Find a unique integer in an array - arrays

I am looking for an algorithm to solve the following problem: We are given an integer array of size n which contains k (0 < k < n) many elements exactly once. Every other integer occurs an even number of times in the array. The output should be any of the k unique numbers. k is a fixed number and not part of the input.
An example would be the input [1, 2, 2, 4, 4, 2, 2, 3] with both 1 and 3 being a correct output.
Most importantly, the algorithm should run in O(n) time and require only O(1) additional space.
edit: There has been some confusion regarding whether there is only one unique integer or multiple. I apologize for this. The correct problem is that there is an arbitrary but fixed amount. I have updated the original question above.
"Dante." gave a good answer for the case that there are at most two such numbers. This link also provides a solution for three. "David Eisenstat" commented that it is also possible to do for any fixed k. I would be grateful for a solution.

There is a standard algorithm to solve such problems using XOR operator:
Time Complexity = O(n)
Space Complexity = O(1)
Suppose your input array contains only one element that occurs odd no of times and rest occur even number of times,we take advantage of the following fact:
Any expression having even number of 0's and 1's in any order will always be = 0 when xor is applied.
That is
0^1^....... = 0 as long as number of 0 is even and number of 1 is even
and 0 and 1 can occur in any order.
Because all numbers that occur even number of times will have their corresponding bits form even number of 1's and 0's and only the number which occurs only once will have its bit left out when we take xor of all elements of array because
0(from no's occuring even times)^1(from no occuring once) = 1
0(from no's occuring even times)^0(from no occuring once) = 0
as you can see the bit of only the number occuring once is preserved.
This means when given such an array and you take xor of all the elements,the result is the number which occurs only once.
So the algorithm for array of length n is:
result = array[0]^array[1]^.....array[n-1]
Different Scenario
As the OP mentioned that input can also be an array which has two numbers occuring only once and rest occur even number of times.
This is solved using the same logic as above but with little difference.
Idea of algorithm:
If you take xor of all the elements then definitely all the bits of elements occuring even number of times will result in 0,which means:
The result will have its bit 1 only at that bit position where the bits of the two numbers occuring only once differ.
We will use the above idea.
Now we focus on the resultant xor bit which is 1(any bit which is 1) and make rest 0.The result is a number which will allow us to differentiate between the two numbers(the required ones).
Because the bit is 1,it means they differ at this position,it means one will have 0 at this position and one will have 1.This means one number when taken AND results in 0 and one does not.
Since it is very easy to set the right most bit,we set it of the result xor as
A = result & ~(result-1)
Now traverse through the array once and if array[i]&A is 0 store the number in variable number_1 as
number_1 = number_1^array[i]
otherwise
number_2 = number_2^array[i]
Because the remaining numbers occur even number of times,their bit will automatically disappear.
So the algorithm is
1.Take xor of all elements,call it xor.
2.Set the rightmost bit of xor and store it in B.
3.Do the following:
number_1=0,number_2=0;
for(i = 0 to n-1)
{
if(array[i] & B)
number_1 = number_1^array[i];
else
number_2 = number_2^array[i];
}
The number_1 and number_2 are the required numbers.

Here's a Las Vegas algorithm that, given k, the exact number of elements that occur an odd number of times, reports all of them in expected time O(n k) (read: linear-time when k is O(1)) and space O(1) words, assuming that "give me a uniform random word" and "give me the number of 1 bits set in this word (popcount)" are constant-time operations. I'm pretty sure that I'm not the first person to come up with this algorithm (and I'm not even sure that I'm remembering all of the refinements), but I've reached the limits of my patience trying to find it.
The central technique is called random restrictions. Essentially what we do is to filter the input randomly by value, in the hope that we retain exactly one odd-count element. We apply the classic XOR algorithm to the filtered array and check the result; if it succeeded, then we pretend to add it to the array, to make it even-count. Repeat until all k elements are found.
The filtration process goes like this. Treat each input word x as a binary vector of length w (doesn't matter what w is). Compute a random binary matrix A of size w by ceil(1 + lg k) and a random binary vector b of length ceil(1 + lg k). We filter the input by retaining those x such that Ax = b, where the left-hand side is a matrix multiplication mod 2. In implementation, A is represented as ceil(1 + lg k) vectors a1, a2, .... We compute the bits of Ax as popcount(a1 ^ x), popcount(a2 ^ x), .... (This is convenient because we can short-circuit the comparison with b, which shaves a factor lg k from the running time.)
The analysis is to show that, in a given pass, we manage with constant probability to single out one of the odd-count elements. First note that, for some fixed x, the probability that Ax = b is 2-ceil(1 + lg k) = Θ(1/k). Given that Ax = b, for all y ≠ x, the probability that Ay = b is less than 2-ceil(1 + lg k). Thus, the expected number of elements that accompany x is less than 1/2, so with probability more than 1/2, x is unique in the filtered input. Sum over all k odd-count elements (these events are disjoint), and the probability is Θ(1).
Here's a deterministic linear-time algorithm for k = 3. Let the odd-count elements be a, b, c. Accumulate the XOR of the array, which is s = a ^ b ^ c. For each bit i, observe that, if a[i] == b[i] == c[i], then s[i] == a[i] == b[i] == c[i]. Make another pass through the array, accumulate the XOR of the lowest bit set in s ^ x. The even-count elements contribute nothing again. Two of the odd-count elements contribute the same bit and cancel each other out. Thus, the lowest bit set in the XOR is where exactly one of the odd-count elements differs from s. We can use the restriction method above to find it, then the k = 2 method to find the others.

