Solution finder algorithm using basic operations - arrays

I need help with making an algorithm.
I am currently designing something for a class I am taking.
Given 4 numbers, I need to find all (or at least the first) combination of the 4 numbers using basic operations (+-*/) to make a certain answer.
For example, if given numbers [1,2,3,4].
and I have to make the answer 12.
I can see (without a program) that (2-1)*3*4 = 12
But for more complex numbers, it may be harder to solve just by thinking about it. So I require a program to help me find at least one possible combination to solve the problem.
Note that, in the given 4 numbers, the numbers may repeat, but each number can only used once.
For example, the set of 4 can be [2,3,3,4]. But in that set, 2 and 4 cannot be used more than once.
I originally had a plan to brute force find all the possible combinations/orders of each 4 numbers, then iterating through all the operations. I later realized that this won't work as it doesn't take into account an operations like (1-2)*(3+4).
So I was wondering if anyone had an idea of how I can approach solving this problem?
Please keep in mind, that I am still fairly new to programming, so I may not understand some of the more advanced terms and functions. But I can keep up pretty well with things like loops and arrays.

There aren't actually that many combinations to check, because the number of precedence cases is limited to 5:
((a:b):c):d
(a:b):(c:d)
(a:(b:c)):d
a:((b:c):d)
a:(b:(c:d))
so with 24 permutations and 3 choices from 4 possible operators, that gives 7680 combinations. And many of these combinations are really identical, because the precedence is unimportant in cases like:
a+b+c+d
a+b+c-d
a*b*c*d
a*b*c/d
Run the code snippet to see a simple loop-based algorithm which checks these 7680 combinations in action. There are a surprising number of solutions for the case 1:2:3:4=12.
function findArithmetic(target, numbers) {
// PUT THE ARITHMETIC FUNCTIONS IN AN ARRAY, SO WE CAN ITERATE OVER THEM
function sum(a, b) {return a + b}
function dif(a, b) {return a - b}
function prd(a, b) {return a * b}
function div(a, b) {return a / b}
var func = [sum, dif, prd, div];
// DEFINE THE ORDER OF THE CALCULATIONS FOR THE 5 PRECEDENCE CASES
var prec = [[0, 1, 4, 2, 5, 3], // 0,1,2,3 are the four numbers
[0, 1, 2, 3, 4, 5], // 4 is the result of the 1st calculation
[1, 2, 0, 4, 5, 3], // 5 is the result of the 2nd calculation
[1, 2, 4, 3, 0, 5], // so here, do 1:2, then result1:3, then 0:result2
[2, 3, 1, 4, 0, 5]]; // and here, do 2:3, then 1:result1, then 0:result2
// FIND ALL PERMUTATIONS OF THE NUMBERS AND STORE THEM IN ARRAY "NUMS"
var nums = [];
for (var a = 0; a < 4; a++) {
for (var b = 0; b < 4; b++) {
if (a == b) continue;
for (var c = 0; c < 4; c++) {
if (a == c || b == c) continue;
for (var d = 0; d < 4; d++) {
if (a == d || b == d || c == d) continue;
nums.push([numbers[a], numbers[b], numbers[c], numbers[d]]);
}
}
}
}
// NOW GET DOWN TO BUSINESS
var solutions = [];
// ITERATE OVER ALL 24 PERMUTATIONS
for (var n = 0; n < nums.length; n++) {
// ITERATE OVER ALL 5 PRECEDENCE CASES
for (var p = 0; p < 5; p++) {
// ITERATE OVER THE 4 OPERATORS FOR THE FIRST CALCULATION
for (var i = 0; i < 4; i++) {
// ITERATE OVER THE 4 OPERATORS FOR THE SECOND CALCULATION
for (var j = 0; j < 4; j++) {
// ITERATE OVER THE 4 OPERATORS FOR THE THIRD CALCULATION
for (var k = 0; k < 4; k++) {
// DO THE CALCULATIONS
nums[n][4] = func[i](nums[n][prec[p][0]], nums[n][prec[p][1]]);
nums[n][5] = func[j](nums[n][prec[p][2]], nums[n][prec[p][3]]);
var result = func[k](nums[n][prec[p][4]], nums[n][prec[p][5]]);
// IF THE RESULT IS CORRECT, MAKE A STRING AND ADD TO SOLUTIONS
if (result == target) {
solutions.push(makeString(n, p, i, j, k));
}
}
}
}
}
}
return solutions;
// TURN THE RESULT INTO A PRESENTABLE STRING
// this is a bit fiddly, because in each precedence case, the calculations are done in a different order
function makeString(n, p, i, j, k) {
// CHOOSE THE RIGHT STRING TEMPLATE, BASED ON THE PREFERENCE CASE
var str = ["((aAb)Bc)Cd", "(aAb)B(cCd)", "(aA(bBc))Cd", "aA((bBc)Cd)", "aA(bB(cCd))"][p];
// REPLACE "a", "b", "c", AND "d" WITH THE NUMBERS
for (var c = 0; c < 4; c++) str = str.replace(["a","b","c","d"][c], nums[n][c]);
// REPLACE "A", "B" AND "C" WITH THE OPERATORS, BASED ON EXECUTION ORDER IN PREFERENCE CASE
var order = [["A","B","C"], ["A","C","B"], ["B","A","C"], ["B","C","A"], ["C","B","A"]];
for (var c = 0; c < 3; c++) str = str.replace(order[p][c], ["+","-","*","/"][[i,j,k][c]]);
return str + "=" + target;
}
}
// RUN THE FUNCTION AND DISPLAY THE RESULTS IN THE CONSOLE
var sol = findArithmetic(12, [1,2,3,4]);
document.write(sol.length + " solutions found:<BR><PRE>");
for (var s in sol) document.write(sol[s] + "<BR>");
This is a simpler solution, without the precedence array. It has the calculations for the five precedence cases written out seperately. Usually programmers would consider this an unelegant solution, because it breaks the "don't repeat yourself" rule; however, in this case it makes the code much easier to understand, and it greatly simplifies the displaying of the results, so for once I think it makes sense to do it this way.
This version only returns one solution per permutation of the numbers and combination of operators, because solutions with different bracket placement, like (a*b)+(c-d) and ((a*b)+c)-d, are really just duplicates. (That's what the continue statement after each calculation is for.)
function findArithmetic(target, numbers) {
// PUT THE ARITHMETIC FUNCTIONS IN AN ARRAY, SO WE CAN ITERATE OVER THEM
function sum(a, b) {return a + b}
function dif(a, b) {return a - b}
function prd(a, b) {return a * b}
function div(a, b) {return a / b}
var func = [sum, dif, prd, div];
// FIND ALL PERMUTATIONS OF THE NUMBERS AND STORE THEM IN ARRAY "NUMS"
var nums = [];
for (var a = 0; a < 4; a++) {
for (var b = 0; b < 4; b++) {
if (a == b) continue;
for (var c = 0; c < 4; c++) {
if (a == c || b == c) continue;
for (var d = 0; d < 4; d++) {
if (a == d || b == d || c == d) continue;
nums.push([numbers[a], numbers[b], numbers[c], numbers[d]]);
}
}
}
}
// NOW GET DOWN TO BUSINESS
var solutions = [];
var op = ["+","-","*","/"];
// ITERATE OVER ALL 24 PERMUTATIONS
for (var n = 0; n < nums.length; n++) {
var a = nums[n][0], b = nums[n][1], c = nums[n][2], d = nums[n][3];
// ITERATE OVER THE 4 OPERATORS FOR THE FIRST CALCULATION
for (var i = 0; i < 4; i++) {
// ITERATE OVER THE 4 OPERATORS FOR THE SECOND CALCULATION
for (var j = 0; j < 4; j++) {
// ITERATE OVER THE 4 OPERATORS FOR THE THIRD CALCULATION
for (var k = 0; k < 4; k++) {
// CHECK PRECEDENCE CASE 1: ((a:b):c):d
if (target == func[k](func[j](func[i](a, b), c), d)) {
solutions.push("((" + a + op[i] + b + ")" + op[j] + c + ")" + op[k] + d + "=" + target);
continue;
}
// CHECK PRECEDENCE CASE 2: (a:b):(c:d)
if (target == func[j](func[i](a, b), func[k](c, d))) {
solutions.push("(" + a + op[i] + b + ")" + op[j] + "(" + c + op[k] + d + ")=" + target);
continue;
}
// CHECK PRECEDENCE CASE 3: (a:(b:c)):d
if (target == func[k](func[i](a, func[j](b, c)), d)) {
solutions.push("(" + a + op[i] + "(" + b + op[j] + c + "))" + op[k] + d + "=" + target);
continue;
}
// CHECK PRECEDENCE CASE 4: a:((b:c):d)
if (target == func[i](a, func[k](func[j](b, c), d))) {
solutions.push(a + op[i] + "((" + b + op[j] + c + ")" + op[k] + d + ")=" + target);
continue;
}
// CHECK PRECEDENCE CASE 5: a:(b:(c:d))
if (target == func[i](a, func[j](b, func[k](c, d)))) {
solutions.push(a + op[i] + "(" + b + op[j] + "(" + c + op[k] + d + "))=" + target);
}
}
}
}
}
return solutions;
}
// RUN THE FUNCTION AND DISPLAY THE RESULTS IN THE CONSOLE
var sol = findArithmetic(2, [4,5,6,12]);
document.write(sol.length + " solutions found:<BR><PRE>");
for (var s in sol) document.write(sol[s] + "<BR>");

