I have two vectors, a[n] and b[n], where n is a large number.
a[0] = b[0];
for (i = 1; i < size; i++) {
a[i] = a[i-1] + b[i];
}
With this code we try to achieve that a[i] contains the sum of all the numbers in b[] until b[i]. I need to parallelise this loop using openmp.
The main problem is that a[i] depends of a[i-1], so the only direct way that comes to my mind would be waiting for each a[i-1] number to be ready, which takes a lot of time and makes no sense. Is there any approach in openmp for solving this problem?
You're Carl Friedrich Gauss in the 18 century and your grade school teacher has decided to punish the class with a homework problem that requires a lot or mundane repeated arithmetic. In the previous week your teacher told you to add up the first 100 counting numbers and because you're clever you came up with a quick solution. Your teacher did not like this so he came up with a new problem which he thinks can't be optimized. In your own notation you rewrite the problem like this
a[0] = b[0];
for (int i = 1; i < size; i++) a[i] = a[i-1] + b[i];
then you realize that
a0 = b[0]
a1 = (b[0]) + b[1];
a2 = ((b[0]) + b[1]) + b[2]
a_n = b[0] + b[1] + b[2] + ... b[n]
using your notation again you rewrite the problem as
int sum = 0;
for (int i = 0; i < size; i++) sum += b[i], a[i] = sum;
How to optimize this? First you define
int sum(n0, n) {
int sum = 0;
for (int i = n0; i < n; i++) sum += b[i], a[i] = sum;
return sum;
}
Then you realize that
a_n+1 = sum(0, n) + sum(n, n+1)
a_n+2 = sum(0, n) + sum(n, n+2)
a_n+m = sum(0, n) + sum(n, n+m)
a_n+m+k = sum(0, n) + sum(n, n+m) + sum(n+m, n+m+k)
So now you know what to do. Find t classmates. Have each one work on a subset of the numbers. To keep it simple you choose size is 100 and four classmates t0, t1, t2, t3 then each one does
t0 t1 t2 t3
s0 = sum(0,25) s1 = sum(25,50) s2 = sum(50,75) s3 = sum(75,100)
at the same time. Then define
fix(int n0, int n, int offset) {
for(int i=n0; i<n; i++) a[i] += offset
}
and then each classmates goes back over their subset at the same time again like this
t0 t1 t2 t3
fix(0, 25, 0) fix(25, 50, s0) fix(50, 75, s0+s1) fix(75, 100, s0+s1+s2)
You realize that with t classmate taking about the same K seconds to do arithmetic that you can finish the job in 2*K*size/t seconds whereas one person would take K*size seconds. It's clear you're going to need at least two classmates just to break even. So with four classmates they should finish in half the time as one classmate.
Now your write up your algorithm in your own notation
int *suma; // array of partial results from each classmate
#pragma omp parallel
{
int ithread = omp_get_thread_num(); //label of classmate
int nthreads = omp_get_num_threads(); //number of classmates
#pragma omp single
suma = malloc(sizeof *suma * (nthreads+1)), suma[0] = 0;
//now have each classmate calculate their partial result s = sum(n0, n)
int s = 0;
#pragma omp for schedule(static) nowait
for (int i=0; i<size; i++) s += b[i], a[i] = sum;
suma[ithread+1] = s;
//now wait for each classmate to finish
#pragma omp barrier
// now each classmate sums each of the previous classmates results
int offset = 0;
for(int i=0; i<(ithread+1); i++) offset += suma[i];
//now each classmates corrects their result
#pragma omp for schedule(static)
for (int i=0; i<size; i++) a[i] += offset;
}
free(suma)
You realize that you could optimize the part where each classmate has to add the result of the previous classmate but since size >> t you don't think it's worth the effort.