The question title says "the unique integer", but the question body says there can be more than one unique element.
If there is in fact only one non-duplicate: XOR all the elements together. The duplicates all cancel, because they come in pairs (or higher multiples of 2), so the result is the unique integer.
See Dante's answer for an extension of this idea that can handle two unique elements. It can't be generalized to more than that.
Perhaps for k unique elements, we could use k accumulators to track sum(a[i]**k). i.e. a[i], a[i]2, etc. This probably only works for Faster algorithm to find unique element between two arrays?, not this case where the duplicates are all in one array. IDK if an xor of squares, cubes, etc. would be any use for resolving things.

Track the counts for each element and only return the elements with a count of 1. This can be done with a hash map. The below example tracks the result using a hash set while it's still building the counts map. Still O(n) but less efficient, but I think it's slightly more instructive.
Javascript with jsfiddle http://jsfiddle.net/nmckchsa/
function findUnique(arr) {
var uniq = new Map();
var result = new Set();
// iterate through array
for(var i=0; i<arr.length; i++) {
var v = arr[i];
// add value to map that contains counts
if(uniq.has(v)) {
uniq.set(v, uniq.get(v) + 1);
// count is greater than 1 remove from set
result.delete(v);
} else {
uniq.set(v, 1);
// add a possibly uniq value to the set
result.add(v);
}
}
// set to array O(n)
var a = [], x = 0;
result.forEach(function(v) { a[x++] = v; });
return a;
}
alert(findUnique([1,2,3,0,1,2,3,1,2,3,5,4,4]));
EDIT Since the non-uniq numbers appear an even number of times #PeterCordes suggested a more elegant set toggle.
Here's how that would look.
function findUnique(arr) {
var result = new Set();
// iterate through array
for(var i=0; i<arr.length; i++) {
var v = arr[i];
if(result.has(v)) { // even occurances
result.delete(v);
} else { // odd occurances
result.add(v);
}
}
// set to array O(n)
var a = [], x = 0;
result.forEach(function(v) { a[x++] = v; });
return a;
}
JSFiddle http://jsfiddle.net/hepsyqyw/

Assuming you have an input array: [2,3,4,2,4]
Output: 3
In Ruby, you can do something as simple as this:
[2,3,4,2,4].inject(0) {|xor, v| xor ^ v}

Create an array counts that has INT_MAX slots, with each element initialized to zero.
For each element in the input list, increment counts[element] by one. (edit: actually, you will need to do counts[element] = (counts_element+1)%2, or else you might overflow the value for really ridiculously large values of N. It's acceptable to do this kind of modulus counting because all duplicate items appear an even number of times)
Iterate through counts until you find a slot that contains "1". Return the index of that slot.
Step 2 is O(N) time. Steps 1 and 3 take up a lot of memory and a lot of time, but neither one is proportional to the size of the input list, so they're still technically O(1).
(note: this assumes that integers have a minimum and maximum value, as is the case for many programming languages.)

Related

Find the element occuring once in an array where all other elements occur twice (without using XOR)