You are looking for binary expression trees with 4 leafs. There is always a top-level node (+,*,-,/ in your case). For a given top level node, organize your search by the number of leafs to the left of the top-level node, which must be a number in the range 1 to 3. There is a natural recursive solution since, for example, if the left side has three leafs then it itself is a binary expression tree with three leafs. You really don't need to use tree data structures -- you can use fully parenthesized strings (e.g. like "(((1 + 2) * 3) / 4)" for the tree whose top node is "/" and whose left side is the tree "((1 + 2)*3)" and whose right side is the leaf 4).

Related

Search unsorted array for 3 elements which sum to a value

I am trying to make an algorithm, of Θ( n² ).
It accepts an unsorted array of n elements, and an integer z,
and has to return 3 indices of 3 different elements a,b,c ; so a+b+c = z.
(return NILL if no such integers were found)
I tried to sort the array first, in two ways, and then to search the sorted array.
but since I need a specific running time for the rest of the algorithm, I am getting lost.
Is there any way to do it without sorting? (I guess it does have to be sorted) either with or without sorting would be good.
example:
for this array : 1, 3, 4, 2, 6, 7, 9 and the integer 6
It has to return: 0, 1, 3
because ( 1+3+2 = 6)
Algorithm
Sort - O(nlogn)
for i=0... n-1 - O(1) assigning value to i
new_z = z-array[i] this value is updated each iteration. Now, search for new_z using two pointers, at begin (index 0) and end (index n-1) If sum (array[ptr_begin] + array[ptr_ens]) is greater then new_z, subtract 1 from the pointer at top. If smaller, add 1 to begin pointer. Otherwise return i, current positions of end and begin. - O(n)
jump to step 2 - O(1)
Steps 2, 3 and 4 cost O(n^2). Overall, O(n^2)
C++ code
#include <iostream>
#include <vector>
#include <algorithm>
int main()
{
std::vector<int> vec = {3, 1, 4, 2, 9, 7, 6};
std::sort(vec.begin(), vec.end());
int z = 6;
int no_success = 1;
//std::for_each(vec.begin(), vec.end(), [](auto const &it) { std::cout << it << std::endl;});
for (int i = 0; i < vec.size() && no_success; i++)
{
int begin_ptr = 0;
int end_ptr = vec.size()-1;
int new_z = z-vec[i];
while (end_ptr > begin_ptr)
{
if(begin_ptr == i)
begin_ptr++;
if (end_ptr == i)
end_ptr--;
if ((vec[begin_ptr] + vec[end_ptr]) > new_z)
end_ptr--;
else if ((vec[begin_ptr] + vec[end_ptr]) < new_z)
begin_ptr++;
else {
std::cout << "indices are: " << end_ptr << ", " << begin_ptr << ", " << i << std::endl;
no_success = 0;
break;
}
}
}
return 0;
}
Beware, result is the sorted indices. You can maintain the original array, and then search for the values corresponding to the sorted array. (3 times O(n))
The solution for the 3 elements which sum to a value (say v) can be done in O(n^2), where n is the length of the array, as follows:
Sort the given array. [ O(nlogn) ]
Fix the first element , say e1. (iterating from i = 0 to n - 1)
Now we have to find the sum of 2 elements sum to a value (v - e1) in range from i + 1 to n - 1. We can solve this sub-problem in O(n) time complexity using two pointers where left pointer will be pointing at i + 1 and right pointer will be pointing at n - 1 at the beginning. Now we will move our pointers either from left or right depending upon the total current sum is greater than or less than required sum.
So, overall time complexity of the solution will be O(n ^ 2).
Update:
I attached solution in c++ for the reference: (also, added comments to explain time complexity).
vector<int> sumOfthreeElements(vector<int>& ar, int v) {
sort(ar.begin(), ar.end());
int n = ar.size();
for(int i = 0; i < n - 2 ; ++i){ //outer loop runs `n` times
//for every outer loop inner loops runs upto `n` times
//therefore, overall time complexity is O(n^2).
int lo = i + 1;
int hi = n - 1;
int required_sum = v - ar[i];
while(lo < hi) {
int current_sum = ar[lo] + ar[hi];
if(current_sum == required_sum) {
return {i, lo, hi};
} else if(current_sum > required_sum){
hi--;
}else lo++;
}
}
return {};
}
I guess this is similar to LeetCode 15 and 16:
LeetCode 16
Python
class Solution:
def threeSumClosest(self, nums, target):
nums.sort()
closest = nums[0] + nums[1] + nums[2]
for i in range(len(nums) - 2):
j = -~i
k = len(nums) - 1
while j < k:
summation = nums[i] + nums[j] + nums[k]
if summation == target:
return summation
if abs(summation - target) < abs(closest - target):
closest = summation
if summation < target:
j += 1
elif summation > target:
k -= 1
return closest
Java
class Solution {
public int threeSumClosest(int[] nums, int target) {
Arrays.sort(nums);
int closest = nums[0] + nums[nums.length >> 1] + nums[nums.length - 1];
for (int first = 0; first < nums.length - 2; first++) {
int second = -~first;
int third = nums.length - 1;
while (second < third) {
int sum = nums[first] + nums[second] + nums[third];
if (sum > target)
third--;
else
second++;
if (Math.abs(sum - target) < Math.abs(closest - target))
closest = sum;
}
}
return closest;
}
}
LeetCode 15
Python
class Solution:
def threeSum(self, nums):
res = []
nums.sort()
for i in range(len(nums) - 2):
if i > 0 and nums[i] == nums[i - 1]:
continue
lo, hi = -~i, len(nums) - 1
while lo < hi:
tsum = nums[i] + nums[lo] + nums[hi]
if tsum < 0:
lo += 1
if tsum > 0:
hi -= 1
if tsum == 0:
res.append((nums[i], nums[lo], nums[hi]))
while lo < hi and nums[lo] == nums[-~lo]:
lo += 1
while lo < hi and nums[hi] == nums[hi - 1]:
hi -= 1
lo += 1
hi -= 1
return res
Java
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
Arrays.sort(nums);
List<List<Integer>> res = new LinkedList<>();
for (int i = 0; i < nums.length - 2; i++) {
if (i == 0 || (i > 0 && nums[i] != nums[i - 1])) {
int lo = -~i, hi = nums.length - 1, sum = 0 - nums[i];
while (lo < hi) {
if (nums[lo] + nums[hi] == sum) {
res.add(Arrays.asList(nums[i], nums[lo], nums[hi]));
while (lo < hi && nums[lo] == nums[-~lo])
lo++;
while (lo < hi && nums[hi] == nums[hi - 1])
hi--;
lo++;
hi--;
} else if (nums[lo] + nums[hi] < sum) {
lo++;
} else {
hi--;
}
}
}
}
return res;
}
}
Reference
You can see the explanations in the following links:
LeetCode 15 - Discussion Board
LeetCode 16 - Discussion Board
LeetCode 15 - Solution
You can use something like:
def find_3sum_restr(items, z):
# : find possible items to consider -- O(n)
candidates = []
min_item = items[0]
for i, item in enumerate(items):
if item < z:
candidates.append(i)
if item < min_item:
min_item = item
# : find possible couples to consider -- O(n²)
candidates2 = []
for k, i in enumerate(candidates):
for j in candidates[k:]:
if items[i] + items[j] <= z - min_item:
candidates2.append([i, j])
# : find the matching items -- O(n³)
for i, j in candidates2:
for k in candidates:
if items[i] + items[j] + items[k] == z:
return i, j, k
This O(n + n² + n³), hence O(n³).
While this is reasonably fast for randomly distributed inputs (perhaps O(n²)?), unfortunately, in the worst case (e.g. for an array of all ones, with a z > 3), this is no better than the naive approach:
def find_3sum_naive(items, z):
n = len(items)
for i in range(n):
for j in range(i, n):
for k in range(j, n):
if items[i] + items[j] + items[k] == z:
return i, j, k

