Im creating a simple program in C that user insert a number, for example 5 and the program sums until 5, 0+1+2+3+4. Im using this formula
int sum_naturals(int n){
return (n-1)*n/2;
}
But now i want a formula that can sum from 2 different numbers, like user inserts number 5 and 9 and the program will do 5+6+7+8+9.
Can someone have ideia how can resolve this? Thanks
You can reuse your function
int sum(int a, int b) {
return sum_naturals(b) - sum_naturals(a-1)
}
Of course you have to add some validation.
Why not this?
int sum_2_naturals(int n, int m){
return (sum_naturals(m) - sum_naturals(n))
}
But now i want a formula that can sum from 2 different numbers,
To find the sum of a certain number of terms of an arithmetic sequence:
#include <stdio.h>
static int sum_naturals(int a, int b)
{
return ((b - a + 1) * (a + b)) / 2;
}
int main(void)
{
printf("%d\n", sum_naturals(5, 9));
return 0;
}
Output:
35
More info
Looks like a simple task, but since you still have problems understanding it, why don't you 'define' your functions first - before 'coding' them.
S(n) = 0 + 1 + 2 + ... + n-1 = n(n-1)/2
F(k,n) = k + k+1 + ... + n-1 + n = -(0 + 1 + ... + k-1) + (0 + 1 + ... + k-1) + k + k+1 + ... + n-1 + n = -S(k) + S(n) + n = S(n+1) - S(k)
Of course, need to assume that k <= n etc.
I guess the reason of all confusion is that you defined your basic function to sum from 0 to n-1, instead of 1 to n.
Related
My try
double sum_squares_from(double x, double n){
return n<=0 ? 0 : x*x + sum_squares_from((x+n-1)*(x+n-1),n-1);
}
Instead of using loops my professor wants us to write functions like this...
What the exercise asks for is a function sum_squares_from() with double x being the starting number and n is the number of number. For example if you do x = 2 and n = 4 you get 2*2+3*3+4*4+5*5. It returns zero if n == 0.
My thinking was that in my example what I have is basically x*x+(x+1)(x+1)+(x+1+1)(x+1+1)+(x+1+1+1)(x+1+1+1) = (x+0)(x+0)+(x+1)(x+1)+(x+2)(x+2)+(x+3)(x+3) = (x+n-1)^2 repeated n times where n gets decremented every time by one until it becomes zero and then you sum everything.
Did I do it right?
(if my professor seems a bit demanding... he somehow does this sort of thing all in his head without auxiliary calculations. Scary guy)
It's not recursive, but it's one line:
int
sum_squares(int x, int n) {
return ((x + n - 1) * (x + n) * (2 * (x + n - 1) + 1) / 6) - ((x - 1) * x * (2 * (x - 1) + 1) / 6);
}
Sum of squares (of integers) has a closed-form solution for 1 .. n. This code calculates the sum of squares from 1 .. (x+n) and then subtracts the sum of squares from 1 .. (x-1).
The original version of this answer used ASCII art.
So,
∑i:0..n i = n(n+1)(½)
∑i:0..n i2 = n(n+1)(2n+1)(⅙)
We note that,
∑i:0..n (x+i)2
= ∑i:0...n x2 + 2xi + i2
= (n+1)x2 + (2x)∑i:0..n i + ∑i:0..n i2
= (n+1)x2 + n(n+1)x + n(n+1)(2n+1)(⅙)
Thus, your sum has the closed form:
double sum_squares_from(double x, int n) {
return ((n-- > 0)
? (n + 1) * x * x
+ x * n * (n + 1)
+ n * (n + 1) * (2 * n + 1) / 6.
: 0);
}
If I apply some obfuscation, the one-line version becomes:
double sum_squares_from(double x, int n) {
return (n-->0)?(n+1)*(x*x+x*n+n*(2*n+1)/6.):0;
}
If the task is to implement the summation in a loop, use tail recursion. Tail recursion can be mechanically replaced with a loop, and many compilers implement this optimization.
static double sum_squares_from_loop(double x, int n, double s) {
return (n <= 0) ? s : sum_squares_from_loop(x+1, n-1, s+x*x);
}
double sum_squares_from(double x, int n) {
return sum_squares_from_loop(x, n, 0);
}
As an illustration, if you observe the generated assembly in GCC at a sufficient optimization level (-Os, -O2, or -O3), you will notice that the recursive call is eliminated (and sum_squares_from_loop is inlined to boot).
