Hello Guys I am trying to solve one problem given on the Hacker Rank. Though the problem is quite simple, I was thinking to solve the problem using some other concepts.
The problem is
Desription
You are given an integer N. Find the digits in this number that exactly divide N (division that leaves 0 as remainder) and display their count. For N=24, there are 2 digits (2 & 4). Both of these digits exactly divide 24. So our answer is 2.
Input Format
The first line contains T (the number of test cases), followed by T lines (each containing an integer N).
Constraints
1≤T≤15
0
I solved the problem earlier by defining variable N as of type long long but that i guess will not be the efficient way to solve the problem.
So i thought why not declare the variable N as an character array. This way we can also use the program to store the number greater then the max limit of long long also rt?
Say i used the following code
#include <stdio.h>
#include <string.h>
int main()
{
int i,t;
char n[20];
scanf("%d",&t);
while(t--)
{
scanf("%s",n);
int len=strlen(n);
int f2,f3,f5,f7,f4,count;
f2=f3=f5=f7=f4=count=0;
for( i=0;i<len;++i)
{ int sum=0;
switch((int)n[i])
{
case 48: break;
case 49: ++count;break;
case 50: if((int)n[len-1]%2==0) // divisibility by 2
{
++count;f2=1;
}break;
case 51: for(i=0;n[i]!='\0';++i) // divisibility by 3
{
sum+=(int)n[i];
}
if(sum%3==0)
{
++count;
f3=1;
}break;
case 52: if(f2==1) // divisibility by 4
{
++count;
f4=1;
} break;
case 53: if(n[len-1]=='5' || n[len-1]=='0') // divisibility by 5
{
++count;
f5=1;
}break;
case 54: if(f2==1 && f3==1) // divisibility by 6
{
++count;
break;
}
case 55: // Code for divisibilty by 7
case 56: if(f2==1 && f4==1) // divisibility by 8
{ ++count;
break;
}
case 57: if(f3==1) // divisibility by 9
{
++count;
break;
}
}
}
printf("%d\n",count);
}
return 0;
}
The program is working fine but the only problem is I am not able to rt the code for divisibility by 7 anu suggestions will be helpful, And also which is the better way to solve the problem , This way in which the variable N is declared as the character array or by declaring the variable N as long long.
Any improvements for the above code would also be appreciated .....:)
Divisibility by 7 can be checked by this rule
Also you can use this mod() function to check divisibility by any number :
int mod(char *n, int val)
{
int sum = 0;
for(int i=0; n[i]; i++)
{
sum = sum*10 + (n[i]-'0');
if(sum >= val)
sum = sum % val;
}
return sum;
}
it will return 0, if the number n is divisible by number val :)
And you don't need to check for every redundant digit.
First check the available digit then check for divisibility once for each digit.
