Cluster on a spatial index - sql-server

I am trying to cluster on spatial locality (Not just create a spatial index), but SQL Server does not allow this. To create a spatial index it first wants me to create a clustered primary key, which nothing makes sense to cluster on. I want to create a spatial index and then cluster on spatial location in some way.
I have an idea to create bins that bin each geometry into a certain bin which then gets some integer. Then set that as the required clustered primary key, that way at least some of my data is clustered close together spatially.
I am kind of baffled SQL server doesnt do this already, so either I am missing out on how to do this or most likely someone has thought of this and someone can proposed a good enough solution.
I want to cluster on spatial location because I am dealing with big data and the first filter I do is by spatial location (creating tiles of maps), without clustering on spatial location my pages are now scattered based on some meaningless auto increment integer.
If a simple implementation of binning by spatial location hasn't been proposed, I figured I could just cut the bounds of my geometry into equal squares and then for each center point run a distance formula that includes all geometries that intersect that bin.
This is not specific to SQL server per say, I am looking for general approaches to solving this index/clustering on spatial location. I assume non-mssql databases may come with this functionality built in.

I don't see how this would be possible, regardless of implementation. Specifically, the idea of a clustering key is so that you (the db engine) can tell the order in which rows should be stored. This is possible with every other datatype (and combination thereof) because ultimately you can say whether a given tuple is bigger, smaller, or equal to another. What metric would you use for generalized spatial data to say that one instance is bigger or smaller than another? Size? Proximity to the origin? Some other measure? There isn't a well-defined sense of that in the general case, and so you can't do it.
But all is not lost. Just assign an arbitrary identifier to your rows (i.e. an identity column or a column populated by a sequence) and cluster on that. Then you can put a spatial index on that and go to town. Looking at your problem, if your bins are pre-defined, you can put those in another table and do a join using STIntersects. But that may be putting the cart before the horse.

Related

Multiple indexes on a same column to improve the search speed

I am working on a web crawler. To prevent crawling duplicate URLs I have stored MD5 of any url in a column. To do a fast search through the MD5 values, I have created an INDEX on md5 column.
As I have no idea if there is any difference between ASC and DESC on md5, I have set the sort order of that index to be ASC. My question is that if defining another index on the same column with DESC order will improve the search speed? Does database engine (in my case I am using SQL server 2016) starts two parallel searches through a same column when there are multiple indexes on the same column?
ASC vs DESC won't make a difference - RDBMS optimisers are very well designed and difficult to 'beat' with cheap tricks. As the index is sorted, and the direction know a search can be started at the top or bottom and read in either direction.
The page files required will be quickly located regardless of the direction of the sort.
There may be a difference between a clustered and non-clustered index however depending on your joins and data sets.
Indexs aren't free either, remember, the cost often comes from interacting with (insert/delete/alter) functions along with off-line functions such as backups. There are also space concerns.
My advice is strongly to build the correct indexes based on the most likely painful queries. Often the best way to do that is trial and error along with real testing samples!

Clustered indexes on non-identity columns to speed up bulk inserts?