Given an array A of size N, find all combination of four elements in the array whose sum is equal to a given value K

Given an array A of size N, find all combinations of four elements in the array whose sum is equal to a given value K. For example, if the given array is {10, 2, 3, 4, 5, 9, 7, 8} and K = 23, one of the quadruple is “3 5 7 8” (3 + 5 + 7 + 8 = 23).
The output should contain only unique quadruple For example, if the input array is {1, 1, 1, 1, 1, 1} and K = 4, then the output should be only one quadruple {1, 1, 1, 1}
My approach: I tried to solve this problem by storing all the distinct pairs formed from the given array into a hash table (std::unordered_multimap), with their sum as key. Then for each pair sum, I looked for (K - sum) key in the hash table. The problem with this approach is I am getting too many duplicated like (i, j, l, m) and (i, l, j, m) are the same, plus there are duplicates due to the same items in the array. I am not sure what is the optimal way to address that.
The code for the above-mentioned approach is:
#include <iostream>
#include <unordered_map>
#include <tuple>
#include <vector>
int main() {
size_t tc = 0;
std::cin >> tc; //number of test cases
while(tc--) {
size_t n = 0, k = 0;
std::cin >> n >> k;
std::vector<size_t> vec(n);
for (size_t i = 0; i < n; ++i)
std::cin >> vec[i];
std::unordered_multimap<size_t, std::tuple<size_t, size_t>> m;
for (size_t i = 0; i < n - 1; ++i)
for (size_t j = i + 1; j < n; ++j) {
const auto sum = vec[i] + vec[j];
m.emplace(sum, std::make_tuple(i, j));
}
for (size_t i = 0; i < n - 1; ++i)
for (size_t j = i + 1; j < n; ++j) {
const auto sum = vec[i] + vec[j];
auto r = m.equal_range(k - sum);
for (auto it = r.first; it != r.second; ++it) {
if ((i == std::get<0>(it->second))
||(i == std::get<1>(it->second))
||(j == std::get<0>(it->second))
|| (j == std::get<1>(it->second)))
continue;
std::cout << vec[i] << ' ' << vec[j] << ' '
<< vec[std::get<0>(it->second)] << ' '
<< vec[std::get<1>(it->second)] << '$';
}
r = m.equal_range(sum);
for (auto it = r.first; it != r.second; ++it) {
if ((i == std::get<0>(it->second))
&& (j == std::get<1>(it->second))) {
m.erase(it);
break;
}
}
}
std::cout << '\n';
}
return 0;
}
The above code will run as-is in the link mentioned below in the Note.
Note: This problem is taken from https://practice.geeksforgeeks.org/problems/find-all-four-sum-numbers/0
To handle duplicate values in array
Consider [2, 2, 2, 3, 3] with goal 10.
The only solution is the 4-tuple <2,2,3,3>. The main point is to avoid choosing two 2 among three 2.
Let's consider the k-class, the set of tuples in which every tuple contain only k.
e.g: in our array we have the 2-class and 3-class.
The 2-class contains:
<2>
<2,2>
<2,2,2>
while the 3-class contains:
<3>
<3,3>
An idea is to reduce the array of elem (elem being an integer value) to an array of k-class.
idem
[[<2>, <2,2>, <2,2,2>], [<3>, <3,3>]]
We can think of taking the cartesian product between the 2-class set and the 3-class set, and check which result lead to solution.
More concretely, let's take some tuple T, whose last (==rightmost) value is k. (in <2,3,4> rightmost value would be 4).
We can pick any l-class from our array (* l > k) and join the tuples from that l-class to T.
e.g
consider array [2, 9, 9, 3, 3, 4, 6] and tuple <2, 3, 3>
The rightmost value is 3.
The candidate k-class are 4-class, 6-class, 9-class
we can join:
<4>
<6>
<9>
<9,9>
so the next candidates will be:
<2, 3, 3, 4>
<2, 3, 3, 6>
<2, 3, 3, 9>
<2, 3, 3, 9, 9> //that one has too many elem, left for illustration
(* The purpose of l > k is to prevent the permutation. (if <1,2> is solution you don't want <2,1> since addition is commutative))
Algorithm
Foreach tuple, try to create new ones by rightjoining tuples from a "greater" k-class.
discard the resulting ones which have too many elements or whose sum is already too big...
At some point we won't have new candidates, so algorithm will stop
example of cuts:
given array [2,3,7,8,10,11], and tuple <2,3> and S == 13
<2,3,7> is candidate (2+3+7 = 12 < 13)
<2,3,10> is not candidate (2+3+10 = 15 > 13)
<2,3,11> even more so. not
<2,3,8> is not candidate either since the next rightjoin (to reach a 4-tuple) will overflow S
given array [2,3,4,4,4] given tuple <2,3> and candidate <4,4,4>
resulting tuple would be <2,3,4,4,4> which has too many elems, discard it!
Obviously the initialization is
some empty tuple
whose sum is 0
and whose rightmost element is less than any k from the array (you can rightjoin it anybody)
I believe it should not be too hard to translate to C++
class TupleClass {
sum = 0
rightIdx = -1
values = [] // an array of integers (hopefully summing to solution)
//idx is the position of the k-class found in array
add (val, idx) {
const t = new TupleClass()
t.values = this.values.concat(val)
t.sum = this.sum + val
t.rightIdx = idx
return t;
}
toString () {
return `<${this.values.join(',')}>`
}
addTuple (tuple, idx) {
const t = new TupleClass
t.values = this.values.concat(tuple.values)
t.sum = this.sum + tuple.sum
t.rightIdx = idx
return t;
}
get size () {
return this.values.length
}
}
function nodupes (v, S) {
v = v.reduce((acc, klass) => {
acc[klass] = (acc[klass] || {duplicity: 0, klass})
acc[klass].duplicity++
return acc
}, {})
v = Object.values(v).sort((a,b) => a.klass - b.klass).map(({ klass, duplicity }, i) => {
return Array(duplicity).fill(0).reduce((acc, _) => {
const t = acc[acc.length-1].add(klass, i)
acc.push(t)
return acc
}, [new TupleClass()]).slice(1)
})
//v is sorted by k-class asc
//each k-class is an array of tuples with increasing length
//[[<2>, <2,2>, <2,2,2>], [<3>,<3,3>]]
let tuples = [new TupleClass()]
const N = v.length
let nextTuples = []
const solutions = []
while (tuples.length) {
tuples.forEach(tuple => {
//foreach kclass after our rightmost value
for (let j = tuple.rightIdx + 1; j <= N - 1; ++j) {
//foreach tuple of that kclass
for (let tclass of v[j]) {
const nextTuple = tuple.addTuple(tclass, j)
if (nextTuple.sum > S || nextTuple.size > 4) {
break
}
//candidate to solution
if (nextTuple.size == 4) {
if (nextTuple.sum === S) {
solutions.push(nextTuple)
}
//invalid sum so adding more elem won't help, do not push
} else {
nextTuples.push(nextTuple)
}
}
}
})
tuples = nextTuples
nextTuples = []
}
return solutions;
}
const v = [1,1,1,1,1,2,2,2,3,3,3,4,0,0]
const S = 7
console.log('v:', v.join(','), 'and S:',S)
console.log(nodupes(v, 7).map(t=>t.toString()).join('\n'))

Combination (mathematical) of structs [duplicate]