Try it online!
As mentioned in my original comment, n should not be type double, but instead be type int to avoid floating point comparison problems with n <= 0. Making the change and simplifying the multiplication and recursive call, you do:
double sum_squares_from(double x, int n)
{
return n <= 0 ? 0 : x * x + sum_squares_from (x + 1, n - 1);
}
If you think about starting with x * x and increasing x by 1, n times, then the simple x * x + sum_squares_from (x + 1, n - 1) is quite easy to understand.
Maybe this?
double sum_squares_from(double x, double n) {
return n <= 0 ? 0 : (x + n - 1) * (x + n - 1) + sum_squares_from(x, n - 1);
}
I have removed all the storylines for this question.
Q. You are given N numbers. You have to find 2 equal sum sub-sequences, with maximum sum. You don't necessarily need to use all numbers.
Eg 1:-
5
1 2 3 4 1
Sub-sequence 1 : 2 3 // sum = 5
Sub-sequence 2 : 4 1 // sum = 5
Possible Sub-sequences with equal sum are
{1,2} {3} // sum = 3
{1,3} {4} // sum = 4
{2,3} {4,1} // sum = 5
Out of which 5 is the maximum sum.
Eg 2:-
6
1 2 4 5 9 1
Sub-sequence 1 : 2 4 5 // sum = 11
Sub-sequence 2 : 1 9 1 // sum = 11
The maximum sum you can get is 11
Constraints:
5 <= N <= 50
1<= number <=1000
sum of all numbers is <= 1000
Important: Only <iostream> can be used. No STLs.
N numbers are unsorted.
If array is not possible to split, print 0.
Number of function stacks is limited. ie your recursive/memoization solution won't work.
Approach 1:
I tried a recursive approach something like the below:
#include <iostream>
using namespace std;
bool visited[51][1001][1001];
int arr[51];
int max_height=0;
int max_height_idx=0;
int N;
void recurse( int idx, int sum_left, int sum_right){
if(sum_left == sum_right){
if(sum_left > max_height){
max_height = sum_left;
max_height_idx = idx;
}
}
if(idx>N-1)return ;
if(visited[idx][sum_left][sum_right]) return ;
recurse( idx+1, sum_left+arr[idx], sum_right);
recurse( idx+1, sum_left , sum_right+arr[idx]);
recurse( idx+1, sum_left , sum_right);
visited[idx][sum_left][sum_right]=true;
/*
We could reduce the function calls, by check the visited condition before calling the function.
This could reduce stack allocations for function calls. For simplicity I have not checking those conditions before function calls.
Anyways, this recursive solution would get time out. No matter how you optimize it.
Btw, there are T testcases. For simplicity, removed that constraint.
*/
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cin>>N;
for(int i=0; i<N; i++)
cin>>arr[i];
recurse(0,0,0);
cout<< max_height <<"\n";
}
NOTE: Passes test-cases. But time out.
Approach 2:
I also tried, taking advantage of constraints.
Every number has 3 possible choice:
1. Be in sub-sequence 1
2. Be in sub-sequence 2
3. Be in neither of these sub-sequences
So
1. Be in sub-sequence 1 -> sum + 1*number
2. Be in sub-sequence 2 -> sum + -1*number
3. None -> sum
Maximum sum is in range -1000 to 1000.
So dp[51][2002] could be used to save the maximum positive sum achieved so far (ie till idx).
CODE:
#include <iostream>
using namespace std;
int arr[51];
int N;
int dp[51][2002];
int max3(int a, int b, int c){
return max(a,max(b,c));
}
int max4(int a, int b, int c, int d){
return max(max(a,b),max(c,d));
}
int recurse( int idx, int sum){
if(sum==0){
// should i perform anything here?
}
if(idx>N-1){
return 0;
}
if( dp[idx][sum+1000] ){
return dp[idx][sum+1000];
}
return dp[idx][sum+1000] = max3 (
arr[idx] + recurse( idx+1, sum + arr[idx]),
0 + recurse( idx+1, sum - arr[idx]),
0 + recurse( idx+1, sum )
) ;
/*
This gives me a wrong output.
4
1 3 5 4
*/
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cin>>N;
for(int i=0; i<N; i++)
cin>>arr[i];
cout<< recurse(0,0) <<"\n";
}
The above code gives me wrong answer. Kindly help me with solving/correcting this memoization.