My two questions are:
Can I use clustered indexes to speed
up bulk inserts in big tables?
Can I then still efficiently use
foreign key relationships if my
IDENTITY column is not the clustered
index anymore?
To elaborate, I have a database with a couple of very big (between 100-1000 mln rows) tables containing company data. Typically there is data about 20-40 companies in such a table, each as their own "chunk" marked by "CompanyIdentifier" (INT). Also, every company has about 20 departments, each with their own "subchunk" marked by "DepartmentIdentifier" (INT).
It frequently happens that a whole "chunk" or "subchunk" is added or removed from the table. My first thought was to use Table Partitioning on those chunks, but since I am using SQL Server 2008 Standard Edition I am not entitled to it. Still, most queries I have are executed on a "chunk" or "subchunk" rather than on the table as a whole.
I have been working to optimize these tables for the following functions:
Queries that are run on subchunks
"Benchmarking" queries that are run on the table as a whole
Inserting/removing big chunks of data.
For 1) and 2) I haven't encountered a lot of problems. I have created several indexes on key fields (also containing CompanyIdentifier and DepartmentIdentifier where useful) and the queries are running fine.
But for 3) I have struggled to find a good solution.
My first strategy was to always disable indexes, bulk insert a big chunk and rebuild indexes. This was very fast in the beginning, but now that there are a lot of companies in the database, it takes a very long time to rebuild the index each time.
At the moment my strategy has changed to just leaving the index on while inserting, since this seems to be faster now. But I want to optimize the insert speed even further.
I seem to have noticed that by adding a clustered index defined on CompanyIdentifier + DepartmentIdentifier, the loading of new "chunks" into the table is faster. Before I had abandoned this strategy in favour of adding a clustered index on an IDENTITY column, as several articles pointed out to me that the clustered index is contained in all other indexes and so the clustered index should be as small as possible. But now I am thinking of reviving this old strategy to speed up the inserts. My question, would this be wise, or will I suffer performance hits in other areas? And will this really speed up my inserts or is that just my imagination?
I am also not sure whether in my case an IDENTITY column is really needed. I would like to be able to establish foreign key relationships with other tables, but can I also use something like a CompanyIdentifier+DepartmentIdentifier+[uniquifier] scheme for that? Or does it have to be a table-wide, fragmented IDENTITY number?
Thanks a lot for any suggestions or explanations.
Well, I've put it to the test, and putting a clustered index on the two "chunk-defining" columns increases the performance of my table.
Inserting a chunk is now relatively fast compared to the situation where I had a clustered IDENTITY key, and about as fast as when I did not have any clustered index. Deleting a chunk is faster than with or without clustered index.
I think the fact that all the records I want to delete or insert are guaranteed to be all together on a certain part of the harddisk makes the tables faster - it would seem logical to me.
Update: After a year of experience with this design I can say that for this approach to work, it is necessary to schedule regular rebuilding of all the indexes (we do it once a week). Otherwise, the indexes become fragmented very soon and performance is lost. Nevertheless, we are in a process of migration to a new database design with partitioned tables, which is basically better in every way - except for the Enterprise Server license cost, but we've already forgotten about it by now. At least I have.
A clustered index is a physical index, a physical data structure, a row order. If you insert in the middle of the clustered index, the data will be physically inserted in the middle of the present data. I imagine a serious performance issue in this case. I only know this from theory, because if I do this in practice, it will be a mistake according to my theoretical knowledge.
Therefore, I only use (and advise the use) of clustered indexes on fields that are always, physically, inserted at the end, preserving the order.
A clustered index can be placed on a datetime field which marks the moment of insertion or something like that, because physically they will be ordered after appending a row. Identity is a good clustered index also, but not always relevant for querying.
In your solution you place a [uniquifier] field, but why do this when you can put an identity that will do just that? It will be unique, physically ordered, small (for foreign keys in other tables means smaller index), and in some cases faster.
Can't you try this, experiment? I have a similar situation here, where I have 4 billion rows, constantly more are inserting (up to 100 per second), the table has no primary key and no clustered index, so the propositions in this topic are VERY interesting for me too.
Can I use clustered indexes to speed up bulk inserts in big tables?
Never! Imagine another million rows that you need to put in that table and have them physically ordered it is a colossal loss in performance in the long run.
Can I then still efficiently use foreign key relationships if my IDENTITY column is not the clustered index anymore?