Your solution is not nearly as fast as your solution adding the counting numbers but nevertheless your teacher is not happy that several of his students finished much earlier than the other students. So now he decides that one student has to read the b array slowly to the class and when you report the result a it has to be done slowly as well. You call this being read/write bandwidth bound. This severely limits the effectiveness of your algorithm. What are you going to do now?
The only thing you can think of is to get multiple classmates to read and record different subsets of the numbers to the class at the same time.
I saw an interview question which asked to
Interchange arr[i] and i for i=[0,n-1]
EXAMPLE :
input : 1 2 4 5 3 0
answer :5 0 1 4 2 3
explaination : a[1]=2 in input , so a[2]=1 in answer so on
I attempted this but not getting correct answer.
what i am able to do is : for a pair of numbers p and q , a[p]=q and a[q]=p .
any thoughts how to improve it are welcome.
FOR(j,0,n-1)
{
i=j;
do{
temp=a[i];
next=a[temp];
a[temp]=i;
i=next;
}while(i>j);
}
print_array(a,i,n);
It would be easier for me to to understand your answer if it contains a pseudocode with some explaination.
EDIT : I came to knpw it is cyclic permutation so changed the question title.
Below is what I came up with (Java code).
For each value x in a, it sets a[x] to x, and sets x to the overridden value (to be used for a[a[x]]), and repeats until it gets back to the original x.
I use negative values as a flag to indicate that the value's already been processed.
Running time:
Since it only processes each value once, the running time is O(n).
Code:
int[] a = {1,2,4,5,3,0};
for (int i = 0; i < a.length; i++)
{
if (a[i] < 0)
continue;
int j = a[i];
int last = i;
do
{
int temp = a[j];
a[j] = -last-1;
last = j;
j = temp;
}
while (i != j);
a[j] = -last-1;
}
for (int i = 0; i < a.length; i++)
a[i] = -a[i]-1;
System.out.println(Arrays.toString(a));
Here's my suggestion, O(n) time, O(1) space:
void OrderArray(int[] A)
{
int X = A.Max() + 1;
for (int i = 0; i < A.Length; i++)
A[i] *= X;
for (int i = 0; i < A.Length; i++)
A[A[i] / X] += i;
for (int i = 0; i < A.Length; i++)
A[i] = A[i] % X;
}
A short explanation:
We use X as a basic unit for values in the original array (we multiply each value in the original array by X, which is larger than any number in A- basically the length of A + 1). so at any point we can retrieve the number that was in a certain cell of the original array by array by doing A[i] / X, as long as we didn't add more than X to that cell.
This lets us have two layers of values, where A[i] % X represents the value of the cell after the ordering. these two layers don't intersect through the process.
When we finished, we clean A from the original values multiplied by X by performing A[i] = A[i] % X.
Hopes that's clean enough.
Perhaps it is possible by using the images of the input permutation as indices:
void inverse( unsigned int* input, unsigned int* output, unsigned int n )
{
for ( unsigned int i = 0; i < n; i++ )
output[ input[ i ] ] = i;
}
I've literally copied and pasted from the supplied source code for Numerical Recipes for C for in-place LU Matrix Decomposition, problem is its not working.
I'm sure I'm doing something stupid but would appreciate anyone being able to point me in the right direction on this; I've been working on its all day and can't see what I'm doing wrong.
POST-ANSWER UPDATE: The project is finished and working. Thanks to everyone for their guidance.