I want to write a function that takes an array of letters as an argument and a number of those letters to select.
Say you provide an array of 8 letters and want to select 3 letters from that. Then you should get:
8! / ((8 - 3)! * 3!) = 56
Arrays (or words) in return consisting of 3 letters each.
Art of Computer Programming Volume 4: Fascicle 3 has a ton of these that might fit your particular situation better than how I describe.
Gray Codes
An issue that you will come across is of course memory and pretty quickly, you'll have problems by 20 elements in your set -- 20C3 = 1140. And if you want to iterate over the set it's best to use a modified gray code algorithm so you aren't holding all of them in memory. These generate the next combination from the previous and avoid repetitions. There are many of these for different uses. Do we want to maximize the differences between successive combinations? minimize? et cetera.
Some of the original papers describing gray codes:
Some Hamilton Paths and a Minimal Change Algorithm
Adjacent Interchange Combination Generation Algorithm
Here are some other papers covering the topic:
An Efficient Implementation of the Eades, Hickey, Read Adjacent Interchange Combination Generation Algorithm (PDF, with code in Pascal)
Combination Generators
Survey of Combinatorial Gray Codes (PostScript)
An Algorithm for Gray Codes
Chase's Twiddle (algorithm)
Phillip J Chase, `Algorithm 382: Combinations of M out of N Objects' (1970)
The algorithm in C...
Index of Combinations in Lexicographical Order (Buckles Algorithm 515)
You can also reference a combination by its index (in lexicographical order). Realizing that the index should be some amount of change from right to left based on the index we can construct something that should recover a combination.
So, we have a set {1,2,3,4,5,6}... and we want three elements. Let's say {1,2,3} we can say that the difference between the elements is one and in order and minimal. {1,2,4} has one change and is lexicographically number 2. So the number of 'changes' in the last place accounts for one change in the lexicographical ordering. The second place, with one change {1,3,4} has one change but accounts for more change since it's in the second place (proportional to the number of elements in the original set).
The method I've described is a deconstruction, as it seems, from set to the index, we need to do the reverse – which is much trickier. This is how Buckles solves the problem. I wrote some C to compute them, with minor changes – I used the index of the sets rather than a number range to represent the set, so we are always working from 0...n.
Note:
Since combinations are unordered, {1,3,2} = {1,2,3} --we order them to be lexicographical.
This method has an implicit 0 to start the set for the first difference.
Index of Combinations in Lexicographical Order (McCaffrey)
There is another way:, its concept is easier to grasp and program but it's without the optimizations of Buckles. Fortunately, it also does not produce duplicate combinations:
The set that maximizes , where .
For an example: 27 = C(6,4) + C(5,3) + C(2,2) + C(1,1). So, the 27th lexicographical combination of four things is: {1,2,5,6}, those are the indexes of whatever set you want to look at. Example below (OCaml), requires choose function, left to reader:
(* this will find the [x] combination of a [set] list when taking [k] elements *)
let combination_maccaffery set k x =
(* maximize function -- maximize a that is aCb *)
(* return largest c where c < i and choose(c,i) <= z *)
let rec maximize a b x =
if (choose a b ) <= x then a else maximize (a-1) b x
in
let rec iterate n x i = match i with
| 0 -> []
| i ->
let max = maximize n i x in
max :: iterate n (x - (choose max i)) (i-1)
in
if x < 0 then failwith "errors" else
let idxs = iterate (List.length set) x k in
List.map (List.nth set) (List.sort (-) idxs)
A small and simple combinations iterator
The following two algorithms are provided for didactic purposes. They implement an iterator and (a more general) folder overall combinations.
They are as fast as possible, having the complexity O(nCk). The memory consumption is bound by k.
We will start with the iterator, which will call a user provided function for each combination
let iter_combs n k f =
let rec iter v s j =
if j = k then f v
else for i = s to n - 1 do iter (i::v) (i+1) (j+1) done in
iter [] 0 0
A more general version will call the user provided function along with the state variable, starting from the initial state. Since we need to pass the state between different states we won't use the for-loop, but instead, use recursion,
let fold_combs n k f x =
let rec loop i s c x =
if i < n then
loop (i+1) s c ##
let c = i::c and s = s + 1 and i = i + 1 in
if s < k then loop i s c x else f c x
else x in
loop 0 0 [] x
In C#:
public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int k)
{
return k == 0 ? new[] { new T[0] } :
elements.SelectMany((e, i) =>
elements.Skip(i + 1).Combinations(k - 1).Select(c => (new[] {e}).Concat(c)));
}
Usage:
var result = Combinations(new[] { 1, 2, 3, 4, 5 }, 3);
Result:
123
124
125
134
135
145
234
235
245
345
Short java solution:
import java.util.Arrays;
public class Combination {
public static void main(String[] args){
String[] arr = {"A","B","C","D","E","F"};
combinations2(arr, 3, 0, new String[3]);
}
static void combinations2(String[] arr, int len, int startPosition, String[] result){
if (len == 0){
System.out.println(Arrays.toString(result));
return;
}
for (int i = startPosition; i <= arr.length-len; i++){
result[result.length - len] = arr[i];
combinations2(arr, len-1, i+1, result);
}
}
}
Result will be
[A, B, C]
[A, B, D]
[A, B, E]
[A, B, F]
[A, C, D]
[A, C, E]
[A, C, F]
[A, D, E]
[A, D, F]
[A, E, F]
[B, C, D]
[B, C, E]
[B, C, F]
[B, D, E]
[B, D, F]
[B, E, F]
[C, D, E]
[C, D, F]
[C, E, F]
[D, E, F]
May I present my recursive Python solution to this problem?
def choose_iter(elements, length):
for i in xrange(len(elements)):
if length == 1:
yield (elements[i],)
else:
for next in choose_iter(elements[i+1:], length-1):
yield (elements[i],) + next
def choose(l, k):
return list(choose_iter(l, k))
Example usage:
>>> len(list(choose_iter("abcdefgh",3)))
56
I like it for its simplicity.
Lets say your array of letters looks like this: "ABCDEFGH". You have three indices (i, j, k) indicating which letters you are going to use for the current word, You start with:
A B C D E F G H
^ ^ ^
i j k
First you vary k, so the next step looks like that:
A B C D E F G H
^ ^ ^
i j k
If you reached the end you go on and vary j and then k again.
A B C D E F G H
^ ^ ^
i j k
A B C D E F G H
^ ^ ^
i j k
Once you j reached G you start also to vary i.
A B C D E F G H
^ ^ ^
i j k
A B C D E F G H
^ ^ ^
i j k
...
Written in code this look something like that
void print_combinations(const char *string)
{
int i, j, k;
int len = strlen(string);
for (i = 0; i < len - 2; i++)
{
for (j = i + 1; j < len - 1; j++)
{
for (k = j + 1; k < len; k++)
printf("%c%c%c\n", string[i], string[j], string[k]);
}
}
}
The following recursive algorithm picks all of the k-element combinations from an ordered set:
choose the first element i of your combination
combine i with each of the combinations of k-1 elements chosen recursively from the set of elements larger than i.
Iterate the above for each i in the set.
It is essential that you pick the rest of the elements as larger than i, to avoid repetition. This way [3,5] will be picked only once, as [3] combined with [5], instead of twice (the condition eliminates [5] + [3]). Without this condition you get variations instead of combinations.
Short example in Python:
def comb(sofar, rest, n):
if n == 0:
print sofar
else:
for i in range(len(rest)):
comb(sofar + rest[i], rest[i+1:], n-1)
>>> comb("", "abcde", 3)
abc
abd
abe
acd
ace
ade
bcd
bce
bde
cde
For explanation, the recursive method is described with the following example:
Example: A B C D E
All combinations of 3 would be:
A with all combinations of 2 from the rest (B C D E)
B with all combinations of 2 from the rest (C D E)
C with all combinations of 2 from the rest (D E)
I found this thread useful and thought I would add a Javascript solution that you can pop into Firebug. Depending on your JS engine, it could take a little time if the starting string is large.
function string_recurse(active, rest) {
if (rest.length == 0) {
console.log(active);
} else {
string_recurse(active + rest.charAt(0), rest.substring(1, rest.length));
string_recurse(active, rest.substring(1, rest.length));
}
}
string_recurse("", "abc");
The output should be as follows:
abc
ab
ac
a
bc
b
c
In C++ the following routine will produce all combinations of length distance(first,k) between the range [first,last):
#include <algorithm>
template <typename Iterator>
bool next_combination(const Iterator first, Iterator k, const Iterator last)
{
/* Credits: Mark Nelson http://marknelson.us */
if ((first == last) || (first == k) || (last == k))
return false;
Iterator i1 = first;
Iterator i2 = last;
++i1;
if (last == i1)
return false;
i1 = last;
--i1;
i1 = k;
--i2;
while (first != i1)
{
if (*--i1 < *i2)
{
Iterator j = k;
while (!(*i1 < *j)) ++j;
std::iter_swap(i1,j);
++i1;
++j;
i2 = k;
std::rotate(i1,j,last);
while (last != j)
{
++j;
++i2;
}
std::rotate(k,i2,last);
return true;
}
}
std::rotate(first,k,last);
return false;
}
It can be used like this:
#include <string>
#include <iostream>
int main()
{
std::string s = "12345";
std::size_t comb_size = 3;
do
{
std::cout << std::string(s.begin(), s.begin() + comb_size) << std::endl;
} while (next_combination(s.begin(), s.begin() + comb_size, s.end()));
return 0;
}
This will print the following:
123
124
125
134
135
145
234
235
245
345
static IEnumerable<string> Combinations(List<string> characters, int length)