Here's what you can do -
#include <stdio.h>
#include <string.h>
int mod(char *n, int val)
{
int sum = 0;
for(int i=0; n[i]; i++)
{
sum = sum*10 + (n[i]-'0');
if(sum >= val)
sum = sum % val;
}
return sum;
}
int main()
{
int i,t;
int digit[10];
char n[20];
scanf("%d",&t);
while(t--)
{
scanf("%s",n);
int len=strlen(n);
int cnt=0;
memset(digit,0,sizeof(digit)); // setting all the digit to 0
for(i=0;i<len;i++)
digit[n[i]-'0']++;
for(i=1;i<10;i++)
{
if(digit[i]==0) // number doesn't contain any of this digit
continue;
if(mod(n,i)==0)
cnt+=digit[i]; // Adding the digit to the answer
}
printf("%d\n",cnt);
}
return 0;
}
How this works :
for n = 147 and val = 7
sum = 0
1st iter >> sum = 0*10 + 1 = 1
sum < val, so continue
2nd iter >> sum = 1*10 + 4 = 14
sum >= val, so sum = sum % val = 14 % 7 = 0
3rd iter >> sum = 0*10 + 7 = 7
sum >= val, so sum = sum % val = 7 % 7 = 0
as the final sum is 0, so we can say that n is divisible by val :)
Related
So you have to do:
11 = 1+1 = 2
3578 = 3+5+7+8 = 23 = 2+3 = 5
But the problem is that the number can be very large(consist of 10,000 digits)
#include <stdio.h>
#include <ctype.h>
int main(){
char buffer[100000];
scanf("%99999s", buffer);
unsigned long long int result = 0;
for( unsigned idx = 0; isdigit(buffer[idx]); idx++ ){
result = (int)buffer[idx] + result - '0';
}
int result2 = 0;
int digit = 0;
while ( result > 0 ){
digit = result % 10;
result2 += digit;
result = result / 10;
if( result <= 0 && result2 > 9){
result = result2;
result2 = 0;
continue;
}
}
printf("RESULT : %d\n",result2);
}
Input :
751681014401040450622780075254045270442210812770460775451184384531483702082226416361544531414410171607350014850333878358743220376871078174403200044662362218387877088216176613360252864405743551700372186186575780774423365770110772762276064451888336156654128153746808000717416854455788814078402738512314518407278677742343615032578760156411281210127537668157717015666162165516525027107402068668123177553108546580071328732081607873181528418805507115473871188671175418353685287375851146862706642660460660640361450625482328733578704685372147576117063756404450651264407575360484374363385487210664552841370274325526483461688624004361174850045865227812614165458631837856673343826214104801877607136035412561647757156215008153430481053606347145474412241557035145221136028312706780031881775353428185131338124663027888077214386322084144228202118607125173881566084750330384756507240153360252125102231317116187460551751644005660558858277077053174524651718580360376435305240031868065863876643181746460523888528353776530743505576145346723312843737184587288444786213277214628281832785420546274087146761566864614047504688123772643616870148637036486545882717162028017172706874088300344834424111884355042605060726257071061472334164583725618637172662277276238285574537252303708512187713753768210883717883214177506821154744051238430026270855363428730658126314153612053400077268874042185164222701426867051627554247573272557376740151571806220637182717476783435840540164172408587171868366825071315532702431761021552623061343345432712675051436011076617066231844451104348332548221106105114023473728208461760881801028437428634770630222621088305700346277351457830386857805275647013556147441362065165825384420633364237016227253566137375754313815436352300840071213800623627143462831576581300375511873047806550427070820275112032855056137212406102042344837643783510606621032343518643584052038422148828271478733221816003564556283801864300304433172707473414552811044246731560263787181360375220856023782825227102624663780175705186245881553055783106085313045005862533446468632134156855843085604348382611533515253722765723825136013746254432618268575605574880777370574873416807208456637441333184132067035322454017072312638668737073738377347585458061613007130848158715255752218380205816085742220815543528204180550315407345040343465616657842185850163106537650131781684036344622188084870842413154385436162802282440416080100438843655544106712445324162727681876878667304463852468413048081441201022820146183282812314331114888177386525521660163781083757743180378743438208686328556162024886323326120153038720833558641743826880113166153240558815120076524147752615042565452038541813882006275635438131506100314186187302343688270237767287844414752004085217272576403406754126201126712336183622843312501717384047822064857500303244180435065521612467421283018275707044616755208768040404760152323626173084386326286466747754211888301380460737572061342836367388845034654501045572058038063025335007602521812172166057474442286006578638145768783310135200717742254225860404885176720441047442166271805032286547386064076324568835101011406416753172855727057633