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#define MAT1 3
#define TINY 1e-20
int h_NR_LU_decomp(float *a, int *indx){
//Taken from Numerical Recipies for C
int i,imax,j,k;
float big,dum,sum,temp;
int n=MAT1;
float vv[MAT1];
int d=1.0;
//Loop over rows to get implicit scaling info
for (i=0;i<n;i++) {
big=0.0;
for (j=0;j<n;j++)
if ((temp=fabs(a[i*MAT1+j])) > big)
big=temp;
if (big == 0.0) return -1; //Singular Matrix
vv[i]=1.0/big;
}
//Outer kij loop
for (j=0;j<n;j++) {
for (i=0;i<j;i++) {
sum=a[i*MAT1+j];
for (k=0;k<i;k++)
sum -= a[i*MAT1+k]*a[k*MAT1+j];
a[i*MAT1+j]=sum;
}
big=0.0;
//search for largest pivot
for (i=j;i<n;i++) {
sum=a[i*MAT1+j];
for (k=0;k<j;k++) sum -= a[i*MAT1+k]*a[k*MAT1+j];
a[i*MAT1+j]=sum;
if ((dum=vv[i]*fabs(sum)) >= big) {
big=dum;
imax=i;
}
}
//Do we need to swap any rows?
if (j != imax) {
for (k=0;k<n;k++) {
dum=a[imax*MAT1+k];
a[imax*MAT1+k]=a[j*MAT1+k];
a[j*MAT1+k]=dum;
}
d = -d;
vv[imax]=vv[j];
}
indx[j]=imax;
if (a[j*MAT1+j] == 0.0) a[j*MAT1+j]=TINY;
for (k=j+1;k<n;k++) {
dum=1.0/(a[j*MAT1+j]);
for (i=j+1;i<n;i++) a[i*MAT1+j] *= dum;
}
}
return 0;
}
void main(){
//3x3 Matrix
float exampleA[]={1,3,-2,3,5,6,2,4,3};
//pivot array (not used currently)
int* h_pivot = (int *)malloc(sizeof(int)*MAT1);
int retval = h_NR_LU_decomp(&exampleA[0],h_pivot);
for (unsigned int i=0; i<3; i++){
printf("\n%d:",h_pivot[i]);
for (unsigned int j=0;j<3; j++){
printf("%.1lf,",exampleA[i*3+j]);
}
}
}
WolframAlpha says the answer should be
1,3,-2
2,-2,7
3,2,-2
I'm getting:
2,4,3
0.2,2,-2.8
0.8,1,6.5
And so far I have found at least 3 different versions of the 'same' algorithm, so I'm completely confused.
PS yes I know there are at least a dozen different libraries to do this, but I'm more interested in understanding what I'm doing wrong than the right answer.
PPS since in LU Decomposition the lower resultant matrix is unity, and using Crouts algorithm as (i think) implemented, array index access is still safe, both L and U can be superimposed on each other in-place; hence the single resultant matrix for this.
I think there's something inherently wrong with your indices. They sometimes have unusual start and end values, and the outer loop over j instead of i makes me suspicious.
Before you ask anyone to examine your code, here are a few suggestions:
double-check your indices
get rid of those obfuscation attempts using sum
use a macro a(i,j) instead of a[i*MAT1+j]
write sub-functions instead of comments
remove unnecessary parts, isolating the erroneous code
Here's a version that follows these suggestions:
#define MAT1 3
#define a(i,j) a[(i)*MAT1+(j)]
int h_NR_LU_decomp(float *a, int *indx)
{
int i, j, k;
int n = MAT1;
for (i = 0; i < n; i++) {
// compute R
for (j = i; j < n; j++)
for (k = 0; k < i-2; k++)
a(i,j) -= a(i,k) * a(k,j);
// compute L
for (j = i+1; j < n; j++)
for (k = 0; k < i-2; k++)
a(j,i) -= a(j,k) * a(k,i);
}
return 0;
}
Its main advantages are:
it's readable
it works
It lacks pivoting, though. Add sub-functions as needed.
My advice: don't copy someone else's code without understanding it.
Most programmers are bad programmers.
For the love of all that is holy, don't use Numerical Recipies code for anything except as a toy implementation for teaching purposes of the algorithms described in the text -- and, really, the text isn't that great. And, as you're learning, neither is the code.
Certainly don't put any Numerical Recipies routine in your own code -- the license is insanely restrictive, particularly given the code quality. You won't be able to distribute your own code if you have NR stuff in there.