I have tried solving this for so long but I can't seem to be able to.
The question is as follows:
Given an array n numbers where all of the numbers in it occur twice except for one, which occurs only once, find the number that occurs only once.
Now, I have found many solutions online for this, but none of them satisfy the additional constraints of the question.
The solution should:
Run in linear time (aka O(n)).
Not use hash tables.
Assume that computer supports only comparison and the arithmetic (addition, subtraction, multiplication, division).
The number of bits in each number in the array is about O(log(n)).
Therefore, trying something like this https://stackoverflow.com/a/4772568/7774315 using the XOR operator isn't possible, since we don't have the XOR operator. Since the number of bits in each number is about O(log(n)), trying to implement the XOR operator using normal arithmetic (bit by bit) will take about O(log(n)) actions, which will give us an overall solution of O(nlog(n)).
The closest I have come to solving it is if I had a way to get the sum of all unique values in the array in linear time, I could subtract twice that sum from the overall sum to get (negative) the element that occurs only once, because if the numbers that appear twice are {a1,a2,....,ak} and the number that appears once is x, then the overall sum is
sum=2(a1+...+ak)+x
As far as I know, sets are implemented using hash tables, so using them to find the sum of all unique values is no good.
Let's imagine we had a way to find the exact median in linear time and partition the array so all greater elements are on one side and smaller elements on the other. By the parity of expected number of elements, we could identify which side the target element is in. Now perform this routine recursively in the section we identified. Since the section is halved in size each time, the total number of elements traversed cannot exceed O(2n) = O(n).
The key element in the question seems to be this one:
The number of bits in each number in the array is about O(log(n)).
The issue is that this clue is vague a little bit.
A first approach is to consider that the maximum value is O(n). Then a counting sort can be performed in O(n) operations and O(n) memory.
It will consists in finding the maximum value MAX, setting an integer array C[MAX] and performing directly a classical counting sort thanks to it
C[a[i]]++;
Looking for an odd value in array C[] will provide the solution.
A second approach, I guess more efficient, would be to set an array of size n, each element consisting of an array of unknown size. Then, a kind of almost counting sort would consists in :
C[a[i]%n].append (a[i]);
To find the unique element, we then have to find a sub-array of odd size, and then to examine the elements in this sub-array.
The maximum size k of each sub-array will be about 2*(MAX/n). According to the clue, this value should be very low. Dealing with this sub-array has a complexity O(k), for example by performing a counting sort on the b[j]/n, all the elements being equal modulo n.
We can note that practically, this is equivalent to perform a kind of ad-hoc hashing.
Global complexity is O(n + MAX/n).
This should do the trick as long as your a dealing with integers of size O(log n). It is a Python implementation of the algorithm sketched #גלעד ברקן answer (including #OneLyner comments), where the median is replaced by a mean or mid-value.
def mean(items):
result = 0
for i, item in enumerate(items, 1):
result = (result * (i - 1) + item) / i
return result
def midval(items):
min_val = max_val = items[0]
for item in items:
if item < min_val:
min_val = item
elif item > max_val:
max_val = item
return (max_val - min_val) / 2
def find_singleton(items, pivoting=mean):
n = len(items)
if n == 1:
return items[0]
else:
# find pivot - O(n)
pivot = pivoting(items)
# partition the items - O(n)
j = 0
for i, item in enumerate(items):
if item > pivot:
items[j], items[i] = items[i], items[j]
j += 1
# recursion on the partition with odd number of elements
if j % 2:
return find_singleton(items[:j])
else:
return find_singleton(items[j:])
The following code is just for some sanity-checking on random inputs:
def gen_input(n, randomize=True):
"""Generate inputs with unique pairs except one, with size (2 * n + 1)."""
items = sorted(set(random.randint(-n, n) for _ in range(n)))[:n]
singleton = items[-1]
items = items + items[:-1]
if randomize:
random.shuffle(items)
return items, singleton
items, singleton = gen_input(100)
print(singleton, len(items), items.index(singleton), items)
print(find_singleton(items, mean))
print(find_singleton(items, midval))
For a symmetric distribution the median and the mean or mid-value coincide.
With the log(n) requirement on the number of bits for the entries, one
can show that any arbitrary sub-sampling cannot be skewed enough to provide more than log(n) recursions.
For example, considering the case of k = log(n) bits with k = 4 and only positive numbers, the worst case is: [0, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16]. Here pivoting by the mean will reduce the input by 2 at time, resulting in k + 1 recursive calls, but adding any other couple to the input will not increase the number of recursive calls, while it will increase the input size.
(EDITED to provide a better explanation.)
Here is an (unoptimized) implementation of the idea sketched by גלעד ברקן .
I'm using Median_of_medians to get a value close enough to the median to ensure the linear time in the worst case.
NB: this in fact uses only comparisons, and is O(n) whatever the size of the integers as long as comparisons and copies are counted as O(1).
def median_small(L):
return sorted(L)[len(L)//2]
def median_of_medians(L):
if len(L) < 20:
return median_small(L)
return median_of_medians([median_small(L[i:i+5]) for i in range(0, len(L), 5)])
def find_single(L):
if len(L) == 1:
return L[0]
pivot = median_of_medians(L)
smaller = [i for i in L if i <= pivot]
bigger = [i for i in L if i > pivot]
if len(smaller) % 2:
return find_single(smaller)
else:
return find_single(bigger)
This version needs O(n) additional space, but could be implemented with O(1).

Does the array “sum and/or sub” to `x`?