{
for (int i = 0; i < characters.Count; i++)
{
// only want 1 character, just return this one
if (length == 1)
yield return characters[i];
// want more than one character, return this one plus all combinations one shorter
// only use characters after the current one for the rest of the combinations
else
foreach (string next in Combinations(characters.GetRange(i + 1, characters.Count - (i + 1)), length - 1))
yield return characters[i] + next;
}
}
Simple recursive algorithm in Haskell
import Data.List
combinations 0 lst = [[]]
combinations n lst = do
(x:xs) <- tails lst
rest <- combinations (n-1) xs
return $ x : rest
We first define the special case, i.e. selecting zero elements. It produces a single result, which is an empty list (i.e. a list that contains an empty list).
For n > 0, x goes through every element of the list and xs is every element after x.
rest picks n - 1 elements from xs using a recursive call to combinations. The final result of the function is a list where each element is x : rest (i.e. a list which has x as head and rest as tail) for every different value of x and rest.
> combinations 3 "abcde"
["abc","abd","abe","acd","ace","ade","bcd","bce","bde","cde"]
And of course, since Haskell is lazy, the list is gradually generated as needed, so you can partially evaluate exponentially large combinations.
> let c = combinations 8 "abcdefghijklmnopqrstuvwxyz"
> take 10 c
["abcdefgh","abcdefgi","abcdefgj","abcdefgk","abcdefgl","abcdefgm","abcdefgn",
"abcdefgo","abcdefgp","abcdefgq"]
And here comes granddaddy COBOL, the much maligned language.
Let's assume an array of 34 elements of 8 bytes each (purely arbitrary selection.) The idea is to enumerate all possible 4-element combinations and load them into an array.
We use 4 indices, one each for each position in the group of 4
The array is processed like this:
idx1 = 1
idx2 = 2
idx3 = 3
idx4 = 4
We vary idx4 from 4 to the end. For each idx4 we get a unique combination
of groups of four. When idx4 comes to the end of the array, we increment idx3 by 1 and set idx4 to idx3+1. Then we run idx4 to the end again. We proceed in this manner, augmenting idx3,idx2, and idx1 respectively until the position of idx1 is less than 4 from the end of the array. That finishes the algorithm.
1 --- pos.1
2 --- pos 2
3 --- pos 3
4 --- pos 4
5
6
7
etc.
First iterations:
1234
1235
1236
1237
1245
1246
1247
1256
1257
1267
etc.
A COBOL example:
01 DATA_ARAY.
05 FILLER PIC X(8) VALUE "VALUE_01".
05 FILLER PIC X(8) VALUE "VALUE_02".
etc.
01 ARAY_DATA OCCURS 34.
05 ARAY_ITEM PIC X(8).
01 OUTPUT_ARAY OCCURS 50000 PIC X(32).
01 MAX_NUM PIC 99 COMP VALUE 34.
01 INDEXXES COMP.
05 IDX1 PIC 99.
05 IDX2 PIC 99.
05 IDX3 PIC 99.
05 IDX4 PIC 99.
05 OUT_IDX PIC 9(9).
01 WHERE_TO_STOP_SEARCH PIC 99 COMP.
* Stop the search when IDX1 is on the third last array element:
COMPUTE WHERE_TO_STOP_SEARCH = MAX_VALUE - 3
MOVE 1 TO IDX1
PERFORM UNTIL IDX1 > WHERE_TO_STOP_SEARCH
COMPUTE IDX2 = IDX1 + 1
PERFORM UNTIL IDX2 > MAX_NUM
COMPUTE IDX3 = IDX2 + 1
PERFORM UNTIL IDX3 > MAX_NUM
COMPUTE IDX4 = IDX3 + 1
PERFORM UNTIL IDX4 > MAX_NUM
ADD 1 TO OUT_IDX
STRING ARAY_ITEM(IDX1)
ARAY_ITEM(IDX2)
ARAY_ITEM(IDX3)
ARAY_ITEM(IDX4)
INTO OUTPUT_ARAY(OUT_IDX)
ADD 1 TO IDX4
END-PERFORM
ADD 1 TO IDX3
END-PERFORM
ADD 1 TO IDX2
END_PERFORM
ADD 1 TO IDX1
END-PERFORM.
Another C# version with lazy generation of the combination indices. This version maintains a single array of indices to define a mapping between the list of all values and the values for the current combination, i.e. constantly uses O(k) additional space during the entire runtime. The code generates individual combinations, including the first one, in O(k) time.
public static IEnumerable<T[]> Combinations<T>(this T[] values, int k)
{
if (k < 0 || values.Length < k)
yield break; // invalid parameters, no combinations possible
// generate the initial combination indices
var combIndices = new int[k];
for (var i = 0; i < k; i++)
{
combIndices[i] = i;
}
while (true)
{
// return next combination
var combination = new T[k];
for (var i = 0; i < k; i++)
{
combination[i] = values[combIndices[i]];
}
yield return combination;
// find first index to update
var indexToUpdate = k - 1;
while (indexToUpdate >= 0 && combIndices[indexToUpdate] >= values.Length - k + indexToUpdate)
{
indexToUpdate--;
}
if (indexToUpdate < 0)
yield break; // done
// update combination indices
for (var combIndex = combIndices[indexToUpdate] + 1; indexToUpdate < k; indexToUpdate++, combIndex++)
{
combIndices[indexToUpdate] = combIndex;
}
}
}
Test code:
foreach (var combination in new[] {'a', 'b', 'c', 'd', 'e'}.Combinations(3))
{
System.Console.WriteLine(String.Join(" ", combination));
}
Output:
a b c
a b d
a b e
a c d
a c e
a d e
b c d
b c e
b d e
c d e
Here is an elegant, generic implementation in Scala, as described on 99 Scala Problems.
object P26 {
def flatMapSublists[A,B](ls: List[A])(f: (List[A]) => List[B]): List[B] =
ls match {
case Nil => Nil
case sublist#(_ :: tail) => f(sublist) ::: flatMapSublists(tail)(f)
}
def combinations[A](n: Int, ls: List[A]): List[List[A]] =
if (n == 0) List(Nil)
else flatMapSublists(ls) { sl =>
combinations(n - 1, sl.tail) map {sl.head :: _}
}
}
If you can use SQL syntax - say, if you're using LINQ to access fields of an structure or array, or directly accessing a database that has a table called "Alphabet" with just one char field "Letter", you can adapt following code:
SELECT A.Letter, B.Letter, C.Letter
FROM Alphabet AS A, Alphabet AS B, Alphabet AS C
WHERE A.Letter<>B.Letter AND A.Letter<>C.Letter AND B.Letter<>C.Letter
AND A.Letter<B.Letter AND B.Letter<C.Letter
This will return all combinations of 3 letters, notwithstanding how many letters you have in table "Alphabet" (it can be 3, 8, 10, 27, etc.).
If what you want is all permutations, rather than combinations (i.e. you want "ACB" and "ABC" to count as different, rather than appear just once) just delete the last line (the AND one) and it's done.
Post-Edit: After re-reading the question, I realise what's needed is the general algorithm, not just a specific one for the case of selecting 3 items. Adam Hughes' answer is the complete one, unfortunately I cannot vote it up (yet). This answer's simple but works only for when you want exactly 3 items.
I had a permutation algorithm I used for project euler, in python:
def missing(miss,src):
"Returns the list of items in src not present in miss"
return [i for i in src if i not in miss]
def permutation_gen(n,l):
"Generates all the permutations of n items of the l list"
for i in l:
if n<=1: yield [i]
r = [i]
for j in permutation_gen(n-1,missing([i],l)): yield r+j
If
n<len(l)
you should have all combination you need without repetition, do you need it?
It is a generator, so you use it in something like this:
for comb in permutation_gen(3,list("ABCDEFGH")):
print comb
https://gist.github.com/3118596
There is an implementation for JavaScript. It has functions to get k-combinations and all combinations of an array of any objects. Examples:
k_combinations([1,2,3], 2)
-> [[1,2], [1,3], [2,3]]
combinations([1,2,3])
-> [[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]
Lets say your array of letters looks like this: "ABCDEFGH". You have three indices (i, j, k) indicating which letters you are going to use for the current word, You start with:
A B C D E F G H
^ ^ ^
i j k
First you vary k, so the next step looks like that:
A B C D E F G H
^ ^ ^
i j k
If you reached the end you go on and vary j and then k again.
A B C D E F G H
^ ^ ^
i j k
A B C D E F G H
^ ^ ^
i j k
Once you j reached G you start also to vary i.
A B C D E F G H
^ ^ ^
i j k
A B C D E F G H
^ ^ ^
i j k
...
function initializePointers($cnt) {
$pointers = [];
for($i=0; $i<$cnt; $i++) {
$pointers[] = $i;
}
return $pointers;
}
function incrementPointers(&$pointers, &$arrLength) {
for($i=0; $i<count($pointers); $i++) {
$currentPointerIndex = count($pointers) - $i - 1;
$currentPointer = $pointers[$currentPointerIndex];
if($currentPointer < $arrLength - $i - 1) {
++$pointers[$currentPointerIndex];
for($j=1; ($currentPointerIndex+$j)<count($pointers); $j++) {
$pointers[$currentPointerIndex+$j] = $pointers[$currentPointerIndex]+$j;
}
return true;
}
}
return false;
}
function getDataByPointers(&$arr, &$pointers) {
$data = [];
for($i=0; $i<count($pointers); $i++) {
$data[] = $arr[$pointers[$i]];
}
return $data;
}
function getCombinations($arr, $cnt)
{
$len = count($arr);
$result = [];
$pointers = initializePointers($cnt);
do {
$result[] = getDataByPointers($arr, $pointers);
} while(incrementPointers($pointers, count($arr)));
return $result;
}
$result = getCombinations([0, 1, 2, 3, 4, 5], 3);
print_r($result);
Based on https://stackoverflow.com/a/127898/2628125, but more abstract, for any size of pointers.
Here you have a lazy evaluated version of that algorithm coded in C#:
static bool nextCombination(int[] num, int n, int k)
{
bool finished, changed;
changed = finished = false;
if (k > 0)
{
for (int i = k - 1; !finished && !changed; i--)
{
if (num[i] < (n - 1) - (k - 1) + i)
{
num[i]++;
if (i < k - 1)
{
for (int j = i + 1; j < k; j++)
{
num[j] = num[j - 1] + 1;
}
}
changed = true;
}
finished = (i == 0);
}
}
return changed;
}
static IEnumerable Combinations<T>(IEnumerable<T> elements, int k)
{
T[] elem = elements.ToArray();
int size = elem.Length;
if (k <= size)
{
int[] numbers = new int[k];
for (int i = 0; i < k; i++)
{
numbers[i] = i;
}
do
{
yield return numbers.Select(n => elem[n]);
}
while (nextCombination(numbers, size, k));
}
}
And test part:
static void Main(string[] args)
{
int k = 3;
var t = new[] { "dog", "cat", "mouse", "zebra"};
foreach (IEnumerable<string> i in Combinations(t, k))
{
Console.WriteLine(string.Join(",", i));
}
}
Hope this help you!