Absolutely. By the way, clustered index is no silver bullet and may be slower than your ordinary index.
Have a look at the System.Data.SqlClient.SqlBulkCopy API. Given your requirements to write signficant numbers of rows in and out of the database, it might be what you need?
Bulk copy streams the data into the table in a single operation then performs the index check once. I use it to copy 500,000 rows in and out of a database table and it's performance is an order of magnitude better than any other technique I've tried, assuming that your application can be structured to take use of the API?
i've been playing around with some etl stuff the last little bit. i went through jsut regularly inserting into the table, then removing and readding indexes before and after the insert, tried merge statements, then i finally tried ssis. I'm sold on ssis. Just yesterday i managed to cut an etl process (~24 million records, ~6gb) from ~1-1 1/2 hours per run to ~24 minutes, jsut by letting ssis handle the inserts.
i believe with advanced services you should be able to use ssis.
(Given you have already chosen the Answer and given yourself the points, this is provided as a free service, a charitable act !)
A little knowledge is a dangerous thing. There are many issues to be considered; and they must be considered together. Taking any one issue and examining it in isolation is a very fragmented way to go about administering a database: you will forever be finding some new truth and changing eveything you thought before. Before launching into it, please read this ▶question/answer◀ for context.
Do not forget, these days anyone with a keyboard and a modem can get their "papers" published. Some of them work for MS, evangelising the latest "enhancement"; others publish glowing reports of features they have never used, or used only once, in one context, but they publish that it works in every context. (Look at Spence's answer: he is enthusiastic and "sold" but under scrutiny, the statements are false; he is not a bad person, just typical of the masses in the MS world and how they operate; how they publish.)
Note: I use the term MicroSofties to describe those people who believe in the gatesian notion that any unqualified person can administer a database; and that MS will fix everything. It is not intended as an insult, more as an endearment, because of the belief in magic, and the suspension of the laws of physics.
Clustered Indices
Were designed for Relational databases, by real engineers (Sybase, before MS acquired the code) who have more brains than all of MS put together. Relational databases have Relational Keys, not Idiot keys. These are multi-column keys, that automatically distribute the data, and therefore the insert load, eg. inserting Invoices for various Companies all the time (although not in our discussed case of "chunks").
if you have good Relational keys, CIs provide Range Queries (your (1) & (2) ), and other advantages, that NCIs simply do not have.
Starting off with Id columns, before modelling and normalising the data, severely hinders the modelling and normalisation processes.
If you have an Idiot database, then you will have more indices than not. The contents of many MS databases are not "relational", they are commonly just unnormalised filing systems, with way more indices than a Normalised database would have. Therefore there is a big push, a lot of MS "enhancements" to try and give these abortions a bit of speed. Fix the symptom but don't go anywhere near the problem that caused the symptom.
In SQL 2005 and again in 2008 MS has screwed around with CIs, and the result is they are now better in some ways, but worse in other ways; the universality of CIs has been lost.
It is not correct that NCIs carry the CI (the CI is the basic single storage structure; the NCIs are secondary, and dependent on the CI; that's why when you re-create a CI, all the NCIs are automatically re-created). The NCIs carry the CI Key at the leaf level.
Microsoft has its problems, which change with the major releases (but are not eliminated):
and in MS this is not efficiently done, so the NCI index size is large; in enterprise DBMS when this is efficiently done, this is not a consideration.
In the MS world, therefore, it is only half true, that the CI key should be as short as possible. If you understand that the consideration is the size of NCIs, and if you are willing to incur that expense, it return for a table that is very fast due to a carefully constructed CI, then that is the best option.
The common advice that the CI should be theIdiot column is totally and completely wrong. The worst canditate fo a CI key is a monotonically increasing value (IDENTITY, DATETIME, etc). WHy ? because you have guaranteed that all concurrent inserts will fight for the current insert location, the last page on the index.
The real purpose of Partitioning (Which MS provided 10 years after the Enterprise vendors) is to spread this load. Sure, they then have to provide a method of allocating the Partitions, on guess what, nothing but a Relational Key; but to start with, now the Idiot key is spread across 32 or 64 Partitions, providing better concurrency.
the CI must be Unique. Relational dbs demand Unique keys, so that is a no-brainer.