Goal
I would like to write an algorithm (in C) which returns TRUE or FALSE (1 or 0) depending whether the array A given in input can “sum and/or sub” to x (see below for clarification). Note that all values of A are integers bounded between [1,x-1] that were randomly (uniformly) sampled.
Clarification and examples
By “sum and/or sub”, I mean placing "+" and "-" in front of each element of array and summing over. Let's call this function SumSub.
int SumSub (int* A,int x)
{
...
}
SumSub({2,7,5},10)
should return TRUE as 7-2+5=10. You will note that the first element of A can also be taken as negative so that the order of elements in A does not matter.
SumSub({2,7,5,2},10)
should return FALSE as there is no way to “sum and/or sub” the elements of array to reach the value of x. Please note, this means that all elements of A must be used.
Complexity
Let n be the length of A. Complexity of the problem is of order O(2^n) if one has to explore all possible combinations of pluses and minus. However, some combinations are more likely than others and therefore are worth being explored first (hoping the output will be TRUE). Typically, the combination which requires substracting all elements from the largest number is impossible (as all elements of A are lower than x). Also, if n>x, it makes no sense to try adding all the elements of A.
Question
How should I go about writing this function?
Unfortunately your problem can be reduced to subset-sum problem which is NP-Complete. Thus the exponential solution can't be avoided.
The original problem's solution is indeed exponential as you said. BUT with the given range[1,x-1] for numbers in A[] you can make the solution polynomial. There is a very simple dynamic programming solution.
With the order:
Time Complexity: O(n^2*x)
Memory Complexity: O(n^2*x)
where, n=num of elements in A[]
You need to use dynamic programming approach for this
You know the min,max range that can be made in in the range [-nx,nx]. Create a 2d array of size (n)X(2*n*x+1). Lets call this dp[][]
dp[i][j] = taking all elements of A[] from [0..i-1] whether its possible to make the value j
so
dp[10][3] = 1 means taking first 10 elements of A[] we CAN create the value 3
dp[10][3] = 0 means taking first 10 elements of A[] we can NOT create the value 3
Here is a kind of pseudo code for this:
int SumSub (int* A,int x)
{
bool dp[][];//set all values of this array 0
dp[0][0] = true;
for(i=1;i<=n;i++) {
int val = A[i-1];
for(j=-n*x;j<=n*x;j++) {
dp[i][j]=dp[ i-1 ][ j + val ] | dp[ i-1 ][ j - val ];
}
}
return dp[n][x];
}
Unfortunately this is NP-complete even when x is restricted to the value 0, so don't expect a polynomial-time algorithm. To show this I'll give a simple reduction from the NP-hard Partition Problem, which asks whether a given multiset of positive integers can be partitioned into two parts having equal sums:
Suppose we have an instance of the Partition Problem consisting of n positive integers B_1, ..., B_n. Create from this an instance of your problem in which A_i = B_i for each 1 <= i <= n, and set x = 0.
Clearly if there is a partition of B into two parts C and D having equal sums, then there is also a solution to the instance of your problem: Put a + in front of every number in C, and a - in front of every number in D (or the other way round). Since C and D have equal sums, this expression must equal 0.
OTOH, if the solution to the instance of your problem that we just created is YES (TRUE), then we can easily create a partition of B into two parts having equal sums: just put all the positive terms in one part (say, C), and all the negative terms (without the preceding - of course) in the other (say, D). Since we know that the total value of the expression is 0, it must be that the sum of the (positive) numbers in C is equal to the (negated) sum of the numbers in D.
Thus a YES to either problem instance implies a YES to the other problem instance, which in turn implies that a NO to either problem instance implies a NO to the other problem instance -- that is, the two problem instances have equal solutions. Thus if it were possible to solve your problem in polynomial time, it would be possible to solve the NP-hard Partition Problem in polynomial time too, by constructing the above instance of your problem, solving it with your poly-time algorithm, and reporting the result it gives.

Number of ways such that sum of k elements equal to p

Given series of integers having relation where a number is equal to sum of previous 2 numbers and starting integer is 1
Series ->1,2,3,5,8,13,21,34,55
find the number of ways such that sum of k elements equal to p.We can use an element any number of times.
p=8
k=4.
So,number of ways would be 4.Those are,
1,1,1,5
1,1,3,3
1,2,2,3
2,2,2,2
I am able to sove this question through recursion.I sense dynamic programming here but i am not getting how to do it.Can it be done in much lesser time???
EDIT I forgot to mention that the sequence of the numbers does not matter and will be counted once. for ex=3->(1,2)and(2,1).here number of ways would be 1 only.
EDIT: Poster has changed the original problem since this was posted. My algorithm still works, but maybe can be improved upon. Original problem had n arbitrary input numbers (he has now modified it to be a Fibonacci series). To apply my algorithm to the modified post, truncate the series by taking only elements less than p (assume there are n of them).
Here's an n^(k/2) algorithm. (n is the number of elements in the series)
Use a table of length p, such that table[i] contains all combinations of k/2 elements that sum to i. For example, in the example data that you provided, table[4] contains {1,3} and {2,2}.
EDIT: If the space is prohibitive, this same algorithm can be done with an ordered linked lists, where you only store the non-empty table entries. The linked list has to be both directions: forward and backwards, which makes the final step of the algorithm cleaner.
Once this table is computed, then we get all solutions by combining every table[j] with every table[p-j], whenever both are non-empty.
To get the table, initialize the entire thing to empty. Then:
For i_1 = 0 to n-1:
For i_2 = i_1 to n-1:
...
For i_k/2 = i_k/2-1 to n-1:
sum = series[i_1] + ... + series[i_k/2]
if sum <= p:
store {i_1, i_2, ... , i_k/2 } in table[sum]
This "variable number of loops" looks impossible to implement, but actually it can be done with an array of length k/2 that keeps track of where each i_` is.
Let's go back to your data and see how our table would look:
table[2] = {1,1}
table[3] = {1,2}
table[4] = {1,3} and {2,2}
table[5] = {2,3}
table[6] = {1,5}
table[7] = {2,5}
table[8] = {3,5}
Solutions are found by combining table[2] with table[6], table[3] with table[5], and table[4] with table[4]. Thus, solutions are: {1,1,1,5} {1,2,2,3}, {1,1,3,3}, {2,2,2,2}, {1,3,2,2}.
You can use dynamic programming. Let C(p, k) be the number of ways that sum k element equal to p and a be the array of elements. Then
C(p, k) = C(p - a[0], k - 1) + C(p - a[1], k - 1) + .... + C(p - a[n-1], k - 1)
Then, you can use memorization to speed up your code.
Hint:
Your problem is well-known. It is the sum set problem, a variation of knapsack problem. Check this pretty good explanation. sum-set problem

How can I find a number which occurs an odd number of times in a SORTED array in O(n) time?