455343825574000185777457428046681783622861257212832770071867083635215251007450841602618461842346412633483540142652201486041275081010667260201557331072426444618765328354076766417616130400424781247440566121265103547027280348113585104382410141813131455488838053702550808735183553830446408482367420076160076262663527670655562131264387255352825271342760566005822722332021348641167120856016554505570062536643673516223718301411084856100680157256766330732307710560350275148387768844636817022858087224581570845678335518432524511500037200041260067078007810158777163560526565081510773305010008850376420041473043255445606782654331804225784332044865574631035716102618467576882870067886585833110838276608241427536661612063618063214214585338564232814071202471515401656574782880713574621360444087084720607867137388445835311536257004364542878404634164452864246674118454286683235265786134857158678250347676325587704123207422854256630805386558578714726184126602861672885736446138500463533680748730338560546460428771824557181826464770402317772272740307477181478455585636075313283171573648400013054167571673116613571151510822374601535776316668534781321216853367674808200331442082688114414130302552638734526434061284204530625144825831481633217731670815133456452644081738063826088665353158124242484515531313451650213561416418085410405570606611140402142484384218384741442546410531674164472571000300215641678074334108435802784785688827488005837505826553888287125700643040881844334254155035271475167358430157130007013157486260051048760867051743488768342422141241284763218463632174454765861135173133286717111015542473116471513784372812532572507657618560461160572743554454317855102056287537832510205823506658075100270021761425488164177384714875436784437406006607216702405546421610285706140720336410004242104218828732364102102771261820130415166285786051016867117585071256587118755723107328726422080034138056203686821344515778507367155074361276125362022202351803832562288404317808420748687425723066470647261867532441741436340372734386377387536812712777758741523517725363013063628084148710814544350354128327450370108328345834184825032321204672125621760366274452185311667651381252480486872231627631122044224520137166555015885512810668513134734823527032322425078674033704700366250108836332352873123853430724168550066010372527701608883083567656658420863452247174555607068360358816616025006640012632030424828703053711305501480063563571055808404007667803548310285444582741013521587484871581873111322130771340805727521017815071546438331423181123825712415353283253055676286642757154578338046560888260426388261727558075655358131244258127644363553544161740513858558235265541018757524161706182667583126416834576488658808811147208535624307173833635764341270140176748648145554832612236561605878888234374007627452055011533720070776526077806626462013173033627356313122046445348831353878135766532587562735788641612802888058545633468326114560814135332856327735001740007712770551648528771444277478636812835258726114418280064621578160647816130504484417885455441310710237534854576868640827180867271531761050414728543450007823128426565157434460537338831685013827707746862257354742005884633255324034020140726006706533076110322584488787770046814060435340713051331121572716523741531875356702152315734851311371301664505011838574148782254327851402476184582057271422856838167763147707602848731788351754217448062810632163271832784804754855132333775805410764225072675773831382577208243836676513228533258804277348354423465462726763635586253784211383036438771457456004447381183528835587380018474478558760757488651234458158618285508566384516862071204682088461113757421315271543505317758616335700181150641341681041423844374066773814203773172040015357835077566066406714670073856536132620828836858568272876380471265510617104842623063547546011648218642120528241217201264418272541586085523518764050874346007711882466821876542475180688703464148317887712124820504824573450228111734537748838844660550575520873685472318251758020402465762411066627657844870521057325110206306425246704057182500708712735815425337147147484680845558170616553077740875373516455617458405322418668172025816470204565745732515143276215624473303535601018155746530745157426316131326448006255227746661304883216246242332321221046303207758322108418257570681028241142342484688526201382067331356726675158657337735228036833005140843574828268178828841221231212157311407301862716571557453483027852574588426386317222844845137486524171756112077772450745120438814043882721542500432780173282276283126542113737607746264233325574221587120848174301601886327120664423872308236666445766735274788115256514100204171708047626683537844852541635414486050687783225388745