But for the amateurs who have poured non-relational contents into the database, if they do not know this rule, but they know that the CI spreads the data (a little knowledge is a dangerous thing), they keep their Idiot key in a NCI (good) but they create the CI on an almost-but-not-quite Unique Key. Deadly. CI's must be Unique, that is a design demand. Duplicate (remember we are talking CI Key here) rows are off-page, located in Overflow pages, and the (then) last page; and constitute a method of badly fragmenting the Page Chain.
Update, since this point is being questioned elsewhere. I have already stated the MS keeps changing the methods without fixing the problem.
The MS Online manual, with their pretty pictures (not technical diagrams) tells us that In 2008, they have replaced (substitued one for another) Overflow Pages, with the adorable "Uniqueifier".
That totally satisfies the MicroSofties. Non-Unique CIs are not a problem. It is handled by magic. Case closed.
But there is no logic or completeness to the statements, and qualified people will ask the obvious questions: where is this "Uniqueifier" located ? On every row, or just the rows needing "Uniqueifying". DBBC PAGE shows it is on every row. So MS has just added a 4-byte secret column (including handling overhead) to every row, instead of a few Overflow Pages for the non-unique rows only. That's MS idea of engineering.
End Update
Anyway, the point remains, that Non-Unique CIs have a substantial overhead (now more than before) and should be avoided. you would be better off adding a 1- or 2-byte column yourself, to force uniqueness.
.
Therefore, unchanged from the beginning (1984), the best candidate for a CI is a multi-column unique Relational key (I cannot say that yours is for sure, but it certainly looks like it).
And put any monotonically increasing keys (IDENTITY, DATETIME) in an NCI.
Remember also that the CI is a single storage structure, which eliminates the (otherwise) Heap; the CI B-Tree is married to the rows at the Leaf level; the Leaf Level entry is the row. That guarantees one less read on every access.
So it is not possible, that a NCI+Heap can be faster than a CI. Anther common myth in the MS world that defies the laws of physics: navigating a B-Tree and writing to the one place you are already in, has got to be faster than additionally writing the row to a separate storage structure. But MicroSofties do believe in magic, they've suspended the laws of physics.
.
There are many other features you need to learn and use, I will mention at least FILLFACTOR and RESERVEPAGEGAP, to give this post a bit of completeness. Do not use these features until you understand them. All performance features have a cost that you need to understand and accept.
CIs are also self-trimming at both the Page and Extent level, there is no wasted space. PageSplits are something to monitor for (Random inserts only), and that is easily modulated by FILLFACTOR and RESERVEPAGEGAP.
And read the SO site for Clustered Indices, but keep in mind all the above, esp. the first two paras.
Your Specific Case
By all means, get rid of your surrogate keys (Idiot columns), and replace them with true natural Relational keys. Surrogates are always an additional key and index; that is a price that should not be forgotten or taken lightly.
CompanyIdentifier+DepartmentIdentifier+[uniquiefier] is exactly what I am talking about. Now notice that they are already INTs, and very fast, so it is very silly to add a NUMERIC(10,0) Idiot Key. Use a 1- or 2-byte column toforce Uniqueness.
If you get this right, you may not need a Partition licence.
The CompanyIdentifier+DepartmentIdentifier+[uniquifier] is the perfect candidate (not knowing anything about your db other than that which you have posted) for a CI, in the context that you perform mass delete/insert periodically. Detailed above.
Contrary to what others have stated, this is a good thing, and does not fragment the CI. Lets' say ou have 20 Companies, and you delete 1, which constitutes 5% of the data. That entire PageChain which was reasonably contiguous, is now relegated to the FreePageChain, contiguous and intact. To be precise, you have a single point of fragmentation, but not fragmentation in the sense of the normal use of the word. And guess what, if you turn around and perform a mass insert, where do you think that data will go ? That's right the exact same physical location as the Deleted rows. And the FreePageChain moves to the PageChain, extent and page at a time.
.
but what is alarming is that you did not know about the demand for CI to be Unique. Sad that the MicroSofties write rubbish, but not why/what each simplistic rule is based on; not the core information. The exact symptom of non-unique CIs is, the table will be very fast immediately after DROP/CREATE CI, and then slow down over time. An good Unique CI will hold its speed, and it would take a year to slow down (2 years on my large, active banking dbs).
4 hours is a very long time for 1 Billion rows (I can recreate a CI on 16 billion rows with a 6-column key in 3 minutes on an enterprise platform). But in any case, that means you have to schedule it as regular weekly or demand maintenance.
why aren't you using the WITH SORTED_DATA option ? Wasn't your data sorted, before the drop ? This option rewrites the CI Non-leaf pages but not the leaf pages (containing the rows). It can only do that if it is confident that the data was sorted. Not using this option rewrites every page, in physical order.
Now, please be kind. Before you ask me twenty questions, read up a little and understand all the issues I have defined here.