I have a question and I tried to think over it again and again... but got nothing so posting the question here. Maybe I could get some view-point of others, to try and make it work...
The question is: we are given a SORTED array, which consists of a collection of values occurring an EVEN number of times, except one, which occurs ODD number of times. We need to find the solution in log n time.
It is easy to find the solution in O(n) time, but it looks pretty tricky to perform in log n time.
Theorem: Every deterministic algorithm for this problem probes Ω(log2 n) memory locations in the worst case.
Proof (completely rewritten in a more formal style):
Let k > 0 be an odd integer and let n = k2. We describe an adversary that forces (log2 (k + 1))2 = Ω(log2 n) probes.
We call the maximal subsequences of identical elements groups. The adversary's possible inputs consist of k length-k segments x1 x2 … xk. For each segment xj, there exists an integer bj ∈ [0, k] such that xj consists of bj copies of j - 1 followed by k - bj copies of j. Each group overlaps at most two segments, and each segment overlaps at most two groups.
Group boundaries
| | | | |
0 0 1 1 1 2 2 3 3
| | | |
Segment boundaries
Wherever there is an increase of two, we assume a double boundary by convention.
Group boundaries
| || | |
0 0 0 2 2 2 2 3 3
Claim: The location of the jth group boundary (1 ≤ j ≤ k) is uniquely determined by the segment xj.
Proof: It's just after the ((j - 1) k + bj)th memory location, and xj uniquely determines bj. //
We say that the algorithm has observed the jth group boundary in case the results of its probes of xj uniquely determine xj. By convention, the beginning and the end of the input are always observed. It is possible for the algorithm to uniquely determine the location of a group boundary without observing it.
Group boundaries
| X | | |
0 0 ? 1 2 2 3 3 3
| | | |
Segment boundaries
Given only 0 0 ?, the algorithm cannot tell for sure whether ? is a 0 or a 1. In context, however, ? must be a 1, as otherwise there would be three odd groups, and the group boundary at X can be inferred. These inferences could be problematic for the adversary, but it turns out that they can be made only after the group boundary in question is "irrelevant".
Claim: At any given point during the algorithm's execution, consider the set of group boundaries that it has observed. Exactly one consecutive pair is at odd distance, and the odd group lies between them.
Proof: Every other consecutive pair bounds only even groups. //
Define the odd-length subsequence bounded by the special consecutive pair to be the relevant subsequence.
Claim: No group boundary in the interior of the relevant subsequence is uniquely determined. If there is at least one such boundary, then the identity of the odd group is not uniquely determined.
Proof: Without loss of generality, assume that each memory location not in the relevant subsequence has been probed and that each segment contained in the relevant subsequence has exactly one location that has not been probed. Suppose that the jth group boundary (call it B) lies in the interior of the relevant subsequence. By hypothesis, the probes to xj determine B's location up to two consecutive possibilities. We call the one at odd distance from the left observed boundary odd-left and the other odd-right. For both possibilities, we work left to right and fix the location of every remaining interior group boundary so that the group to its left is even. (We can do this because they each have two consecutive possibilities as well.) If B is at odd-left, then the group to its left is the unique odd group. If B is at odd-right, then the last group in the relevant subsequence is the unique odd group. Both are valid inputs, so the algorithm has uniquely determined neither the location of B nor the odd group. //
Example:
Observed group boundaries; relevant subsequence marked by […]
[ ] |
0 0 Y 1 1 Z 2 3 3
| | | |
Segment boundaries
Possibility #1: Y=0, Z=2
Possibility #2: Y=1, Z=2
Possibility #3: Y=1, Z=1
As a consequence of this claim, the algorithm, regardless of how it works, must narrow the relevant subsequence to one group. By definition, it therefore must observe some group boundaries. The adversary now has the simple task of keeping open as many possibilities as it can.
At any given point during the algorithm's execution, the adversary is internally committed to one possibility for each memory location outside of the relevant subsequence. At the beginning, the relevant subsequence is the entire input, so there are no initial commitments. Whenever the algorithm probes an uncommitted location of xj, the adversary must commit to one of two values: j - 1, or j. If it can avoid letting the jth boundary be observed, it chooses a value that leaves at least half of the remaining possibilities (with respect to observation). Otherwise, it chooses so as to keep at least half of the groups in the relevant interval and commits values for the others.
In this way, the adversary forces the algorithm to observe at least log2 (k + 1) group boundaries, and in observing the jth group boundary, the algorithm is forced to make at least log2 (k + 1) probes.
Extensions:
This result extends straightforwardly to randomized algorithms by randomizing the input, replacing "at best halved" (from the algorithm's point of view) with "at best halved in expectation", and applying standard concentration inequalities.
It also extends to the case where no group can be larger than s copies; in this case the lower bound is Ω(log n log s).