Also open to iterative approach for the same.
Idea of your second approach is correct, it's basically a reduction to the knapsack problem. However, it looks like your code lacks clear contract: what the recurse function is supposed to do.
Here is my suggestion: int recurse(int idx, int sum) distributes elements on positions idx..n-1 into three multisets A, B, C such that sum+sum(A)-sum(B)=0 and returns maximal possible sum(A), -inf otherwise (here -inf is some hardcoded constant which serves as a "marker" of no answer; there are some restrictions on it, I suggest -inf == -1000).
Now you're to write a recursive backtracking using that contract and then add memoization. Voila—you've got a dynamic programming solution.
In recursive backtracking we have two distinct situations:
There are no more elements to distribute, no choices to make: idx == n. In that case, we should check that our condition holds (sum + sum(A) - sum(B) == 0, i.e. sum == 0) and return the answer. If sum == 0, then the answer is 0. However, if sum != 0, then there is no answer and we should return something which will never be chosen as the answer, unless there are no answer for the whole problem. As we modify returning value of recurse and do not want extra ifs, it cannot be simply zero or even -1; it should be a number which, when modified, still remains "the worst answer ever". The biggest modification we can make is to add all numbers to the resulting value, hence we should choose something less or equal to negative maximal sum of numbers (i.e. -1000), as existing answers are always strictly positive, and that fictive answer will always be non-positive.
There is at least one remaining element which should be distributed to either A, B or C. Make the choice and choose the best answer among three options. Answers are calculated recursively.
Here is my implementation:
const int MAXN = 50;
const int MAXSUM = 1000;
bool visited[MAXN + 1][2 * MAXSUM + 1]; // should be filled with false
int dp[MAXN + 1][2 * MAXSUM + 1]; // initial values do not matter
int recurse(int idx, int sum){
// Memoization.
if (visited[idx][sum + MAXSUM]) {
return dp[idx][sum + MAXSUM];
}
// Mark the current state as visited in the beginning,
// it's ok to do before actually computing it as we're
// not expect to visit it while computing.
visited[idx][sum + MAXSUM] = true;
int &answer = dp[idx][sum + MAXSUM];
// Backtracking search follows.
answer = -MAXSUM; // "Answer does not exist" marker.
if (idx == N) {
// No more choices to make.
if (sum == 0) {
answer = 0; // Answer exists.
} else {
// Do nothing, there is no answer.
}
} else {
// Option 1. Current elemnt goes to A.
answer = max(answer, arr[idx] + recurse(idx + 1, sum + arr[idx]));
// Option 2. Current element goes to B.
answer = max(answer, recurse(idx + 1, sum - arr[idx]));
// Option 3. Current element goes to C.
answer = max(answer, recurse(idx + 1, sum));
}
return answer;
}
Here is a simple dynamic programming based solution for anyone interested, based on the idea suggested by Codeforces user lemelisk here. Complete post here. I haven't tested this code completely though.
#include <iostream>
using namespace std;
#define MAXN 20 // maximum length of array
#define MAXSUM 500 // maximum sum of all elements in array
#define DIFFSIZE (2*MAXSUM + 9) // possible size of differences array (-maxsum, maxsum) + some extra
int dp[MAXN][DIFFSIZE] = { 0 };
int visited[DIFFSIZE] = { 0 }; // visited[diff] == 1 if the difference 'diff' can be reached
int offset = MAXSUM + 1; // offset so that indices in dp table don't become negative
// 'diff' replaced by 'offset + diff' below everywhere
int max(int a, int b) {
return (a > b) ? a : b;
}
int max_3(int a, int b, int c) {
return max(a, max(b, c));
}
int main() {
int a[] = { 1, 2, 3, 4, 6, 7, 5};
int n = sizeof(a) / sizeof(a[0]);
int *arr = new int[n + 1];
int sum = 0;
for (int i = 1; i <= n; i++) {
arr[i] = a[i - 1]; // 'arr' same as 'a' but with 1-indexing for simplicity
sum += arr[i];
} // 'sum' holds sum of all elements of array