Database indexing - how does it work?

how does indexing increases the performance of data retrieval?
How indexing works?
Database products (RDMS) such as Oracle, MySQL builds their own indexing system, they give some control to the database administrators however nobody exactly knows what happens on the background except people makes research in that area, so why indexing :
Put simply, database indexes help
speed up retrieval of data. The other
great benefit of indexes is that your
server doesn't have to work as hard to
get the data. They are much the same
as book indexes, providing the
database with quick jump points on
where to find the full reference (or
to find the database row).
There are many indexing techiques for example :
Primary indexing, secondary indexing
B-trees and variants (B+-trees,B*-trees)
Hashing and variants (linear hashing, spiral etc.)
for example, just think that you have a database with the primary keys are sorted (simply) and these all data is stored in blocks (in hdd) so everytime you want to access the data you don't want to increase the access time (sometimes called transaction time or i/o time) the indexing helps you which data is stored in which block by using these primary keys.
Alice (primary key is names, not good example but just give an idea)
Alice
...
...
AZ...
Bob
Bri
...
Bza
...
Now you have an index in this index you only store Alice and Bob and the blocks they point, with this way users can access the data faster.The RDMS deals with the details.
I don't give the details but if you want to delve these topics, i offer you take an Database course or look at this popular book which is taught most of the universities.
Database Management Systems Ramakrishn CGherke
Each index keep the indexed fields stored separately, sorted (typically) and in a data structure which makes finding the right entries particularly easy. The database finds the entries in the index then cross-references them to the entries in the tables (Except in the case of clustered indexes and covering indexes, in which case the index has it all already). This cross-referencing takes time but is faster (you hope) than scanning the entire table.
A clustered index is where the rows themselves with all columns* are stored together with the index. Scanning clustered indexes is better than scanning non-clustered non-covering indexes because fewer lookups are required.
A covering index is where the query only requires columns which are part of the index, so the rest of the row does not need to be looked up (This is often good for performance).
* typically excluding blob / long text columns etc
How does an index in a book increase the ease with which you find the right page?
Much easier to look through an alphabetic list and then go to the right page than read every page.
This is a gross oversimplification, but in general, database indexing creates another list of some of the contents of the table, arranged in a way that the database engine can find information quickly. By organizing table contents deliberately, this eliminates the need to look for a row of data by scanning the entire table, creating a create efficiency in searches.
Indexes provide an optimal data structure for lookup queries. If your dataset changes a lot, you might consider the performance of updating/regenerating the index as well.
There are lot of open source indexing engines like lucene available, and you can search online for detailed information about performance benchmarks.

