2600, 38.2640, 38.2680]
Peaks = [27.7920, 28.4600, 29.1360, 29.8280, 30.5200, 31.2000, 31.8920, 32.5640, 33.2600, 33.9480, 34.6520, 35.3680, 36.0840, 36.7680, 37.5000, 38.2440, 38.9920, 39.7120, 40.4160, 41.1480, 41.8840, 42.5960, 43.3040, 44.0240, 44.7160, 45.3840, 46.1240, 46.8720, 47.6240, 48.3720, 49.1040, 49.8080, 50.5200, 51.2600]
For each element in Triggs I need to find the nearest smaller element in Peaks.
That is, if Triggs(1) == 38.1680, I need to find the column number equal to Peaks(15) (the 15th element of Peaks).
Just to be 100% clear, the closest element of course could be the next one, that is 38.2440. That would not be ok for me. I will always need the one to the left of the array.
So far I have this:
for i = 1:length(triggersStartTime)
[~,valuePosition] = (min(abs(Peaks-Triggs(i))))
end
However, this could give me the incorrect value, that is, one bigger than Triggs(i), right?
As a solution I was thinking I could do this:
for i = 1:length(Triggs)
[~,valuePosition] = (min(abs(Peaks-Triggs(i))))
if Peaks(valuePosition) >= Triggs(i)
valuePosition = valuePosition-1
end
end
Is there a better way of doing this?
This can be done in a vectorized way as follows (note that the intermediate matrix d can be large). If there is no number satisfying the condition the output is set to NaN.
d = Triggs(:).'-Peaks(:); % matrix of pair-wise differences. Uses implicit expansion
d(d<=0) = NaN; % set negative differences to NaN, so they will be disregarded
[val, result] = min(d, [], 1); % for each column, get minimum value and its row index
result(isnan(val)) = NaN; % if minimum was NaN the index is not valid
If it is assured that there will always be a number satisfying the condition, the last line and the variable val can be removed:
d = Triggs(:).'-Peaks(:); % matrix of pair-wise differences. Uses implicit expansion
d(d<=0) = NaN; % set negative differences to NaN, so they will be disregarded
[~, result] = min(d, [], 1); % for each column, get row index of minimum value
I think this should help you:
temp=sort(abs(Peaks-Triggs));
lowest=find(abs(Peaks-Triggs)==temp(1))
We are given an unsorted array A of integers (duplicates allowed) with size N possibly large. We can count the number of pairs with indices i < j, for which A[i] < A[j], let's call this X.
We can change maximum one element from the array with a cost equal to the difference in absolute values (for instance, if we replace element on index k with the new number K, the cost Y is | A[k] - K |).
We can only replace this element with other elements found in the array.
We want to find the minimum possible value of X + Y.
Some examples:
[1,2,2] should return 1 (change the 1 to 2 such that the array becomes [2,2,2])
[2,2,3] should return 1 (change the 3 to 2)
[2,1,1] should return 0 (because no changes are necessary)
[1,2,3,4] should return 6 (this is already the minimum possible value)
[4,4,5,5] should return 3 (this can accomplished by changing the first 4 into a 5 or the last 5 in a 4)
The number of pairs can be found with a naive O(n²) solution, here in Python:
def calc_x(arr):
n = len(arr)
cnt = 0
for i in range(n):
for j in range(i+1, n):
if arr[j] > arr[i]:
cnt += 1
return cnt
A brute-force solution is easily written as for example:
def f(arr):
best_val = calc_x(arr)
used = set(arr)
for i, v in enumerate(arr):
for replacement in used:
if replacement == v:
continue
arr2 = arr[0:i] + replacement + arr[i:]
y = abs(replacement - v)
x = calc_x(arr2)
best_val = min(best_val, x + y)
return best_val
We can count for each element the number of items right of it larger than itself in O(n*log(n)) using for instance an AVL-tree or some variation on merge sort.
However, we still have to search which element to change and what improvement it can achieve.
This was given as an interview question and I would like some hints or insights as how to solve this problem efficiently (data structures or algorithm).
Definitely go for a O(n log n) complexity when counting inversions.