for (int i = 0; i < MAXN; i++) {
for (int j = 0; j < DIFFSIZE; j++)
dp[i][j] = INT_MIN;
}
/*
dp[i][j] signifies the maximum value X that can be reached till index 'i' in array such that diff between the two sets is 'j'
In other words, the highest sum subsets reached till index 'i' have the sums {X , X + diff}
See http://codeforces.com/blog/entry/54259 for details
*/
// 1 ... i : (X, X + diff) can be reached by 1 ... i-1 : (X - a[i], X + diff)
dp[0][offset] = 0; // subset sum is 0 for null set, difference = 0 between subsets
visited[offset] = 1; // initially zero diff reached
for (int i = 1; i <= n; i++) {
for (int diff = (-1)*sum; diff <= sum; diff++) {
if (visited[offset + diff + arr[i]] || visited[offset + diff - arr[i]] || visited[offset + diff]) {
// if difference 'diff' is reachable, then only update, else no need
dp[i][offset + diff] = max_3
(
dp[i - 1][offset + diff],
dp[i - 1][offset + diff + arr[i]] + arr[i],
dp[i - 1][offset + diff - arr[i]]
);
visited[offset + diff] = 1;
}
}
/*
dp[i][diff] = max {
dp[i - 1][diff] : not taking a[i] in either subset
dp[i - 1][diff + arr[i]] + arr[i] : putting arr[i] in first set, thus reducing difference to 'diff', increasing X to X + arr[i]
dp[i - 1][diff - arr[i]] : putting arr[i] in second set
initialization: dp[0][0] = 0
*/
// O(N*SUM) algorithm
}
cout << dp[n][offset] << "\n";
return 0;
}
Output:
14
State is not updated in Approach 1. Change the last line of recurse
visited[idx][sum_left][sum_right];
to
visited[idx][sum_left][sum_right] = 1;
Also memset the visited array to false before calling recurse from main.
I'm looking for solution to find the sum of numbers. Input will be given has n in integer and problem is to find Sum of the values of sum(1)+ sum(1+2) + sum(1+2+3) + ... + sum(1+2+..+n). I need a very optimised solution using dynamic programming or any math calculation.
int main()
{
int sum = 0;
int i = 0, n = 6;
for( i = 1; i < n; i++ )
sum = sum + findSumN( i );
printf( "%d",sum );
}
You can often find a formula for series like this by calculating the first few terms and using the results to search the On-Line Encyclopedia of Integer Sequences.
1 = 1
1 + (1+2) = 4
4 + (1+2+3) = 10
10 + (1+2+3+4) = 20
20 + (1+2+3+4+5) = 35
35 + (1+2+3+4+5+6) = 56
The sequence you're trying to calculate (1, 4, 10, 20, 35, 56, ...) is A000292, which has the following formula:
a(n) = n × (n + 1) × (n + 2) / 6
If you play with the number you can find some patterns. Starts with
sum(1 + 2 + 3 ... + N) = ((1 + N) * N) /2
Then there is a relationship between the max number and the value above, that is from 1 the difference step 1/3 everytime the max number increase by 1. So get:
(1 + ((1.0 / 3.0) * (max - 1)))
I am not good enough at math to explain why this pattern occurs. Perhaps someone can explain it in a math way.
The following is my solution, no iteration needed.
int main()
{
int min = 1;
int max = 11254;
double sum = ((min + max) * max / 2) * (1 + ((1.0 / 3.0) * (max - 1)));
printf("%.f", sum);
}
Look at the closed form of sum(n)=1+2+…+n and look up the Pascal's triangle identities. This gives immediately a very fast computation method.
As
binom(k,2) + binom(k,3) = binom(k+1,3)
binom(k,2) = binom(k+1,3) - binom(k,3)
the summation of binom(k+1,2) from k=M to N results in the sum value
binom(N+2,3)-binom(M+1,3)=(N+2)*(N+1)*N/6-(M+1)*M*(M-1)/6
= (N+1-M) * ((N+1)²+(N+1)M+M²-1)/6
I need help with this dynamic programming problem.
Given a positive integer k, find the maximum number of distinct positive integers that sum to k. For example, 6 = 1 + 2 + 3 so the answer would be 3, as opposed to 5 + 1 or 4 + 2 which would be 2.
The first thing I think of is that I have to find a subproblem. So to find the max sum for k, we need to find the max sum for the values less than k. So we have to iterate through the values 1 -> k and find the max sum for those values.
What confuses me is how to make a formula. We can define M(j) as the maximum number of distinct values that sum to j, but how do I actually write the formula for it?
