Internet says using database for queues is an anti-pattern, and you should use (RabbitMQ or Beanstalked or etc)
But I want all requests stored. So I can later lookup how long they took, any failed attempts or errors or notes logged, who requested it and with what metadata, what was the end result, etc.
It looks like all the queue libraries don't have this option. You can't persist the data to allow you to query it later.
I want what those queues do, but with a "persist to database" option. Does this not exist? How do people deal with this? Do you use a queue library and copy over all request information into your database when the request finishes?
(the language/database I'm using is anything, whatever works best for this)
If you want to log requests, and meta-data about how long they took etc, then do so - log it to the database when you know the relevant results, and run your analytic queries as you would expect to.
The reason to not be using the database as a temporary store is that under high traffic, the searching for, and locking of unprocessed jobs, and then updating or deleting them when they are complete, can take a great deal of effort. That is especially true if don't remove jobs from the active table, and so have to search ever more completed jobs to find those that have yet to be done.
One can implement the task queue by themselves using a persistent backend (like database) to persist the tasks in queues. But the problem is, it may not scale well and also, it is always better to use a proven implementation instead of reinventing the wheel. These are tougher problems to solve and it is better to use the existent frameworks.
For instance, if you are implementing in Python, the typical choice is to use Celary with Redis/RabbitMQ backend.
Related
If I have multiple identical containers deployed simultaneously, and each contains a job to periodically create an artifact and save to a database, and what they save is deterministic, how should I go about preventing redundant operations?
Should I check the key in the database to see if it exists first, and if it doesn't, begin the saving operation? The artifact creation process is lengthy, so it's quite likely that one container may check the DB, see that it hasn't been saved to yet, and start the artifact creation process ... in the meantime, the other container may do the same.
I realize that having multiple clones of the same container is good for preventing downtime / keeping the application robust, but how should you deal with side effects?
This is a pretty open-ended question, so there isn't going to be one definitive answer without knowing the exact specifics of your situation.
Generally speaking in situations like this you should try to make the action that is being performed idempotent if possible, thus removing the issues if multiple requests are sent to perform the same action.
The question I would be asking myself is whether or not your architecture and technology stack is sutiable for this task. Not every activity needs to be performed in Kubernetes.
Would a Kubernetes CronJob be more sutiable for this?
What about a using messaging queue?
The scenario is needing to write high volume data, like tracking clicks or mouse movements, from a web application to a SQL database. The data doesn't need to be written right away because the analysis on the data happens on some recurring basis, like daily or weekly.
I want some feedback on a solution that comes to mind:
The click and mouse data is published to a message queue. This stores the queue items in memory so it should be fast and faster than SQL. Then on some other server a job plugs away on retrieving the next queue item and writing the data to SQL.
Does anyone know of implementations like this? What pitfalls am I failing to see? If this solution is not a good one are there other alternatives?
Regards
RabbitMQ is meant for real time message exchange and not for temporary buffering data. If you are able to consume all data as soon as it arrives in your queues, then this solution will work for you. Otherwise RabbitMQ will grow in memory and eventually die. Then you will have to configure it to throw some data away (there are a lot of options to choose rules for this).
You could possibly store data in Redis cache, you can do it as fast as you publish your events to RabbitMQ. Then you can listen to the new changes in Redis from remote server and fill up whatever database storage you use, or even use it as your data storage.
To solve a very similar problem I was considering doing exactly this. In the end we decided not to go for it because we did need access to the data very quickly. However I still like the idea.
Ive also recently learnt that under the hood this is exactly the way that Microsofft Dynamics CRM does its database updates, using message passing.
Things I think you would need to pay careful attention to.
Make sure that if your RabbitMQ instance disappeared it wouldnt have any affect on your client. Rabbit dying is bad enough, your client erroring because Rabbit is down would be terrible.
If it's truly very high volume (and its good practice for reliability anyway) clustering is something worth looking at.
Obviously paying attention to your deadletter queues is a must. But the ability to play back messages which failed for some reason is awesome, in theory at least your data should eventually always get to you database. Even if it went down for a period of time.
Make sure you can keep up with the number of messages being passed in. Of course, this should be solvable by adding more consumer to a given queue. Which leads to...
Idempotency of messages. Given that your messages relate directly to a DB write, they HAVE to be idempotent.
I have a CRUD webservice, and have been tasked with trying to figure out a way to ensure that we don't lose data when the database goes down. Everyone is aware that if the database goes down we won't be able to get "reads" but for a specific subset of the operations we want to make sure that we don't lose data.
I've been given the impression that this is something that is covered by services like 0MQ, RabbitMQ, or one of the Microsoft MQ services. Although after a few days of reading and research, I'm not even certain that the messages we're talking about in MQ services include database operations. I am however 100% certain that I can queue up as many hello worlds as I could ever hope for.
If I can use a message queue for adding a layer of protection to the database, I'd lean towards Rabbit (because it appears to persist through crashes) but since the target is a Microsoft SQL server databse, perhaps one of their solutions (such as SQL Service Broker, or MSMQ) is more appropriate.
The real fundamental question that I'm not yet sure of though is whether I'm even playing with the right deck of cards (so to speak).
With the desire for a high-availablity webservice, that continues to function if the database goes down, does it make sense to put a Rabbit MQ instance "between" the webservice and the database? Maybe the right link in the chain is to have RabbitMQ send messages to the webserver?
Or is there some other solution for achieving this? There are a number of lose ideas at the moment around finding a way to roll up weblogs in the event of database outage or something... but we're still in early enough stages that (at least I) have no idea what I'm going to do.