775154057484178630248743026361164786481223116305267273743145576636823725802764406413723436251762165820668803565807826085752366206338232114347130128821066058530265768254726576332032418730118514270183775054023384463034340706331703624150233863615660463048083263785543436400334336168067015171788458623687870730764865344561677627684365730626683072272624257375580502826520477760052580258620807556807623563026603046618634010113234004426635302058856310363212461781161353030781883726554753234473756114056038218043367517243478501237088565228021222257735670338820817870024347425161026158717204583758431002003234356520643035233555762368342114753878281652518156668068054210780825420587461040570476617171708256807440526301021557600786610784666273551445505075683164370060256603831838721252335608240674634433648778570417671457543258352862737344647424385202373703571366236526365774314152542608248523347802566388780166204546612148456535165672332228815853101305036068777746265720610677256370668701517100710332186638861005007310711864876551616102248756707824700427538726774173682441086323064411008186307371752102618060768502607627380178201343326340827013307717005315507127517241727734544314546316826358657803607532512068532335313084167267218766848485772658036626232251228241121145608623508757237303875624836550803486838238480781007152183824603204262111442105822411702738335005015331731517370266458832844686163274513052513143445663445645138422176610067282056232833531362883771248717505343234563001453584106746531048741017055621746366646150773232173061831068888866382201723777873735556684635566885100134773078406037346250430466763014315062572500326680833425582511220020804233713401314545117718084008434041613841270302837200388405753847723837030208332527585875058057764346701453767366355381480582356312063123418762453601741154336354218503285423233032455031888053657637446023116263037806702258215876864326411283205733020423242744783406845233527808618464288404304185036141087678562182326711378025403222216463781711163023683488586425024156028225301534471751801778118254806056605120208110044537253488272220720337416100518705316686511407527862467345875327140732360253782517501523302103632288166835628577115228462686218513817472506280223288028076843513285315285100421633053867834428803443
Output (need to be):
2
Output with my code:
4
So i don't know why is this happening because with another input my code is corrert:
763856354130136657360385516561520873045138714562332581204134142350730376283263680474653368757850487744860687174203110471643858602071801482028332653007166021826745174216138047817365348874514035821835612354050260544684725083051173324643825032336778782315104006603812742522771834088312702426100255155571471164588120604506466482133084060125572828026652740725300255036357264411565411313220610312477661525200624181273678765405170622003760807436012015546647124152462304506772560608127170466866433286314308076111732534314571162487345541117720317272124884630067232072656004285331281425165138177815136175542100311650333707342555832365361622315780463876462585205746384761118882137055072862101805442176434432204100601325362405055835148758015427383385114322832417385874425771288466408276226427662431076007266604531123285610451050580774714271542833845080001436232853660764311085680124630520500408800114274306755821766735740216024032300324714874556435420067888861610242771343152511705731160605244416176738413700221258437380040822775863133651778751211738450223765661576528804555312631150051080343763578868542634554368526333822067137015775230648240813186267232483470047125473601627341053116110277018577025244711848206154630086408583405243377832158881070838386616650275622740201355837112613225167544150076760876686687437824157810643238623035376176626013464366383165881501581054570782377367474818662273085618136500244702754070028836711466505422223042153582382870316175374820780744670187572281053042552333522136522460063685655230321850230236046606221767555035156666348610682685672858283014183766011436704361075434234124456752147833834811110648602534311607828673630167014010214853762411277664048424557438161681445011607235630404341508440814217855744175016074358350272755324876545487473277751734753378553246205084827232261611287686211273427857448171276116864645115258820041275040560465474772146438542184643252602451574158430138262022043256340221757528211417348241661373288441322588327746848234723120818482755778114478603430636437744812250072505662045741313625678162643547645055648750455875223558335531550864588817786283877062284676202818444760857748163561177317405675378462630271604223606503485528758641055610743733564552538477017350144102605615816482412455734188208707163860