A sorted array suggests a binary search. We have to redefine equality and comparison. Equality simple means an odd number of elements. We can do comparison by observing the index of the first or last element of the group. The first element will be an even index (0-based) before the odd group, and an odd index after the odd group. We can find the first and last elements of a group using binary search. The total cost is O((log N)²).
PROOF OF O((log N)²)
T(2) = 1 //to make the summation nice
T(N) = log(N) + T(N/2) //log(N) is finding the first/last elements
For some N=2^k,
T(2^k) = (log 2^k) + T(2^(k-1))
= (log 2^k) + (log 2^(k-1)) + T(2^(k-2))
= (log 2^k) + (log 2^(k-1)) + (log 2^(k-2)) + ... + (log 2^2) + 1
= k + (k-1) + (k-2) + ... + 1
= k(k+1)/2
= (k² + k)/2
= (log(N)² + log(N))/ 2
= O(log(N)²)
Look at the middle element of the array. With a couple of appropriate binary searches, you can find the first and its last appearance in the array. E.g., if the middle element is 'a', you need to find i and j as shown below:
[* * * * a a a a * * *]
^ ^
| |
| |
i j
Is j - i an even number? You are done! Otherwise (and this is the key here), the question to ask is i an even or an odd number? Do you see what this piece of knowledge implies? Then the rest is easy.
This answer is in support of the answer posted by "throwawayacct". He deserves the bounty. I spent some time on this question and I'm totally convinced that his proof is correct that you need Ω(log(n)^2) queries to find the number that occurs an odd number of times. I'm convinced because I ended up recreating the exact same argument after only skimming his solution.
In the solution, an adversary creates an input to make life hard for the algorithm, but also simple for a human analyzer. The input consists of k pages that each have k entries. The total number of entries is n = k^2, and it is important that O(log(k)) = O(log(n)) and Ω(log(k)) = Ω(log(n)). To make the input, the adversary makes a string of length k of the form 00...011...1, with the transition in an arbitrary position. Then each symbol in the string is expanded into a page of length k of the form aa...abb...b, where on the ith page, a=i and b=i+1. The transition on each page is also in an arbitrary position, except that the parity agrees with the symbol that the page was expanded from.
It is important to understand the "adversary method" of analyzing an algorithm's worst case. The adversary answers queries about the algorithm's input, without committing to future answers. The answers have to be consistent, and the game is over when the adversary has been pinned down enough for the algorithm to reach a conclusion.
With that background, here are some observations:
1) If you want to learn the parity of a transition in a page by making queries in that page, you have to learn the exact position of the transition and you need Ω(log(k)) queries. Any collection of queries restricts the transition point to an interval, and any interval of length more than 1 has both parities. The most efficient search for the transition in that page is a binary search.
2) The most subtle and most important point: There are two ways to determine the parity of a transition inside a specific page. You can either make enough queries in that page to find the transition, or you can infer the parity if you find the same parity in both an earlier and a later page. There is no escape from this either-or. Any set of queries restricts the transition point in each page to some interval. The only restriction on parities comes from intervals of length 1. Otherwise the transition points are free to wiggle to have any consistent parities.
3) In the adversary method, there are no lucky strikes. For instance, suppose that your first query in some page is toward one end instead of in the middle. Since the adversary hasn't committed to an answer, he's free to put the transition on the long side.
4) The end result is that you are forced to directly probe the parities in Ω(log(k)) pages, and the work for each of these subproblems is also Ω(log(k)).
5) Things are not much better with random choices than with adversarial choices. The math is more complicated, because now you can get partial statistical information, rather than a strict yes you know a parity or no you don't know it. But it makes little difference. For instance, you can give each page length k^2, so that with high probability, the first log(k) queries in each page tell you almost nothing about the parity in that page. The adversary can make random choices at the beginning and it still works.
Start at the middle of the array and walk backward until you get to a value that's different from the one at the center. Check whether the number above that boundary is at an odd or even index. If it's odd, then the number occurring an odd number of times is to the left, so repeat your search between the beginning and the boundary you found. If it's even, then the number occurring an odd number of times must be later in the array, so repeat the search in the right half.
As stated, this has both a logarithmic and a linear component. If you want to keep the whole thing logarithmic, instead of just walking backward through the array to a different value, you want to use a binary search instead. Unless you expect many repetitions of the same numbers, the binary search may not be worthwhile though.
I have an algorithm which works in log(N/C)*log(K), where K is the length of maximum same-value range, and C is the length of range being searched for.
The main difference of this algorithm from most posted before is that it takes advantage of the case where all same-value ranges are short. It finds boundaries not by binary-searching the entire array, but by first quickly finding a rough estimate by jumping back by 1, 2, 4, 8, ... (log(K) iterations) steps, and then binary-searching the resulting range (log(K) again).