How do database perform on dense data?

Suppose you have a dense table with an integer primary key, where you know the table will contain 99% of all values from 0 to 1,000,000.
A super-efficient way to implement such a table is an array (or a flat file on disk), assuming a fixed record size.
Is there a way to achieve similar efficiency using a database?
Clarification - When stored in a simple table / array, access to entries are O(1) - just a memory read (or read from disk). As I understand, all databases store their nodes in trees, so they cannot achieve identical performance - access to an average node will take a few hops.
Perhaps I don't understand your question but a database is designed to handle data. I work with database all day long that have millions of rows. They are efficiency enough.
I don't know what your definition of "achieve similar efficiency using a database" means. In a database (from my experience) what are exactly trying to do matters with performance.
If you simply need a single record based on a primary key, the the database should be naturally efficient enough assuming it is properly structure (For example, 3NF).
Again, you need to design your database to be efficient for what you need. Furthermore, consider how you will write queries against the database in a given structure.
In my work, I've been able to cut query execution time from >15 minutes to 1 or 2 seconds simply by optimizing my joins, the where clause and overall query structure. Proper indexing, obviously, is also important.
Also, consider the database engine you are going to use. I've been assuming SQL server or MySql, but those may not be right. I've heard (but have never tested the idea) that SQLite is very quick - faster than either of the a fore mentioned. There are also many other options, I'm sure.
Update: Based on your explanation in the comments, I'd say no -- you can't. You are asking about mechanizes designed for two completely different things. A database persist data over a long amount of time and is usually optimized for many connections and data read/writes. In your description the data in an array, in memory is for a single program to access and that program owns the memory. It's not (usually) shared. I do not see how you could achieve the same performance.
Another thought: The absolute closest thing you could get to this, in SQL server specifically, is using a table variable. A table variable (in theory) is held in memory only. I've heard people refer to table variables as SQL server's "array". Any regular table write or create statements prompts the RDMS to write to the disk (I think, first the log and then to the data files). And large data reads can also cause the DB to write to private temp tables to store data for later or what-have.
There is not much you can do to specify how data will be physically stored in database. Most you can do is to specify if data and indices will be stored separately or data will be stored in one index tree (clustered index as Brian described).
But in your case this does not matter at all because of:
All databases heavily use caching. 1.000.000 of records hardly can exceed 1GB of memory, so your complete database will quickly be cached in database cache.
If you are reading single record at a time, main overhead you will see is accessing data over database protocol. Process goes something like this:
connect to database - open communication channel
send SQL text from application to database
database analyzes SQL (parse SQL, checks if SQL command is previously compiled, compiles command if it is first time issued, ...)
database executes SQL. After few executions data from your example will be cached in memory, so execution will be very fast.
database packs fetched records for transport to application
data is sent over communication channel
database component in application unpacks received data into some dataset representation (e.g. ADO.Net dataset)
In your scenario, executing SQL and finding records needs very little time compared to total time needed to get data from database to application. Even if you could force database to store data into array, there will be no visible gain.
If you've got a decent amount of records in a DB (and 1MM is decent, not really that big), then indexes are your friend.
You're talking about old fixed record length flat files. And yes, they are super-efficient compared to databases, but like structure/value arrays vs. classes, they just do not have the kind of features that we typically expect today.
Things like:
searching on different columns/combintations
variable length columns
nullable columns
editiablility
restructuring
concurrency control
transaction control
etc., etc.
Create a DB with an ID column and a bit column. Use a clustered index for the ID column (the ID column is your primary key). Insert all 1,000,000 elements (do so in order or it will be slow). This is kind of inefficient in terms of space (you're using nlgn space instead of n space).
I don't claim this is efficient, but it will be stored in a similar manner to how an array would have been stored.
Note that the ID column can be marked as being a counter in most DB systems, in which case you can just insert 1000000 items and it will do the counting for you. I am not sure if such a DB avoids explicitely storing the counter's value, but if it does then you'd only end up using n space)
When you have your primary key as a integer sequence it would be a good idea to have reverse index. This kind of makes sure that the contiguous values are spread apart in the index tree.
However, there is a catch - with reverse indexes you will not be able to do range searching.
The big question is: efficient for what?
for oracle ideas might include:
read access by id: index organized table (this might be what you are looking for)
insert only, no update: no indexes, no spare space
read access full table scan: compressed
high concurrent write when id comes from a sequence: reverse index
for the actual question, precisely as asked: write all rows in a single blob (the table contains one column, one row. You might be able to access this like an array, but I am not sure since I don't know what operations are possible on blobs. Even if it works I don't think this approach would be useful in any realistic scenario.

Can Multiple Indexes Work Together?