See if your system already has a LAPACK library installed. It's the standard interface to linear algebra routines in computational science and engineering, and while it's not perfect, you'll be able to find lapack libraries for any machine you ever move your code to, and you can just compile, link, and run. If it's not already installed on your system, your package manager (rpm, apt-get, fink, port, whatever) probably knows about lapack and can install it for you. If not, as long as you have a Fortran compiler on your system, you can download and compile it from here, and the standard C bindings can be found just below on the same page.
The reason it's so handy to have a standard API to linear algebra routines is that they are so common, but their performance is so system-dependant. So for instance, Goto BLAS
is an insanely fast implementation for x86 systems of the low-level operations which are needed for linear algebra; once you have LAPACK working, you can install that library to make everything as fast as possible.
Once you have any sort of LAPACK installed, the routine for doing an LU factorization of a general matrix is SGETRF for floats, or DGETRF for doubles. There are other, faster routines if you know something about the structure of the matrix - that it's symmetric positive definite, say (SBPTRF), or that it's tridiagonal (STDTRF). It's a big library, but once you learn your way around it you'll have a very powerful piece of gear in your numerical toolbox.
The thing that looks most suspicious to me is the part marked "search for largest pivot". This does not only search but it also changes the matrix A. I find it hard to believe that is correct.
The different version of the LU algorithm differ in pivoting, so make sure you understand that. You cannot compare the results of different algorithms. A better check is to see whether L times U equals your original matrix, or a permutation thereof if your algorithm does pivoting. That being said, your result is wrong because the determinant is wrong (pivoting does not change the determinant, except for the sign).
Apart from that #Philip has good advice. If you want to understand the code, start by understanding LU decomposition without pivoting.
To badly paraphrase Albert Einstein:
... a man with a watch always knows the
exact time, but a man with two is
never sure ....
Your code is definitely not producing the correct result, but even if it were, the result with pivoting will not directly correspond to the result without pivoting. In the context of a pivoting solution, what Alpha has really given you is probably the equivalent of this:
1 0 0 1 0 0 1 3 -2
P= 0 1 0 L= 2 1 0 U = 0 -2 7
0 0 1 3 2 1 0 0 -2
which will then satisfy the condition A = P.L.U (where . denotes the matrix product). If I compute the (notionally) same decomposition operation another way (using the LAPACK routine dgetrf via numpy in this case):
In [27]: A
Out[27]:
array([[ 1, 3, -2],
[ 3, 5, 6],
[ 2, 4, 3]])
In [28]: import scipy.linalg as la
In [29]: LU,ipivot = la.lu_factor(A)
In [30]: print LU
[[ 3. 5. 6. ]
[ 0.33333333 1.33333333 -4. ]
[ 0.66666667 0.5 1. ]]
In [31]: print ipivot
[1 1 2]
After a little bit of black magic with ipivot we get
0 1 0 1 0 0 3 5 6
P = 0 0 1 L = 0.33333 1 0 U = 0 1.3333 -4
1 0 0 0.66667 0.5 1 0 0 1
which also satisfies A = P.L.U . Both of these factorizations are correct, but they are different and they won't correspond to a correctly functioning version of the NR code.
So before you can go deciding whether you have the "right" answer, you really should spend a bit of time understanding the actual algorithm that the code you copied implements.
This thread has been viewed 6k times in the past 10 years. I had used NR Fortran and C for many years, and do not share the low opinions expressed here.
I explored the issue you encountered, and I believe the problem in your code is here:
for (k=j+1;k<n;k++) {
dum=1.0/(a[j*MAT1+j]);
for (i=j+1;i<n;i++) a[i*MAT1+j] *= dum;
}
while in the original if (j != n-1) { ... } is used. I think the two are not equivalent.
NR's lubksb() does have a small issue in the way they set up finding the first non-zero element, but this can be skipped at very low cost, even for a large matrix. With that, both ludcmp() and lubksb(), entered as published, work just fine, and as far as I can tell perform well.