Another version, that forces all the first k to appear firstly, then all the first k+1 combinations, then all the first k+2 etc.. It means that if you have sorted array, the most important on the top, it would take them and expand gradually to the next ones - only when it is must do so.
private static bool NextCombinationFirstsAlwaysFirst(int[] num, int n, int k)
{
if (k > 1 && NextCombinationFirstsAlwaysFirst(num, num[k - 1], k - 1))
return true;
if (num[k - 1] + 1 == n)
return false;
++num[k - 1];
for (int i = 0; i < k - 1; ++i)
num[i] = i;
return true;
}
For instance, if you run the first method ("nextCombination") on k=3, n=5 you'll get:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
But if you'll run
int[] nums = new int[k];
for (int i = 0; i < k; ++i)
nums[i] = i;
do
{
Console.WriteLine(string.Join(" ", nums));
}
while (NextCombinationFirstsAlwaysFirst(nums, n, k));
You'll get this (I added empty lines for clarity):
0 1 2
0 1 3
0 2 3
1 2 3
0 1 4
0 2 4
1 2 4
0 3 4
1 3 4
2 3 4
It's adding "4" only when must to, and also after "4" was added it adds "3" again only when it must to (after doing 01, 02, 12).
Array.prototype.combs = function(num) {
var str = this,
length = str.length,
of = Math.pow(2, length) - 1,
out, combinations = [];
while(of) {
out = [];
for(var i = 0, y; i < length; i++) {
y = (1 << i);
if(y & of && (y !== of))
out.push(str[i]);
}
if (out.length >= num) {
combinations.push(out);
}
of--;
}
return combinations;
}
Clojure version:
(defn comb [k l]
(if (= 1 k) (map vector l)
(apply concat
(map-indexed
#(map (fn [x] (conj x %2))
(comb (dec k) (drop (inc %1) l)))
l))))
Algorithm:
Count from 1 to 2^n.
Convert each digit to its binary representation.
Translate each 'on' bit to elements of your set, based on position.
In C#:
void Main()
{
var set = new [] {"A", "B", "C", "D" }; //, "E", "F", "G", "H", "I", "J" };
var kElement = 2;
for(var i = 1; i < Math.Pow(2, set.Length); i++) {
var result = Convert.ToString(i, 2).PadLeft(set.Length, '0');
var cnt = Regex.Matches(Regex.Escape(result), "1").Count;
if (cnt == kElement) {
for(int j = 0; j < set.Length; j++)
if ( Char.GetNumericValue(result[j]) == 1)
Console.Write(set[j]);
Console.WriteLine();
}
}
}
Why does it work?
There is a bijection between the subsets of an n-element set and n-bit sequences.
That means we can figure out how many subsets there are by counting sequences.
e.g., the four element set below can be represented by {0,1} X {0, 1} X {0, 1} X {0, 1} (or 2^4) different sequences.
So - all we have to do is count from 1 to 2^n to find all the combinations. (We ignore the empty set.) Next, translate the digits to their binary representation. Then substitute elements of your set for 'on' bits.
If you want only k element results, only print when k bits are 'on'.
(If you want all subsets instead of k length subsets, remove the cnt/kElement part.)
(For proof, see MIT free courseware Mathematics for Computer Science, Lehman et al, section 11.2.2. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/readings/ )
short python code, yielding index positions
def yield_combos(n,k):
# n is set size, k is combo size
i = 0
a = [0]*k
while i > -1:
for j in range(i+1, k):
a[j] = a[j-1]+1
i=j
yield a
while a[i] == i + n - k:
i -= 1
a[i] += 1
All said and and done here comes the O'caml code for that.
Algorithm is evident from the code..
let combi n lst =
let rec comb l c =
if( List.length c = n) then [c] else
match l with
[] -> []
| (h::t) -> (combi t (h::c))#(combi t c)
in
combi lst []
;;
Here is a method which gives you all combinations of specified size from a random length string. Similar to quinmars' solution, but works for varied input and k.
The code can be changed to wrap around, ie 'dab' from input 'abcd' w k=3.
public void run(String data, int howMany){
choose(data, howMany, new StringBuffer(), 0);
}
//n choose k
private void choose(String data, int k, StringBuffer result, int startIndex){
if (result.length()==k){
System.out.println(result.toString());
return;
}
for (int i=startIndex; i<data.length(); i++){
result.append(data.charAt(i));
choose(data,k,result, i+1);
result.setLength(result.length()-1);
}
}
Output for "abcde":
abc abd abe acd ace ade bcd bce bde cde
Short javascript version (ES 5)
let combine = (list, n) =>
n == 0 ?
[[]] :
list.flatMap((e, i) =>
combine(
list.slice(i + 1),
n - 1
).map(c => [e].concat(c))
);
let res = combine([1,2,3,4], 3);
res.forEach(e => console.log(e.join()));
Another python recusive solution.
def combination_indicies(n, k, j = 0, stack = []):
if len(stack) == k:
yield list(stack)
return
for i in range(j, n):
stack.append(i)
for x in combination_indicies(n, k, i + 1, stack):
yield x
stack.pop()
list(combination_indicies(5, 3))
Output:
[[0, 1, 2],
[0, 1, 3],
[0, 1, 4],
[0, 2, 3],
[0, 2, 4],
[0, 3, 4],
[1, 2, 3],
[1, 2, 4],
[1, 3, 4],
[2, 3, 4]]
I created a solution in SQL Server 2005 for this, and posted it on my website: http://www.jessemclain.com/downloads/code/sql/fn_GetMChooseNCombos.sql.htm
Here is an example to show usage:
SELECT * FROM dbo.fn_GetMChooseNCombos('ABCD', 2, '')
results:
Word
----
AB
AC
AD
BC
BD
CD
(6 row(s) affected)
Here is my proposition in C++
I tried to impose as little restriction on the iterator type as i could so this solution assumes just forward iterator, and it can be a const_iterator. This should work with any standard container. In cases where arguments don't make sense it throws std::invalid_argumnent
#include <vector>
#include <stdexcept>
template <typename Fci> // Fci - forward const iterator
std::vector<std::vector<Fci> >
enumerate_combinations(Fci begin, Fci end, unsigned int combination_size)
{
if(begin == end && combination_size > 0u)
throw std::invalid_argument("empty set and positive combination size!");
std::vector<std::vector<Fci> > result; // empty set of combinations
if(combination_size == 0u) return result; // there is exactly one combination of
// size 0 - emty set
std::vector<Fci> current_combination;
current_combination.reserve(combination_size + 1u); // I reserve one aditional slot
// in my vector to store
// the end sentinel there.
// The code is cleaner thanks to that
for(unsigned int i = 0u; i < combination_size && begin != end; ++i, ++begin)
{
current_combination.push_back(begin); // Construction of the first combination
}
// Since I assume the itarators support only incrementing, I have to iterate over
// the set to get its size, which is expensive. Here I had to itrate anyway to
// produce the first cobination, so I use the loop to also check the size.
if(current_combination.size() < combination_size)
throw std::invalid_argument("combination size > set size!");
result.push_back(current_combination); // Store the first combination in the results set
current_combination.push_back(end); // Here I add mentioned earlier sentinel to
// simplyfy rest of the code. If I did it
// earlier, previous statement would get ugly.
while(true)
{
unsigned int i = combination_size;
Fci tmp; // Thanks to the sentinel I can find first
do // iterator to change, simply by scaning
{ // from right to left and looking for the
tmp = current_combination[--i]; // first "bubble". The fact, that it's
++tmp; // a forward iterator makes it ugly but I
} // can't help it.
while(i > 0u && tmp == current_combination[i + 1u]);
// Here is probably my most obfuscated expression.
// Loop above looks for a "bubble". If there is no "bubble", that means, that
// current_combination is the last combination, Expression in the if statement
// below evaluates to true and the function exits returning result.
// If the "bubble" is found however, the ststement below has a sideeffect of
// incrementing the first iterator to the left of the "bubble".
if(++current_combination[i] == current_combination[i + 1u])
return result;
// Rest of the code sets posiotons of the rest of the iterstors
// (if there are any), that are to the right of the incremented one,
// to form next combination
while(++i < combination_size)
{
current_combination[i] = current_combination[i - 1u];
++current_combination[i];
}
// Below is the ugly side of using the sentinel. Well it had to haave some
// disadvantage. Try without it.
result.push_back(std::vector<Fci>(current_combination.begin(),
current_combination.end() - 1));
}
}
Here is a code I recently wrote in Java, which calculates and returns all the combination of "num" elements from "outOf" elements.
// author: Sourabh Bhat (heySourabh#gmail.com)
public class Testing
{
public static void main(String[] args)
{
// Test case num = 5, outOf = 8.
int num = 5;
int outOf = 8;
int[][] combinations = getCombinations(num, outOf);
for (int i = 0; i < combinations.length; i++)
{
for (int j = 0; j < combinations[i].length; j++)
{
System.out.print(combinations[i][j] + " ");
}
System.out.println();
}
}
private static int[][] getCombinations(int num, int outOf)
{
int possibilities = get_nCr(outOf, num);
int[][] combinations = new int[possibilities][num];
int arrayPointer = 0;
int[] counter = new int[num];
for (int i = 0; i < num; i++)
{
counter[i] = i;
}
breakLoop: while (true)
{
// Initializing part
for (int i = 1; i < num; i++)
{
if (counter[i] >= outOf - (num - 1 - i))
counter[i] = counter[i - 1] + 1;
}
// Testing part
for (int i = 0; i < num; i++)
{
if (counter[i] < outOf)
{
continue;
} else
{
break breakLoop;
}
}
// Innermost part
combinations[arrayPointer] = counter.clone();
arrayPointer++;
// Incrementing part
counter[num - 1]++;
for (int i = num - 1; i >= 1; i--)
{
if (counter[i] >= outOf - (num - 1 - i))
counter[i - 1]++;
}
}
return combinations;
}
private static int get_nCr(int n, int r)
{
if(r > n)
{
throw new ArithmeticException("r is greater then n");
}
long numerator = 1;
long denominator = 1;
for (int i = n; i >= r + 1; i--)
{
numerator *= i;
}
for (int i = 2; i <= n - r; i++)
{
denominator *= i;
}
return (int) (numerator / denominator);
}
}