580652457783450451418444043300857505415584658811074731723222842772371678322840047352361531273433643063677401886518465376222687803576655160317208086728737014667870114387423180387477207077874548373254026433514131254778424332621000552175305788627840866162010103357607727137054058084747135075145827237602602550751458102011542757504244304754386465723634400852226538152618503058603500621173824642882510034110733072422021256507138673714786085262476240218077735880856236785561377704538477286631250223848718761345461341633752202643550117320307780533501404108507037045256817814285738880318564422836322713265887146816632472488385878560804805628138068502684877772080801570500632060020634751026342325005036165116407345860265756521710533601450110421412735046166370148372320354858855384455538852001200854374445327874810443614257318533171054717376752855102715544023273551280125152074823871037368145871374001111231535302078210687378318682248006648721508838864071270124521850040430463883400522814238655721532464053368042308325231264502030277332415144362510551004765254434777074016023140110854150705044415033281723875462545683042636672311863432500166770047028273032140573872737261673537040561630784337778887057476143740442084353580080833202125656344267723845416088835220820667515646872572420878775312107575745736146272106555521815846824608112642577763720502034022730453257700767811115641403014552686583713376027778256317227651825404567287218002523086080745584272785172566847107883166732360335523527877250520503320806348858606613416403242562868868134170620387153750184075382685277380050665544032023508256611047104277202414061004875626872732160248480317523135274231071317823157864623011663460074158680033502364232087046513751083468023635257267054650833816582473255018672115324373688885615605068683541222688784017610105573230674746308533031273056552814124513000128262665062473401424630217637373733542128236222257804358431140848385543085001375202038570856262101241050210166073055253710517487046547410034875606202033638552348687068545265511117105207778805460284233321584680215174150426461481553271732471124010254623404201610852756187412103672523365701581555125811711564383844225110016755403080612043706465700344618037232334153540453325620885466003424385252541244430370845172644232847213164075831524245134122266455733675014648015841781564665867644668464128116876118014752712750125224044762560738758328310758642000310784781871412172284242675178067541777245445383387540503251872434764770305821148084661630038185356686682318115573823042866403346053745751133568124186612871580883151360312847007008803227582374672743037340242823674407413056325542517185021134205620252366775208200064823886422241162006735853868638877477786133821115473824232201760731270667522850856055518462245543117045084503248851351452108403858241240224621533285056474050526630380275753318366727157450481516030125005682800758572356547247382376630120236285023834345010716080585807232401184404273432733020064278337065677335870205730243214740830572468815488584507137422201588308008353171531426283308866806800214083546628483757232554512231325824672637846146753563022676728575472630815131747862511186425175678413017284183600032377523161370615857228426216441670651321508540778103027285046137500830413281336378688114820684128521731657751518010707050357675552862833131164713006157316766532585147545848512145664466825384327114201113147776002142366261715863451642411525744443672043861217872570838088126424703842660226752806113251117174560238451758668525600210428466572842767316114440020052243554778737788862064663107527570807664170301178356786025037282065344006300066664078855573856763811061422417707587557008025483423025004343822287011234803822766765374540728128415248400366271010055714723674140588216153384530018863660481200376560286163083444238846821664406201226132183756850873446843773447472733335215077665786577138366650711538440337532564067211038513804671244304541677234642558862752687483668230813451713230581036554305487517305642341547002727358040231502322872466036573233112623747184701305147102242340461074000525773724681314444385142271831172242282106128821641837683156744828364377363647112668043105072583550110302186243342201435675863146700322312783245383428441532506357751768437250453722567858543037757436640236656643345041366240004761664022458120406517077383828555515000153123758160717474352831261322318407465420124722251650224571051741273403633434427121682671155580627438304044733286166144080510843443210434654852153834353525786424212843238703728783817615413783022718022432362430765676821417632134887667834006275050758051678025305467321844132606841363578310672834682561385251736043687764855173355035767050387