Is message queue the right solution?
Introducing message queuing in between a service and it's database operations is certainly one way of improving service availability. Writing to a local temporary queue in a store-and-forward scenario will always be more available than writing to a remote database server, simply by being a local operation.
Additionally by using queuing you gain greater control over the volume and nature of database traffic your database has to handle at peak. Database writes can be queued, routed, and even committed in a different order.
However, in order to do this you need to be aware that when a database write is performed it is processed off-line. Even under conditions where this happens almost instantaneously, you are losing a benefit that the synchronous nature of your current service gives you, which is that your service consumers can always know if the database write operation is successful or not.
I have written about this subject before here. The user posting the question had similar concerns to you. Whether you do this or not is a decision you have to make based on whether this is something your consumers care about or not.
As for the technology stacks you are thinking of this off-line model is implementable with any of them pretty much, with the possible exception of Service broker, which doesn't integrate well with code (see my answer here: https://stackoverflow.com/a/45690344/569662).
If you're using Windows and unlikely to need to migrate, I would go for MSMQ (which supports durable messaging via transactional queues) as it's lightweight and part of Windows.
I work with Oracle and Mysql, and I struggle to understand why the APIs are not written such that I can issue a call, go away and do something else, and then come back and pick it up later eg NIO - I am forced to dedicate a thread to waiting for data. It seems that the SQL interfaces are the only place where sync IO is still forced, which means tying up a thread waiting for the DB.
Can anybody explain the reasons for this? Is there something fundamental that makes this difficult?
It would be great to be able to use 1-2 threads to manage my DB query issue and result fetch, rather than use worker threads to retrieve data.
I do note that there are two experimental attempts (eg: adbcj) at implementing an async API but none seem to be ready for Production use.
Database servers should be able to handle thousands of clients. To provide an asyncronous interface, the DB server will need to keep the resultset from the query in memory, so you can pick it up at later stage. It will quickly become out of resources.
A considerable problem with async is many many libraries use threadlocal for transactions.
For example in Java Much of the JDBC specification relies on a synchronous behavior to achieve single thread per-transaction. That is you write your transaction in procedural order.
To do it right transactions would have to be done through callback but they are not. I know of only node.js that does this but its unclear if its really async.
Of course even if you do async I'm not sure if it will really improve performance as the database itself if is probably doing it synchronous.
There are lots of ways to avoid thread over-population in (Java):
Is asynchronous jdbc call possible?
Personally to get around this issue I use a Message Bus like RabbitMQ.
I'm deploying the Apache Solr web app in two redundant Tomcat 6 servers,
to provide redundancy and improved availability. At this point, scalability is not a issue.
I have a load balancer that can dynamically route traffic to one server or the other or both.
I know that Solr supports master/slave configuration, but that requires manual recovery if the slave receives updates during the master outage (which it will in my use case).
I'm considering a simpler approach using the ability to reload a core:
- only one of the two servers is receiving traffic at any time (the "active" instance), but both are running,
- both instances share the same index data and
- before re-routing traffic due to an outage, the now active instance is told to reload the index core(s)
Limited testing of failovers with both index reads and writes has been successful. What implications/issues am I missing?
Your thoughts and opinions welcomed.
The simple approach to redundancy your considering seems reasonable but you will not be able to use it for disaster recovery unless you can share the data/index to/from a different physical location using your NAS/SAN.
Here are some suggestions:-
Make backups for disaster recovery and test those backups work as an index could conceivably have been corrupted as there are no checksums happening internally in SOLR/Lucene. An index could get wiped or some records could get deleted and merged away without you knowing it and backups can be useful for recovering those records/docs at a later time if you need to perform an investigation.
Before you re-route traffic to the second instance I would run some queries to load caches and also to test and confirm the current index works before it goes online.
Isolate the updates to one location and process and thread to ensure transactional integrity in the event of a cutover as it could be difficult to manage consistency as SOLR does not use a vector clock to synchronize updates like some databases. I personally would keep a copy of all updates in order separately from SOLR in some other store just in case a small time window needs to be repeated.
In general, my experience with SOLR has been excellent as long as you are not using cutting edge features and plugins. I have one instance that currently has 40 million docs and an uptime of well over a year with no issues. That doesn't mean you wont have issues but gives you an idea of how stable it could be.
I hardly know anything about Solr, so I don't know the answers to some of the questions that need to be considered with this sort of setup, but I can provide some things for consideration. You will have to consider what sorts of failures you want to protect against and why and make your decision based on that. There is, after all, no perfect system.
Both instances are using the same files. If the files become corrupt or unavailable for some reason (hardware fault, software bug), the second instance is going to fail the same as the first.
On a similar note, are the files stored and accessed in such a way that they are always valid when the inactive instance reads them? Will the inactive instance try to read the files when the active instance is writing them? What would happen if it does? If the active instance is interrupted while writing the index files (power failure, network outage, disk full), what will happen when the inactive instance tries to load them? The same questions apply in reverse if the 'inactive' instance is going to be writing to the files (which isn't particularly unlikely if it wasn't designed with this use in mind; it might for example update some sort of idle statistic).
Also, reloading the indices sounds like it could be a rather time-consuming operation, and service will not be available while it is happening.
If the active instance needs to complete an orderly shutdown before the inactive instance loads the indices (perhaps due to file validity problems mentioned above), this could also be time-consuming and cause unavailability. If the active instance can't complete an orderly shutdown, you're gonna have a bad time.