Here's a complete test code, mostly preserving the notation of NR, wth minor simplifications (tested under Ubuntu Linux/gcc):
/* A sample program to demonstrate matrix inversion using the
* Crout's algorithm from Teukolsky and Press (Numerical Recipes):
* LU decomposition + back-substitution, with partial pivoting
* 2022.06 edward.sternin at brocku.ca
*/
#define N 7
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define a(i,j) a[(i)*n+(j)]
/* implied 1D layout is a(0,0), a(0,1), ... a(0,n-1), a(1,0), a(1,1), ... */
void matrixPrint (double *M, int nrow, int ncol) {
int i,j;
for (i=0;i<nrow;i++) {
for (j=0;j<ncol;j++) { fprintf(stderr," %+.3f\t",M[i*ncol+j]); }
fprintf(stderr,"\n");
}
}
void die(char msg[]) {
fprintf(stderr,"ERROR in %s, aborting\n",msg);
exit(1);
}
void ludcmp(double *a, int n, int *indx) {
int i, imax, j, k;
double big, dum, sum, temp;
double *vv;
/* i=row index, i=0..(n-1); j=col index, j=0..(n-1) */
vv=(double *)malloc((size_t)(n * sizeof(double)));
if (!vv) die("ludcmp: allocation failure");
for (i = 0; i < n; i++) { /* loop over rows */
big = 0.0;
for (j = 0; j < n; j++) {
if ((temp=fabs(a(i,j))) > big) big=temp;
}
if (big == 0.0) die("ludcmp: a singular matrix provided");
vv[i] = 1.0 / big; /* vv stores the scaling factor for each row */
}
for (j = 0; j < n; j++) { /* Crout's method: loop over columns */
for (i = 0; i < j; i++) { /* except for i=j */
sum = a(i,j);
for (k = 0; k < i; k++) { sum -= a(i,k) * a(k,j); }
a(i,j) = sum; /* Eq. 2.3.12, in situ */
}
big = 0.0; /* searching for the largest pivot element */
for (i = j; i < n; i++) {
sum = a(i,j);
for (k = 0; k < j; k++) { sum -= a(i,k) * a(k,j); }
a(i,j) = sum;
if ((dum = vv[i] * fabs(sum)) >= big) {
big = dum;
imax = i;
}
}
if (j != imax) { /* if needed, interchange rows */
for (k = 0; k < n; k++){
dum = a(imax,k);
a(imax,k) = a(j,k);
a(j,k) = dum;
}
vv[imax] = vv[j]; /* keep the scale factor with the new row location */
}
indx[j] = imax;
if (j != n-1) { /* divide by the pivot element */
dum = 1.0 / a(j,j);
for (i = j + 1; i < n; i++) a(i,j) *= dum;
}
}
free(vv);
}
void lubksb(double *a, int n, int *indx, double *b) {
int i, ip, j;
double sum;
for (i = 0; i < n; i++) {
/* Forward substitution, Eq.2.3.6, unscrambling permutations from indx[] */
ip = indx[i];
sum = b[ip];
b[ip] = b[i];
for (j = 0; j < i; j++) sum -= a(i,j) * b[j];
b[i] = sum;
}
for (i = n-1; i >= 0; i--) { /* backsubstitution, Eq. 2.3.7 */
sum = b[i];
for (j = i + 1; j < n; j++) sum -= a(i,j) * b[j];
b[i] = sum / a(i,i);
}
}
int main() {
double *a,*y,*col,*aa,*res,sum;
int i,j,k,*indx;
a=(double *)malloc((size_t)(N*N * sizeof(double)));
y=(double *)malloc((size_t)(N*N * sizeof(double)));
col=(double *)malloc((size_t)(N * sizeof(double)));
indx=(int *)malloc((size_t)(N * sizeof(int)));
aa=(double *)malloc((size_t)(N*N * sizeof(double)));
res=(double *)malloc((size_t)(N*N * sizeof(double)));
if (!a || !y || !col || !indx || !aa || !res) die("main: memory allocation failure");