generating random numbers without repeating with an exception AS3

I have seen this question for other languages but not for AS3... and I'm having a hard time understanding it...
I need to generate 3 numbers, randomly, from 0 to 2, but they cannot repeat (as in 000, 001, 222, 212 etc) and they cannot be in the correct order (0,1,2)...
Im using
for (var u: int = 0; u < 3; u++)
{
mcCor = new CorDaCarta();
mcCor.x = larguraTrio + (mcCor.width + 5) * (u % 3);
mcCor.y = alturaTrio + (mcCor.height + 5) * (Math.floor(u / 3));
mcCor.gotoAndStop((Math.random() * (2 - u + 1) + u) | 0); // random w/ repeats
//mcCor.gotoAndStop(Math.floor(Math.random() * (2 - u + 1) + u)); // random w/ repeats
//mcCor.gotoAndStop((Math.random() * 3) | 0); // crap....
//mcCor.gotoAndStop(Math.round(Math.random()*u)); // 1,1,1
//mcCor.gotoAndStop(u + 1); // 1,2,3
mcCor.buttonMode = true;
mcCor.addEventListener(MouseEvent.CLICK, cliquetrio);
mcExplic.addChild(mcCor);
trio.push(mcCor);
}
those are the codes i've been trying.... best one so far is the active one (without the //), but it still gives me duplicates (as 1,1,1) and still has a small chance to come 0,1,2....
BTW, what I want is to mcCor to gotoAndStop on frames 1, 2 or 3....without repeating, so THE USER can put it on the right order (1,2,3 or (u= 0,1,2), thats why I add + 1 sometimes there)
any thoughts?? =)
I've found that one way to ensure random, unique numbers is to store the possible numbers in an array, and then sort them using a "random" sort:
// store the numbers 0, 1, 2 in an array
var sortedNumbers:Array = [];
for(var i:int = 0; i < 3; i++)
{
sortedNumbers.push(i);
}
var unsortedNumbers:Array = sortedNumbers.slice(); // make a copy of the sorted numbers
trace(sortedNumbers); // 0,1,2
trace(unsortedNumbers); // 0,1,2
// randomly sort array until it no longer matches the sorted array
while(sortedNumbers.join() == unsortedNumbers.join())
{
unsortedNumbers.sort(function (a:int, b:int):int { return Math.random() > .5 ? -1 : 1; });
}
trace(unsortedNumbers); // [1,0,2], [2,1,0], [0,1,2], etc
for (var u: int = 0; u < 3; u++)
{
mcCor = new CorDaCarta();
mcCor.x = larguraTrio + (mcCor.width + 5) * (u % 3);
mcCor.y = alturaTrio + (mcCor.height + 5) * (Math.floor(u / 3));
// grab the corresponding value from the unsorted array
mcCor.gotoAndStop(unsortedNumbers[u] + 1);
mcCor.buttonMode = true;
mcCor.addEventListener(MouseEvent.CLICK, cliquetrio);
mcExplic.addChild(mcCor);
trio.push(mcCor);
}
Marcela is right. Approach with an Array is widely used for such task. Of course, you will need to check 0, 1, 2 sequence and this will be ugly, but in common code to get the random sequence of integers can look like this:
function getRandomSequence(min:int, max:int):Array
{
if (min > max) throw new Error("Max value should be greater than Min value!");
if (min == max) return [min];
var values:Array = [];
for (var i:int = min; i <= max; i++) values.push(i);
var result:Array = [];
while (values.length > 0) result = result.concat(values.splice(Math.floor(Math.random() * values.length), 1));
return result;
}
for (var i:uint = 0; i < 10; i++)
{
trace(getRandomSequence(1, 10));
}
You will get something like that:
2,9,3,8,10,6,5,1,4,7
6,1,2,4,8,9,5,10,7,3
3,9,10,6,8,2,5,4,1,7
7,6,1,4,3,8,9,2,10,5
4,6,7,1,3,2,9,10,8,5
3,10,5,9,1,7,2,4,8,6
1,7,9,6,10,3,4,5,2,8
4,10,8,9,3,2,6,1,7,5
1,7,8,9,10,6,4,3,2,5
7,5,4,2,8,6,10,3,9,1
I created this for you. It is working but it can be optimized...
Hope is good for you.
var arr : Array = [];
var r : int;
for (var i: int = 0; i < 3; i++){
r=rand(0,2);
if(i == 1){
if(arr[0] == r){
i--;
continue;
}
if(arr[0] == 0){
if(r==1){
i--;
continue;
}
}
}else if(i==2){
if(arr[0] == r || arr[1] == r){
i--;
continue;
}
}
arr[i] = r;
}
trace(arr);
for(var i=0;i<3;i++){
mcCor = new CorDaCarta();
mcCor.x = larguraTrio + (mcCor.width + 5) * (i % 3);
mcCor.y = alturaTrio + (mcCor.height + 5) * (Math.floor(i / 3));
mcCor.gotoAndStop(arr[i]);
mcCor.buttonMode = true;
mcCor.addEventListener(MouseEvent.CLICK, cliquetrio);
mcExplic.addChild(mcCor);
trio.push(mcCor);
}
function rand(min:int, max:int):int {
return Math.round(Math.random() * (max - min) + min);
}
try this...