The algorithm is as follows (written in C#):
// Finds the start of the range of equal numbers containing the index "index",
// which is assumed to be inside the array
//
// Complexity is O(log(K)) with K being the length of range
static int findRangeStart (int[] arr, int index)
{
int candidate = index;
int value = arr[index];
int step = 1;
// find the boundary for binary search:
while(candidate>=0 && arr[candidate] == value)
{
candidate -= step;
step *= 2;
}
// binary search:
int a = Math.Max(0,candidate);
int b = candidate+step/2;
while(a+1!=b)
{
int c = (a+b)/2;
if(arr[c] == value)
b = c;
else
a = c;
}
return b;
}
// Finds the index after the only "odd" range of equal numbers in the array.
// The result should be in the range (start; end]
// The "end" is considered to always be the end of some equal number range.
static int search(int[] arr, int start, int end)
{
if(arr[start] == arr[end-1])
return end;
int middle = (start+end)/2;
int rangeStart = findRangeStart(arr,middle);
if((rangeStart & 1) == 0)
return search(arr, middle, end);
return search(arr, start, rangeStart);
}
// Finds the index after the only "odd" range of equal numbers in the array
static int search(int[] arr)
{
return search(arr, 0, arr.Length);
}
Take the middle element e. Use binary search to find the first and last occurrence. O(log(n))
If it is odd return e.
Otherwise, recurse onto the side that has an odd number of elements [....]eeee[....]
Runtime will be log(n) + log(n/2) + log(n/4).... = O(log(n)^2).
AHhh. There is an answer.
Do a binary search and as you search, for each value, move backwards until you find the first entry with that same value. If its index is even, it is before the oddball, so move to the right.
If its array index is odd, it is after the oddball, so move to the left.
In pseudocode (this is the general idea, not tested...):
private static int FindOddBall(int[] ary)
{
int l = 0,
r = ary.Length - 1;
int n = (l+r)/2;
while (r > l+2)
{
n = (l + r) / 2;
while (ary[n] == ary[n-1])
n = FindBreakIndex(ary, l, n);
if (n % 2 == 0) // even index we are on or to the left of the oddball
l = n;
else // odd index we are to the right of the oddball
r = n-1;
}
return ary[l];
}
private static int FindBreakIndex(int[] ary, int l, int n)
{
var t = ary[n];
var r = n;
while(ary[n] != t || ary[n] == ary[n-1])
if(ary[n] == t)
{
r = n;
n = (l + r)/2;
}
else
{
l = n;
n = (l + r)/2;
}
return n;
}
You can use this algorithm:
int GetSpecialOne(int[] array, int length)
{
int specialOne = array[0];
for(int i=1; i < length; i++)
{
specialOne ^= array[i];
}
return specialOne;
}
Solved with the help of a similar question which can be found here on http://www.technicalinterviewquestions.net
We don't have any information about the distribution of lenghts inside the array, and of the array as a whole, right?
So the arraylength might be 1, 11, 101, 1001 or something, 1 at least with no upper bound, and must contain at least 1 type of elements ('number') up to (length-1)/2 + 1 elements, for total sizes of 1, 11, 101: 1, 1 to 6, 1 to 51 elements and so on.
Shall we assume every possible size of equal probability? This would lead to a middle length of subarrays of size/4, wouldn't it?
An array of size 5 could be divided into 1, 2 or 3 sublists.
What seems to be obvious is not that obvious, if we go into details.
An array of size 5 can be 'divided' into one sublist in just one way, with arguable right to call it 'dividing'. It's just a list of 5 elements (aaaaa). To avoid confusion let's assume the elements inside the list to be ordered characters, not numbers (a,b,c, ...).
Divided into two sublist, they might be (1, 4), (2, 3), (3, 2), (4, 1). (abbbb, aabbb, aaabb, aaaab).
Now let's look back at the claim made before: Shall the 'division' (5) be assumed the same probability as those 4 divisions into 2 sublists? Or shall we mix them together, and assume every partition as evenly probable, (1/5)?
Or can we calculate the solution without knowing the probability of the length of the sublists?
The clue is you're looking for log(n). That's less than n.
Stepping through the entire array, one at a time? That's n. That's not going to work.
We know the first two indexes in the array (0 and 1) should be the same number. Same with 50 and 51, if the odd number in the array is after them.
So find the middle element in the array, compare it to the element right after it. If the change in numbers happens on the wrong index, we know the odd number in the array is before it; otherwise, it's after. With one set of comparisons, we figure out which half of the array the target is in.
Keep going from there.
Use a hash table
For each element E in the input set
if E is set in the hash table
increment it's value
else
set E in the hash table and initialize it to 0
For each key K in hash table
if K % 2 = 1
return K
As this algorithm is 2n it belongs to O(n)
Try this:
int getOddOccurrence(int ar[], int ar_size)
{
int i;
int xor = 0;
for (i=0; i < ar_size; i++)
xor = xor ^ ar[i];
return res;
}
XOR will cancel out everytime you XOR with the same number so 1^1=0 but 1^1^1=1 so every pair should cancel out leaving the odd number out.
Assume indexing start at 0. Binary search for the smallest even i such that x[i] != x[i+1]; your answer is x[i].
edit: due to public demand, here is the code
int f(int *x, int min, int max) {
int size = max;
min /= 2;
max /= 2;
while (min < max) {
int i = (min + max)/2;
if (i==0 || x[2*i-1] == x[2*i])
min = i+1;
else
max = i-1;
}
if (2*max == size || x[2*max] != x[2*max+1])
return x[2*max];
return x[2*min];
}