255202262057625133562636500800240121100407874682380561057368140666210277655336057248825863816853341401220264668285354666623301326737711808416624103380865072285061540800005633578867821085625382440312055585737571655725738178626514523852136030086076157072710302437601326501508701758620334660245432543270717806880758034411561562683763163887446336155587384861156287657005734074003537654074653284110260676181325412877187528168734666271520607247252180017104088343324182851557471032677342316045738655470618385630116522627780047065281017556067817211275651457420636020808612820273002520306316580586080563558128188742642468043318336130005230352577058242045530768481747604750510611012867040057006446870051788848775665311374278206468757280320708011373885747120848724523673171436440851128532757420240160733240434548705141017533608143251516618205732658701660884504343748236136368085246867605563336508551825123428720853883252733510660325050747501432650003076323428318875525103123137434356727110647711414371827255332160338436255534510431314773718473508346410427014702423645426001156155752248331473813336752367720557038231407815643550056872830401101652154107574123642078818605184710045316822081026630451351732066087022272065254751131317405661547310056786746846138805221860542468231813626752864035880475085446870443858784613175522743543121844224315841131717275131238856855500178161846027605815001653207466463150131437845504411837324633271223806276775836788887173353821742663477644368547522322631308631772514256562461510534174204460016158764173520258202674655813114556774777078355684451231762538050158547751247183067326331384752282005087077028611333236448425020627810852875002736052467018877076654652044773518857242536841427776627164344008385638343411304537522710773676723586276747583433658501462382030027221083345253628151165017160233037611580364630320652162435871653288580314271676653333360626777270565650571515184520714711820167224423218144321611627733108670381586053634252733678450426382040428821735856374531350142554765486757543665158321821383007261711885375675137003616444706840667586544021222623471835765008507254778310230275088584303360822677281326766807302344883372153448072048810210605727424641014752681340304122862118000623188248154823000136522227277782380350202734473771163603184383400581232036372116046503128435120865347764426202814154301366768758374564643418344105136166728157437336147172848745260821852188351620243884055401284041761330855227177266661230258780126438676805778667471105134367300151724600360346203061353503721555243526536271404344130277330186810808260467582358267160641157658556842707151145157068340205342314861111447415621860400101265108166341806166531514636465602458287886752823638272116184053322180418851240228555056026770363502036664525266223086123266114873017123877345603775745244602252250408756513361778067548257582606543455888730834616705438377553157168523144160737216766065215775024027877561707416087530003045453326043720834644705333816324738254088141308802335013715806400077073757385261571831350365578855282768642663651711427602826446068482775202531175770641614332140381017487230605
Output:
1
Your if statement doesn't make sense to me, and your code needs nested loops. The outer loop should repeat until the number has been reduced to be in the 0 to 9 range, and the inner loop should iterate over each digit of the number, calculating the sum of the digits.
Here is my cleaned up and working version:
#include <stdio.h>
#include <stdint.h>
#include <ctype.h>
uint64_t sum_of_digits(uint64_t x) {
uint64_t sum = 0;
while (x > 0) {
sum += x % 10;
x /= 10;
}
return sum;
}
int main() {
uint64_t sum = 0;
while (1) {
int c = getchar();
if (!isdigit(c)) { break; }
sum += c - '0';
}
while (sum > 9) { sum = sum_of_digits(sum); }
printf("Result: %d\n", (int)sum);
}
Note: I tried to test this with your 9999-character input vectors but I am getting different results than what you claim is correct. I am getting 9 for the first one and 6 for the second one.
Update: A simpler way using math.
Let's think about what actually happens when you calculate this "digital root".
When you change 10 into 1, you are subtracting 9.
When you change 100 into 1, you are subtracting 99, which is a multiple of 9.
When you change 200 into 2, you are subtracting 2*99, which is still a multiple of 9.
When you change 3578 into 3+5+7+8, you are changing 3000 into 3 and 500 into 5 and 70 into 7, which means you are just subtracting 9 many times.
Everything that this program is supposed to do is just subtract 9 from the number as much as it can, until the number is in the 1 to 9 range. (This is not quite the same as x % 9, but pretty close.)