srand48((long int) N);
for (i=0;i<N;i++) {
for (j=0;j<N;j++) { aa[i*N+j] = a[i*N+j] = drand48(); }
}
fprintf(stderr,"\nRandomly generated matrix A = \n");
matrixPrint(a,N,N);
ludcmp(a,N,indx);
for(j=0;j<N;j++) {
for(i=0;i<N;i++) { col[i]=0.0; }
col[j]=1.0;
lubksb(a,N,indx,col);
for(i=0;i<N;i++) { y[i*N+j]=col[i]; }
}
fprintf(stderr,"\nResult of LU/BackSub is inv(A) :\n");
matrixPrint(y,N,N);
for (i=0; i<N; i++) {
for (j=0;j<N;j++) {
sum = 0;
for (k=0; k<N; k++) { sum += y[i*N+k] * aa[k*N+j]; }
res[i*N+j] = sum;
}
}
fprintf(stderr,"\nResult of inv(A).A = (should be 1):\n");
matrixPrint(res,N,N);
return(0);
}
for example
int count=0
for(int i=0;i<12;i++)
for(int j=i+1;j<10;j++)
for(int k=j+1;k<8;k++)
count++;
System.out.println("count = "+count);
or
for(int i=0;i<I;i++)
for(int j=i+1;j<J;j++)
for(int k=j+1;k<K;k++)
:
:
:
for(int z=y+1;z,<Z;z,++,)
count++;
what is value of count after all iteration? Is there any formula to calculate it?
It's a math problem of summation
Basically, one can prove that:
for (i=a; i<b; i++)
count+=1
is equivalent to
count+=b-a
Similarly,
for (i=a; i<b; i++)
count+=i
is equivalent to
count+= 0.5 * (b*(b+1) - a*(a+1))
You can get similar formulas using for instance wolframalpha (Wolfram's Mathematica)
This system will do the symbolic calculation for you, so for instance,
for(int i=0;i<A;i++)
for(int j=i+1;j<B;j++)
for(int k=j+1;k<C;k++)
count++
is a Mathematica query:
http://www.wolframalpha.com/input/?i=Sum[Sum[Sum[1,{k,j%2B1,C-1}],{j,i%2B1,B-1}],{i,0,A-1}]
Not a full answer but when i, j and k are all the same (say they're all n) the formula is C(n, nb_for_loops), which may already interest you :)
final int n = 50;
int count = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
for (int k = j + 1; k < n; k++) {
for (int l = k+1; l < n; l++) {
count++;
}
}
}
}
System.out.println( count );
Will give 230300 which is C(50,4).
You can compute this easily using the binomail coefficient:
http://en.wikipedia.org/wiki/Binomial_coefficient
One formula to compute this is: n! / (k! * (n-k)!)
For example if you want to know how many different sets of 5 cards can be taken out of a 52 cards deck, you can either use 5 nested loops or use the formula above, they'll both give: 2 598 960
That's roughly the volume of an hyperpyramid http://www.physicsinsights.org/pyramids-1.html => 1/d * (n ^d) (with d dimension)
The formula works for real number so you have to adapt it for integer
(for the case d=2 (the hyperpyramid is a triangle then) , 1/2*(n*n) becomes the well know formula n(n+1)/2 (or n(n-1)/2) depending if you include the diagonal or not). I let you do the math
I think the fact your not using n all time but I,J,K is not a problem as you can rewrite each loop as 2 loop stopping in the middle so they all stop as the same number
the formula might becomes 1/d*((n/2)^d)*2 (I'm not sure, but something similar should be ok)
That's not really the answer to your question but I hope that will help to find a real one.