Suppose I have a database table with two fields, "foo" and "bar". Neither of them are unique, but each of them are indexed. However, rather than being indexed together, they each have a separate index.
Now suppose I perform a query such as SELECT * FROM sometable WHERE foo='hello' AND bar='world'; My table a huge number of rows for which foo is 'hello' and a small number of rows for which bar is 'world'.
So the most efficient thing for the database server to do under the hood is use the bar index to find all fields where bar is 'world', then return only those rows for which foo is 'hello'. This is O(n) where n is the number of rows where bar is 'world'.
However, I imagine it's possible that the process would happen in reverse, where the fo index was used and the results searched. This would be O(m) where m is the number of rows where foo is 'hello'.
So is Oracle smart enough to search efficiently here? What about other databases? Or is there some way I can tell it in my query to search in the proper order? Perhaps by putting bar='world' first in the WHERE clause?
Oracle will almost certainly use the most selective index to drive the query, and you can check that with the explain plan.
Furthermore, Oracle can combine the use of both indexes in a couple of ways -- it can convert btree indexes to bitmaps and perform a bitmap ANd operation on them, or it can perform a hash join on the rowid's returned by the two indexes.
One important consideration here might be any correlation between the values being queried. If foo='hello' accounts for 80% of values in the table and bar='world' accounts for 10%, then Oracle is going to estimate that the query will return 0.8*0.1= 8% of the table rows. However this may not be correct - the query may actually return 10% of the rwos or even 0% of the rows depending on how correlated the values are. Now, depending on the distribution of those rows throughout the table it may not be efficient to use an index to find them. You may still need to access (say) 70% or the table blocks to retrieve the required rows (google for "clustering factor"), in which case Oracle is going to perform a ful table scan if it gets the estimation correct.
In 11g you can collect multicolumn statistics to help with this situation I believe. In 9i and 10g you can use dynamic sampling to get a very good estimation of the number of rows to be retrieved.
To get the execution plan do this:
explain plan for
SELECT *
FROM sometable
WHERE foo='hello' AND bar='world'
/
select * from table(dbms_xplan.display)
/
Contrast that with:
explain plan for
SELECT /*+ dynamic_sampling(4) */
*
FROM sometable
WHERE foo='hello' AND bar='world'
/
select * from table(dbms_xplan.display)
/
Eli,
In a comment you wrote:
Unfortunately, I have a table with lots of columns each with their own index. Users can query any combination of fields, so I can't efficiently create indexes on each field combination. But if I did only have two fields needing indexes, I'd completely agree with your suggestion to use two indexes. – Eli Courtwright (Sep 29 at 15:51)
This is actually rather crucial information. Sometimes programmers outsmart themselves when asking questions. They try to distill the question down to the seminal points but quite often over simplify and miss getting the best answer.
This scenario is precisely why bitmap indexes were invented -- to handle the times when unknown groups of columns would be used in a where clause.
Just in case someone says that BMIs are for low cardinality columns only and may not apply to your case. Low is probably not as small as you think. The only real issue is concurrency of DML to the table. Must be single threaded or rare for this to work.
Yes, you can give "hints" with the query to Oracle. These hints are disguised as comments ("/* HINT */") to the database and are mainly vendor specific. So one hint for one database will not work on an other database.
I would use index hints here, the first hint for the small table. See here.
On the other hand, if you often search over these two fields, why not create an index on these two? I do not have the right syntax, but it would be something like
CREATE INDEX IX_BAR_AND_FOO on sometable(bar,foo);
This way data retrieval should be pretty fast. And in case the concatenation is unique hten you simply create a unique index which should be lightning fast.
First off, I'll assume that you are talking about nice, normal, standard b*-tree indexes. The answer for bitmap indexes is radically different. And there are lots of options for various types of indexes in Oracle that may or may not change the answer.
At a minimum, if the optimizer is able to determine the selectivity of a particular condition, it will use the more selective index (i.e. the index on bar). But if you have skewed data (there are N values in the column bar but the selectivity of any particular value is substantially more or less than 1/N of the data), you would need to have a histogram on the column in order to tell the optimizer which values are more or less likely. And if you are using bind variables (as all good OLTP developers should), depending on the Oracle version, you may have issues with bind variable peeking.
Potentially, Oracle could even do an on the fly conversion of the two b*-tree indexes to bitmaps and combine the bitmaps in order to use both indexes to find the rows it needs to retrieve. But this is a rather unusual query plan, particularly if there are only two columns where one column is highly selective.
So is Oracle smart enough to search
efficiently here?
The simple answer is "probably". There are lots'o' very bright people at each of the database vendors working on optimizing the query optimizer, so it's probably doing things that you haven't even thought of. And if you update the statistics, it'll probably do even more.
I'm sure you can also have Oracle display a query plan so you can see exactly which index is used first.
The best approach would be to add foo to bar's index, or add bar to foo's index (or both). If foo's index also contains an index on bar, that additional indexing level will not affect the utility of the foo index in any current uses of that index, nor will it appreciably affect the performance of maintaining that index, but it will give the database additional information to work with in optimizing queries such as in the example.
It's better than that.
Index Seeks are always quicker than full table scans. So behind the scenes Oracle (and SQL server for that matter) will first locate the range of rows on both indices. It will then look at which range is shorter (seeing that it's an inner join), and it will iterate the shorter range to find the matches with the larger of the two.
You can provide hints as to which index to use. I'm not familiar with Oracle, but in Mysql you can use USE|IGNORE|FORCE_INDEX (see here for more details). For best performance though you should use a combined index.

Resources