So we can simplify the program and make it much more efficient by taking advantage of this mathematical fact:
#include <stdio.h>
#include <ctype.h>
int main() {
unsigned int result = 0;
while (1) {
int c = getchar();
if (!isdigit(c)) { break; }
result += c - '0';
if (result > 9) { result -= 9; }
}
printf("Result: %u\n", result);
}
With this new program, I still get 9 and 6 as the answers for your large inputs.
There are multiple issues in your code:
you only allow for up to 99999 digits
you do not check for input failure: undefined behavior if redirected forom an empty file.
type unsigned long long is not required for result, long would suffice as 99999 * 9 is below 231-1.
for full portability, idx should have type size_t.
isdigit(buffer[idx]) has undefined behavior on platforms with signed char if the user typed non ASCII characters.
the first test case posted has 9999 digits and a digit root of 9, not 4 as you post, nor 2 as you expect. The second has a digit root of 6, not 1. There must be some mistake in the data.
Here is a much simpler solution:
#include <ctype.h>
#include <stdio.h>
int main() {
int c, result = 0;
while (isdigit(c = getchar()) {
if ((result += c - '0') > 9)
result -= 9;
}
printf("Result: %d\n", result);
return 0;
}
I am solving an exercise in C and I got stuck. I don't know the logic of the code to get to my solution. For example we enter 2 numbers from input let the numbers be 123451289 and 12 and I want to see how many times number 2 is showing at number 1 (if this is confusing let me know). For the numbers earlier the program outputs 2. I tried solving it here is my code:
#include <stdio.h>
int main() {
int num1, num2, counter = 0;
scanf("%d%d", num1, num2);
if (num1 < num2) {
int temp = num1;
num1 = num2;
num2 = temp;
}
int copy1 = num1;
int copy2 = num2;
while (copy2 > 0) {
counter++; // GETTING THE LENGHT OF THE SECOND NUMBER
copy2 /= 10;
// lastdigits = copy1 % counter //HERE I WANT TO GET THE LAST DIGITS OF THE FIRST NUMBER
// But it does not work
}
}
My question is how can I get the last digits of the first number according to the second one for example if the second number have 3 digits I want to get the last 3 digits of the first number. For the other part I think I can figure it out.
I must solve this problem WITHOUT USING ARRAYS.
The problem: find all the needles (e.g. 12) in a haystack (e.g. 123451289).
This can be done simply without arrays using a modulus of the needle. For 12, this is 100. That is, 12 is two digits wide. Using the modulus, we can
isolate the rightmost N digits of the haystack and compare them against the needle.
We "scan" haystack repeatedly by dividing by 10 until we reach zero.
Here is the code:
#include <stdio.h>
int
main(void)
{
int need, hay, counter = 0;
scanf(" %d %d", &hay, &need);
// ensure that the numbers are _not_ reversed
if (hay < need) {
int temp = need;
need = hay;
hay = temp;
}
// get modulus for needle (similar to number of digits)
int mod = 1;
for (int copy = need; copy != 0; copy /= 10)
mod *= 10;
// search haystack for occurences of needle
// examine the rightmost "mod" digits of haystack and check for match
// reduce haystack digit by digit
for (int copy = hay; copy != 0; copy /= 10) {
if ((copy % mod) == need)
++counter;
}
printf("%d appears in %d exactly %d times\n",need,hay,counter);
return 0;
}
UPDATE:
I'm afraid this does not work for 10 0. –
chqrlie
A one line fix for to the modulus calculation for the 10/0 case. But, I've had to add a special case for the 0/0 input.