We can see that when you change a value at index k, you can either:
1) increase it, and then possibly reduce the number of inversions with elements bigger than k, but increase the number of inversions with elements smaller than k
2) decrease it (the opposite thing happens)
Let's try not to count x every time you change a value. What do you need to know?
In case 1):
You have to know how many elements on the left are smaller than your new value v and how many elements on the right are bigger than your value. You can pretty easily check that in O (n). So what is your x now? You can count it with the following formula:
prev_val - your previous value
prev_x - x that you've counted at the beginning of your program
prev_l - number of elements on the left smaller than prev_val
prev_r - number of elements on the right bigger than prev_val
v - new value
l - number of elements on the right smaller than v
r - number of elements on the right bigger than v
new_x = prev_x + r + l - prev_l - prev_r
In the second case you pretty much do the opposite thing.
Right now you get something like O( n^3 ) instead of O (n^3 log n), which is probably still bad. Unfortunately that's all what I came up for now. I'll definitely tell you if I come up with sth better.
EDIT: What about memory limit? Is there any? If not, you can just for each element in the array make two sets with elements before and after the current one. Then you can find the amount of smaller/bigger in O (log n), making your time complexity O (n^2 log n).
EDIT 2: We can also try to check, what element would be the best to change to a value v, for every possible value v. You can make then two sets and add/erase elements from them while checking for every element, making the time complexity O(n^2 log n) without using too much space. So the algorithm would be:
1) determine every value v that you can change any element, calculate x
2) for each possible value v:
make two sets, push all elements into the second one
for each element e in array:
add previous element (if there's any) to the first set and erase element e from the second set, then count number of bigger/smaller elements in set 1 and 2 and calculate new x
EDIT 3: Instead of making two sets, you could go with prefix sum for a value. That's O (n^2) already, but I think we can go even better than this.
I would like to compute the product of the next n adjacent elements of a matrix. The number n of elements to be multiplied should be given in function's input.
For example for this input I should compute the product of every 3 consecutive elements, starting from the first.
[p, ind] = max_product([1 2 2 1 3 1],3);
This gives [1*2*2, 2*2*1, 2*1*3, 1*3*1] = [4,4,6,3].
Is there any practical way to do it? Now I do this using:
for ii = 1:(length(v)-2)
p = prod(v(ii:ii+n-1));
end
where v is the input vector and n is the number of elements to be multiplied.
in this example n=3 but can take any positive integer value.
Depending whether n is odd or even or length(v) is odd or even, I get sometimes right answers but sometimes an error.
For example for arguments:
v = [1.35912281237829 -0.958120385352704 -0.553335935098461 1.44601450110386 1.43760259196739 0.0266423803393867 0.417039432979809 1.14033971399183 -0.418125096873537 -1.99362640306847 -0.589833539347417 -0.218969651537063 1.49863539349242 0.338844452879616 1.34169199365703 0.181185490389383 0.102817336496793 0.104835620599133 -2.70026800170358 1.46129128974515 0.64413523430416 0.921962619821458 0.568712984110933]
n = 7
I get the error:
Index exceeds matrix dimensions.
Error in max_product (line 6)
p = prod(v(ii:ii+n-1));
Is there any correct general way to do it?
Based on the solution in Fast numpy rolling_product, I'd like to suggest a MATLAB version of it, which leverages the movsum function introduced in R2016a.
The mathematical reasoning is that a product of numbers is equal to the exponent of the sum of their logarithms:
A possible MATLAB implementation of the above may look like this:
function P = movprod(vec,window_sz)
P = exp(movsum(log(vec),[0 window_sz-1],'Endpoints','discard'));
if isreal(vec) % Ensures correct outputs when the input contains negative and/or
P = real(P); % complex entries.
end
end
Several notes:
I haven't benchmarked this solution, and do not know how it compares in terms of performance to the other suggestions.
It should work correctly with vectors containing zero and/or negative and/or complex elements.
It can be easily expanded to accept a dimension to operate along (for array inputs), and any other customization afforded by movsum.
The 1st input is assumed to be either a double or a complex double row vector.
Outputs may require rounding.
Update
Inspired by the nicely thought answer of Dev-iL comes this handy solution, which does not require Matlab R2016a or above:
out = real( exp(conv(log(a),ones(1,n),'valid')) )
The basic idea is to transform the multiplication to a sum and a moving average can be used, which in turn can be realised by convolution.