Compare two integer arrays with same length

[Description] Given two integer arrays with the same length. Design an algorithm which can judge whether they're the same. The definition of "same" is that, if these two arrays were in sorted order, the elements in corresponding position should be the same.
[Example]
<1 2 3 4> = <3 1 2 4>
<1 2 3 4> != <3 4 1 1>
[Limitation] The algorithm should require constant extra space, and O(n) running time.
(Probably too complex for an interview question.)
(You can use O(N) time to check the min, max, sum, sumsq, etc. are equal first.)
Use no-extra-space radix sort to sort the two arrays in-place. O(N) time complexity, O(1) space.
Then compare them using the usual algorithm. O(N) time complexity, O(1) space.
(Provided (max − min) of the arrays is of O(Nk) with a finite k.)
You can try a probabilistic approach - convert the arrays into a number in some huge base B and mod by some prime P, for example sum B^a_i for all i mod some big-ish P. If they both come out to the same number, try again for as many primes as you want. If it's false at any attempts, then they are not correct. If they pass enough challenges, then they are equal, with high probability.
There's a trivial proof for B > N, P > biggest number. So there must be a challenge that cannot be met. This is actually the deterministic approach, though the complexity analysis might be more difficult, depending on how people view the complexity in terms of the size of the input (as opposed to just the number of elements).
I claim that: Unless the range of input is specified, then it is IMPOSSIBLE to solve in onstant extra space, and O(n) running time.
I will be happy to be proven wrong, so that I can learn something new.
Insert all elements from the first array into a hashtable
Try to insert all elements from the second array into the same hashtable - for each insert to element should already be there
Ok, this is not with constant extra space, but the best I could come up at the moment:-). Are there any other constraints imposed on the question, like for example to biggest integer that may be included in the array?
A few answers are basically correct, even though they don't look like it. The hash table approach (for one example) has an upper limit based on the range of the type involved rather than the number of elements in the arrays. At least by by most definitions, that makes the (upper limit on) the space a constant, although the constant may be quite large.
In theory, you could change that from an upper limit to a true constant amount of space. Just for example, if you were working in C or C++, and it was an array of char, you could use something like:
size_t counts[UCHAR_MAX];
Since UCHAR_MAX is a constant, the amount of space used by the array is also a constant.
Edit: I'd note for the record that a bound on the ranges/sizes of items involved is implicit in nearly all descriptions of algorithmic complexity. Just for example, we all "know" that Quicksort is an O(N log N) algorithm. That's only true, however, if we assume that comparing and swapping the items being sorted takes constant time, which can only be true if we bound the range. If the range of items involved is large enough that we can no longer treat a comparison or a swap as taking constant time, then its complexity would become something like O(N log N log R), were R is the range, so log R approximates the number of bits necessary to represent an item.
Is this a trick question? If the authors assumed integers to be within a given range (2^32 etc.) then "extra constant space" might simply be an array of size 2^32 in which you count the occurrences in both lists.
If the integers are unranged, it cannot be done.
You could add each element into a hashmap<Integer, Integer>, with the following rules: Array A is the adder, array B is the remover. When inserting from Array A, if the key does not exist, insert it with a value of 1. If the key exists, increment the value (keep a count). When removing, if the key exists and is greater than 1, reduce it by 1. If the key exists and is 1, remove the element.
Run through array A followed by array B using the rules above. If at any time during the removal phase array B does not find an element, you can immediately return false. If after both the adder and remover are finished the hashmap is empty, the arrays are equivalent.
Edit: The size of the hashtable will be equal to the number of distinct values in the array does this fit the definition of constant space?
I imagine the solution will require some sort of transformation that is both associative and commutative and guarantees a unique result for a unique set of inputs. However I'm not sure if that even exists.
public static boolean match(int[] array1, int[] array2) {
int x, y = 0;
for(x = 0; x < array1.length; x++) {
y = x;
while(array1[x] != array2[y]) {
if (y + 1 == array1.length)
return false;
y++;
}
int swap = array2[x];
array2[x] = array2[y];
array2[y] = swap;
}
return true;
}
For each array, Use Counting sort technique to build the count of number of elements less than or equal to a particular element . Then compare the two built auxillary arrays at every index, if they r equal arrays r equal else they r not . COunting sort requires O(n) and array comparison at every index is again O(n) so totally its O(n) and the space required is equal to the size of two arrays . Here is a link to counting sort http://en.wikipedia.org/wiki/Counting_sort.
given int are in the range -n..+n a simple way to check for equity may be the following (pseudo code):
// a & b are the array
accumulator = 0
arraysize = size(a)
for(i=0 ; i < arraysize; ++i) {
accumulator = accumulator + a[i] - b[i]
if abs(accumulator) > ((arraysize - i) * n) { return FALSE }
}
return (accumulator == 0)
accumulator must be able to store integer with range = +- arraysize * n
How 'bout this - XOR all the numbers in both the arrays. If the result is 0, you got a match.

Resources