Is my logic for what I have so far correct, and can someone explain how to work through this step by step?
No dynamic programming is need. Let's start with an example:
50 = 50
50 = 1 + 49
50 = 1 + 2 + 47 (three numbers)
50 = 1 + 2 + 3 + 44 (four numbers)
50 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 14 (nine numbers)
Nine numbers is as far as we can go. If we use ten numbers, the sum would be at least 1 + 2 + 3 + ... + 10 = 55, which is greater than 50 - thus it is impossible.
Indeed, if we use exactly n distinct positive integers, then the lowest number with such a sum is 1+2+...+n = n(n+1)/2. By solving the quadratic, we have that M(k) is approximately sqrt(2k).
Thus the algorithm is to take the number k, subtract 1, 2, 3, etc. until we can't anymore, then decrement by 1. Algorithm in C:
int M(int k) {
int i;
for (i = 1; ; i++) {
if (k < i) return i - 1;
else k -= i;
}
}
The other answers correctly deduce that the problem essentially is this summation:
However this can actually be simplified to
In code this looks like : floor(sqrt(2.0 * k + 1.0/4) - 1.0/2)
The disadvantage of this answer is that it requires you to deal with floating point numbers.
Brian M. Scott (https://math.stackexchange.com/users/12042/brian-m-scott), Given a positive integer, find the maximum distinct positive integers that can form its sum, URL (version: 2012-03-22): https://math.stackexchange.com/q/123128
The smallest number that can be represented as the sum of i distinct positive integers is 1 + 2 + 3 + ... + i = i(i+1)/2, otherwise known as the i'th triangular number, T[i].
Let i be such that T[i] is the largest triangular number less than or equal to your k.
Then we can represent k as the sum of i different positive integers:
1 + 2 + 3 + ... + (i-1) + (i + k - T[i])
Note that the last term is greater than or equal to i (and therefore different from the other integers), since k >= T[i].
Also, it's not possible to represent k as the sum of i+1 different positive integers, since the smallest number that's the sum of i+1 different positive integers is T[i+1] > k because of how we chose i.
So your question is equivalent to finding the largest i such that T[i] <= k.
That's solved by this:
i = floor((-1 + sqrt(1 + 8k)) / 2)
[derivation here: https://math.stackexchange.com/questions/1417579/largest-triangular-number-less-than-a-given-natural-number ]
You could also write a simple program to iterate through triangular numbers until you find the first larger than k:
def uniq_sum_count(k):
i = 1
while i * (i+1) <= k * 2:
i += 1
return i - 1
for k in xrange(20):
print k, uniq_sum_count(k)
I think you just check if 1 + ... + n > k. If so, print n-1.
Because if you find the smallest n as 1 + ... + n > k, then 1 + ... + (n-1) <= k. so add the extra value, say E, to (n-1), then 1 + ... + (n-1+E) = k.
Hence n-1 is the maximum.
Note that : 1 + ... + n = n(n+1) / 2
#include <stdio.h>
int main()
{
int k, n;
printf(">> ");
scanf("%d", &k);
for (n = 1; ; n++)
if (n * (n + 1) / 2 > k)
break;
printf("the maximum: %d\n", n-1);
}
Or you can make M(j).
int M(int j)
{
int n;
for (n = 1; ; n++)
if (n * (n + 1) / 2 > j)
return n-1; // return the maximum.
}
Well the problem might be solved without dynamic programming however i tried to look at it in dynamic programming way.
Tip: when you wanna solve a dynamic programming problem you should see when situation is "repetitive". Here, since from the viewpoint of the number k it does not matter if, for example, I subtract 1 first and then 3 or first 3 and then 1; I say that "let's subtract from it in ascending order".