Select combination of elements from array whose sum is smallest possible positive number

Suppose I have an array of M elements, all numbers, negative or positive or zero.
Can anyone suggest an algorithm to select N elements from the array, such that the sum of these N elements is the smallest possible positive number?
Take this array for example:
-1000,-700,-400,-200,-100,-50,10,100,300,600,800,1200
Now I have to select any 5 elements such that their sum is the smallest possible positive number.
Formulation
For i = 1, ..., M:
Let a_i be the ith number in your list of candidates
Let x_i denote whether the ith number is included in your set of N chosen numbers
Then you want to solve the following integer programming problem.
minimize: sum(a_i * x_i)
with respect to: x_i
subject to:
(1) sum(a_i * x_i) >= 0
(2) sum(x_i) = N
(3) x_i in {0, 1}
You can apply an integer program solver "out of the box" to this problem to find the optimal solution or a suboptimal solution with controllable precision.
Resources
Integer programming
Explanation of branch-and-bound integer program solver
If you want to find the best possible solution, you can simply use brute force ie. try all posible combinations of fiwe numbers.
Something like this very quick and dirty algorithm:
public List<Integer> findLeastPositivSum(List<Integer> numbers) {
List<Integer> result;
Integer resultSum;
List<Integer> subresult, subresult2, subresult3, subresult4, subresult5;
for (int i = 0; i < numbers.size() - 4; i++) {
subresult = new ArrayList<Integer>();
subresult.add(numbers.get(i));
for (int j = i + 1; j < numbers.size() - 3; j++) {
subresult2 = new ArrayList<Integer>(subresult);
subresult2.add(j);
for (int k = j + 1; k < numbers.size() - 2; k++) {
subresult3 = new ArrayList<Integer>(subresult2);
subresult3.add(k);
for (int l = k + 1; l < numbers.size() - 1; l++) {
subresult4 = new ArrayList<Integer>(subresult3);
subresult4.add(k);
for (int m = l + 1; m < numbers.size(); m++) {
subresult5 = new ArrayList<Integer>(subresult4);
subresult5.add(k);
Integer subresultSum = sum(subresult5);
if (subresultSum > 0) {
if (result == null || resultSum > subresultSum) {
result = subresult;
}
}
}
}
}
}
}
return result;
}
public Integer sum(List<Integer> list) {
Integer result = 0;
for (Integer integer : list) {
result += integer;
}
return result;
}
This is really quick and dirty algorithm, it can be done more elegantly. I can provide cleaner algorithm e.g. using recursion.
It can be also further optimized. E.g. you can remove similar numbers from input list as first step.
Let initial array be shorted already, or i guess this will work even when it isnt shorted..
N -> Length of array
M -> Element req.
R[] -> Answer
TEMP[] -> For calculations
minSum -> minSum
A[] -> Initial input
All above variables are globally defined
int find(int A[],int start,int left)
{
if(left=0)
{
//sum elements in TEMP[] and save it as curSum
if(curSum<minSum)
{
minSum=curSum;
//assign elements from TEMP[] to R[] (i.e. our answer)
}
}
for(i=start;i<=(N-left);i++)
{
if(left==M)
curSum=0;
TEMP[left-1]=A[i];
find(A[],i+1,left-1);
}
}
// Made it in hurry so maybe some error would be existing..
Working solution on ideone :
http://ideone.com/YN8PeW
I suppose Kadane’s Algorithm would do the trick, although it is for the maximum sum but I have also implemented it to find the minimum sum, though can't find the code right now.
Here's something sub optimal in Haskell, which (as with many of my ideas) could probably be further and better optimized. It goes something like this:
Sort the array (I got interesting results by trying both ascending and descending)
B N = first N elements of the array
B (i), for i > N = best candidate; where (assuming integers) if they are both less than 1, the candidates are compared by the absolute value of their sums; if they are both 1 or greater, by their sums; and if only one candidate is greater than 0 then that candidate is chosen. If a candidate's sum is 1, return that candidate as the answer. The candidates are:
B (i-1), B (i-1)[2,3,4..N] ++ array [i], B (i-1)[1,3,4..N] ++ array [i]...B (i-1)[1,2..N-1] ++ array [i]
B (i-2)[2,3,4..N] ++ array [i], B (i-2)[1,3,4..N] ++ array [i]...B (i-2)[1,2..N-1] ++ array [i]
...
B (N)[2,3,4..N] ++ array [i], B (N)[1,3,4..N] ++ array [i]...B (N)[1,2..N-1] ++ array [i]
Note that for the part of the array where the numbers are negative (in the case of ascending sort) or positive (in the case of descending sort), step 3 can be done immediately without calculations.
Output:
*Main> least 5 "desc" [-1000,-700,-400,-200,-100,-50,10,100,300,600,800,1200]
(10,[-1000,600,300,100,10])
(0.02 secs, 1106836 bytes)
*Main> least 5 "asc" [-1000,-700,-400,-200,-100,-50,10,100,300,600,800,1200]
(50,[300,100,-200,-100,-50])
(0.02 secs, 1097492 bytes)
*Main> main -- 10000 random numbers ranging from -100000 to 100000
(1,[-106,4,-40,74,69])
(1.77 secs, 108964888 bytes)
Code:
import Data.Map (fromList, insert, (!))
import Data.List (minimumBy,tails,sort)
import Control.Monad.Random hiding (fromList)
array = [-1000,-700,-400,-200,-100,-50,10,100,300,600,800,1200]
least n rev arr = comb (fromList listStart) [fst (last listStart) + 1..m]
where
m = length arr
r = if rev == "asc" then False else True
sorted = (if r then reverse else id) (sort arr)
listStart = if null lStart
then [(n,(sum $ take n sorted,take n sorted))]
else lStart
lStart = zip [n..]
. takeWhile (all (if r then (>0) else (<0)) . snd)
. foldr (\a b -> let c = take n (drop a sorted) in (sum c,c) : b) []
$ [0..]
s = fromList (zip [1..] sorted)
comb list [] = list ! m
comb list (i:is)
| fst (list ! (i-1)) == 1 = list ! (i-1)
| otherwise = comb updatedMap is
where updatedMap = insert i bestCandidate list
bestCandidate = comb' (list!(i - 1)) [i - 1,i - 2..n] where
comb' best [] = best
comb' best (j:js)
| fst best == 1 = best
| otherwise =
let s' = map (\x -> (sum x,x))
. (take n . map (take (n - 1)) . tails . cycle)
$ snd (list!j)
t = s!i
candidate = minimumBy compare' (map (add t) s')
in comb' (minimumBy compare' [candidate,best]) js
add x y#(a,b) = (x + a,x:b)
compare' a#(a',_) b#(b',_)
| a' < 1 = if b' < 1 then compare (abs a') (abs b') else GT
| otherwise = if b' < 1 then LT else compare a' b'
rnd :: (RandomGen g) => Rand g Int
rnd = getRandomR (-100000,100000)
main = do
values <- evalRandIO (sequence (replicate (10000) rnd))
putStrLn (show $ least 5 "desc" values)
Assumption: M is the original array
Pesudocode
S = sort(M);
R = [];
sum = 0;
for(i=0, i < length(S); i++){
sum = sum + S[i];
if(sum < 1){
R.push(S[i]);
}else{
return R;
}
}

Resources