Old answers
This is one way using gallery to get a circulant matrix and indexing the relevant part of the resulting matrix before multiplying the elements:
a = [1 2 2 1 3 1]
n = 3
%// circulant matrix
tmp = gallery('circul', a(:))
%// product of relevant parts of matrix
out = prod(tmp(end-n+1:-1:1, end-n+1:end), 2)
out =
4
4
6
3
More memory efficient alternative in case there are no zeros in the input:
a = [10 9 8 7 6 5 4 3 2 1]
n = 2
%// cumulative product
x = [1 cumprod(a)]
%// shifted by n and divided by itself
y = circshift( x,[0 -n] )./x
%// remove last elements
out = y(1:end-n)
out =
90 72 56 42 30 20 12 6 2
Your approach is correct. You should just change the for loop to for ii = 1:(length(v)-n+1) and then it will work fine.
If you are not going to deal with large inputs, another approach is using gallery as explained in #thewaywewalk's answer.
I think the problem may be based on your indexing. The line that states for ii = 1:(length(v)-2) does not provide the correct range of ii.
Try this:
function out = max_product(in,size)
size = size-1; % this is because we add size to i later
out = zeros(length(in),1) % assuming that this is a column vector
for i = 1:length(in)-size
out(i) = prod(in(i:i+size));
end
Your code works when restated like so:
for ii = 1:(length(v)-(n-1))
p = prod(v(ii:ii+(n-1)));
end
That should take care of the indexing problem.
using bsxfun you create a matrix each row of it contains consecutive 3 elements then take prod of 2nd dimension of the matrix. I think this is most efficient way:
max_product = #(v, n) prod(v(bsxfun(#plus, (1 : n), (0 : numel(v)-n)')), 2);
p = max_product([1 2 2 1 3 1],3)
Update:
some other solutions updated, and some such as #Dev-iL 's answer outperform others, I can suggest fftconv that in Octave outperforms conv
If you can upgrade to R2017a, you can use the new movprod function to compute a windowed product.
This question is related to matlab: find the index of common values at the same entry from two arrays.
Suppose that I have an 1000 by 10000 matrix that contains value 0,1,and 2. Each row are treated as a sample. I want to calculate the pairwise distance between those samples according to the formula d = 1-1/(2p)sum(a/c+b/d) where a,b,c,d can treated as as the row vector of length 10000 according to some definition and p=10000. c and d are probabilities such that c+d=1.
An example of how to find the values of a,b,c,d: suppose we want to find d between sample i and bj, then I look at row i and j.
If kth entry of row i and j has value 2 and 2, then a=2,b=0,c=1,d=0 (I guess I will assign 0/0=0 in this case).
If kth entry of row i and j has value 2 and 1 or vice versa, then a=1,b=0,c=3/4,d=1/4.
The similar assignment will give to the case for 2,0(a=0,b=0,c=1/2,d=1/2),1,1(a=1,b=1,c=1/2,d=1/2),1,0(a=0,b=1,c=1/4,d=3/4),0,0(a=0,b=2,c=0,d=1).
The matlab code I have so far is using for loops for i and j, then find the cases above by using find, then create two arrays for a/c and b/d. This is extremely slow, is there a way that I can improve the efficiency?
Edit: the distance d is the formula given in this paper on page 13.
Provided those coefficients are fixed, then I think I've successfully vectorised the distance function. Figuring out the formulae was fun. I flipped things around a bit to minimise division, and since I wasn't aware of pdist until #horchler's comment, you get it wrapped in loops with the constants factored out:
% m is the data
[n p] = size(m, 1);
distance = zeros(n);
for ii=1:n
for jj=ii+1:n
a = min(m(ii,:), m(jj,:));
b = 2 - max(m(ii,:), m(jj,:));
c = 4 ./ (m(ii,:) + m(jj,:));
c(c == Inf) = 0;
d = 1 - c;
distance(ii,jj) = sum(a.*c + b.*d);
% distance(jj,ii) = distance(ii,jj); % optional for the full matrix
end
end
distance = 1 - (1 / (2 * p)) * distance;