Now, what is repeated? Ok, the idea is that I want to start with number k and subtract it from distinct elements until I get to zero. So, if I reach to a situation where the remaining number and the last distinct number that I have used are the same the situation is "repeated":
#include <stdio.h>
bool marked[][];
int memo[][];
int rec(int rem, int last_distinct){
if(marked[rem][last_distinct] == true) return memo[rem][last_distinct]; //don't compute it again
if(rem == 0) return 0; //success
if(rem > 0 && last > rem - 1) return -100000000000; //failure (minus infinity)
int ans = 0;
for(i = last_distinct + 1; i <= rem; i++){
int res = 1 + rec(rem - i, i); // I've just used one more distinct number
if(res > ans) ans = res;
}
marked[rem][last_distinct] = true;
memo[rem][last_distinct] = res;
return res;
}
int main(){
cout << rec(k, 0) << endl;
return 0;
}
The time complexity is O(k^3)
Though it isn't entirely clear what constraints there may be on how you arrive at your largest discrete series of numbers, but if you are able, passing a simple array to hold the discrete numbers, and keeping a running sum in your functions can simplify the process. For example, passing the array a long with your current j to the function and returning the number of elements that make up the sum within the array can be done with something like this:
int largest_discrete_sum (int *a, int j)
{
int n, sum = 0;
for (n = 1;; n++) {
a[n-1] = n, sum += n;
if (n * (n + 1) / 2 > j)
break;
}
a[sum - j - 1] = 0; /* zero the index holding excess */
return n;
}
Putting it together in a short test program would look like:
#include <stdio.h>
int largest_discrete_sum(int *a, int j);
int main (void) {
int i, idx = 0, v = 50;
int a[v];
idx = largest_discrete_sum (a, v);
printf ("\n largest_discrete_sum '%d'\n\n", v);
for (i = 0; i < idx; i++)
if (a[i])
printf (!i ? " %2d" : " +%2d", a[i]);
printf (" = %d\n\n", v);
return 0;
}
int largest_discrete_sum (int *a, int j)
{
int n, sum = 0;
for (n = 1;; n++) {
a[n-1] = n, sum += n;
if (n * (n + 1) / 2 > j)
break;
}
a[sum - j - 1] = 0; /* zero the index holding excess */
return n;
}
Example Use/Output
$ ./bin/largest_discrete_sum
largest_discrete_sum '50'
1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 +10 = 50
I apologize if I missed a constraint on the discrete values selection somewhere, but approaching in this manner you are guaranteed to obtain the largest number of discrete values that will equal your sum. Let me know if you have any questions.
I really need some help at this problem:
Given a positive integer N, we define xsum(N) as sum's sum of all positive integer divisors' numbers less or equal to N.
For example: xsum(6) = 1 + (1 + 2) + (1 + 3) + (1 + 2 + 4) + (1 + 5) + (1 + 2 + 3 + 6) = 33.
(xsum - sum of divizors of 1 + sum of divizors of 2 + ... + sum of div of 6)
Given a positive integer K, you are asked to find the lowest N that satisfies the condition: xsum(N) >= K
K is a nonzero natural number that has at most 14 digits
time limit : 0.2 sec
Obviously, the brute force will fall for most cases with Time Limit Exceeded. I haven't find something better than it yet, so that's the code:
fscanf(fi,"%lld",&k);
i=2;
sum=1;
while(sum<k) {
sum=sum+i+1;
d=2;
while(d*d<=i) {
if(i%d==0 && d*d!=i)
sum=sum+d+i/d;
else
if(d*d==i)
sum+=d;
d++;
}
i++;
}
Any better ideas?
For each number n in range [1 , N] the following applies: n is divisor of exactly roundDown(N / n) numbers in range [1 , N]. Thus for each n we add a total of n * roundDown(N / n) to the result.
int xsum(int N){
int result = 0;
for(int i = 1 ; i <= N ; i++)
result += (N / i) * i;//due to the int-division the two i don't cancel out
return result;
}
The idea behind this algorithm can aswell be used to solve the main-problem (smallest N such that xsum(N) >= K) in faster time than brute-force search.
The complete search can be further optimized using some rules we can derive from the above code: K = minN * minN (minN would be the correct result if K = 2 * 3 * ...). Using this information we have a lower-bound for starting the search.
Next step would be to search for the upper bound. Since the growth of xsum(N) is (approximately) quadratic we can use this to approximate N. This optimized guessing allows to find the searched value pretty fast.
int N(int K){
//start with the minimum-bound of N
int upperN = (int) sqrt(K);
int lowerN = upperN;
int tmpSum;
//search until xsum(upperN) reaches K
while((tmpSum = xsum(upperN)) < K){
int r = K - tmpSum;
lowerN = upperN;
upperN += (int) sqrt(r / 3) + 1;
}
//Now the we have an upper and a lower bound for searching N
//the rest of the search can be done using binary-search (i won't
//implement it here)
int N;//search for the value
return N;
}