Also, I've added a fix for negative numbers and allowed multiple lines of input:
#include <stdio.h>
int
main(void)
{
int need, hay, counter;
while (scanf(" %d %d", &hay, &need) == 2) {
counter = 0;
// we can scan for -12 in -1237812
if (hay < 0)
hay = -hay;
if (need < 0)
need = -need;
// ensure that the numbers are _not_ reversed
if (hay < need) {
int temp = need;
need = hay;
hay = temp;
}
// get modulus for needle (similar to number of digits)
int mod = need ? 1 : 10;
for (int copy = need; copy != 0; copy /= 10)
mod *= 10;
// search haystack for occurences of needle
// examine the rightmost "mod" digits of haystack and check for match
// reduce haystack digit by digit
for (int copy = hay; copy != 0; copy /= 10) {
if ((copy % mod) == need)
++counter;
}
// special case for 0/0 [yecch]
if ((hay == 0) && (need == 0))
counter = 1;
printf("%d appears in %d exactly %d times\n", need, hay, counter);
}
return 0;
}
Here is the program output:
12 appears in 123451289 exactly 2 times
0 appears in 10 exactly 1 times
0 appears in 0 exactly 1 times
UPDATE #2:
Good fixes, including tests for negative numbers... but I'm afraid large numbers still pose a problem, such as 2000000000 2000000000 and -2147483648 8 –
chqrlie
Since OP has already posted an answer, this is bit like beating a dead horse, but I'll take one last attempt.
I've changed from calculating a modulus of needle into calculating the number of digits in needle. This is similar to the approach of some of the other answers.
Then, the comparison is now done digit by digit from the right.
I've also switched to unsigned and allow for the number to be __int128 if desired/supported with a compile option.
I've added functions to decode and print numbers so it works even without libc support for 128 bit numbers.
I may be ignoring [yet] another edge case, but this is an academic problem (e.g. we can't use arrays) and my solution is to just use larger types for the numbers. If we could use arrays, we'd keep things as strings and this would be similar to using strstr.
Anyway, here's the code:
#include <stdio.h>
#ifndef NUM
#define NUM long long
#endif
typedef unsigned NUM num_t;
FILE *xfin;
int
numget(num_t *ret)
{
int chr;
num_t acc = 0;
int found = 0;
while (1) {
chr = fgetc(xfin);
if (chr == EOF)
break;
if ((chr == '\n') || (chr == ' ')) {
if (found)
break;
}
if ((chr >= '0') && (chr <= '9')) {
found = 1;
acc *= 10;
chr -= '0';
acc += chr;
}
}
*ret = acc;
return found;
}
#define STRMAX 16
#define STRLEN 100
const char *
numprt(num_t val)
{
static char strbuf[STRMAX][STRLEN];
static int stridx = 0;
int dig;
char *buf;
buf = strbuf[stridx++];
stridx %= STRMAX;
char *rhs = buf;
do {
if (val == 0) {
*rhs++ = '0';
break;
}
for (; val != 0; val /= 10, ++rhs) {
dig = val % 10;
*rhs = dig + '0';
}
} while (0);
*rhs = 0;
if (rhs > buf)
--rhs;
for (char *lhs = buf; lhs < rhs; ++lhs, --rhs) {
char tmp = *lhs;
*lhs = *rhs;
*rhs = tmp;
}
return buf;
}
int
main(int argc,char **argv)
{
num_t need, hay, counter;
--argc;
++argv;
if (argc > 0)
xfin = fopen(*argv,"r");
else
xfin = stdin;
while (1) {
if (! numget(&hay))
break;
if (! numget(&need))
break;
counter = 0;
// we can scan for -12 in -1237812
if (hay < 0)
hay = -hay;
if (need < 0)
need = -need;
// ensure that the numbers are _not_ reversed
if (hay < need) {
num_t temp = need;
need = hay;
hay = temp;
}
// get number of digits in needle (zero has one digit)
int ndig = 0;
for (num_t copy = need; copy != 0; copy /= 10)
ndig += 1;
if (ndig == 0)
ndig = 1;
// search haystack for occurences of needle
// starting from the right compare digit-by-digit
// "shift" haystack right on each iteration
num_t hay2 = hay;
for (; hay2 != 0; hay2 /= 10) {
num_t hcopy = hay2;
// do the rightmost ndig digits match in both numbers?
int idig = ndig;
int match = 0;
for (num_t need2 = need; idig != 0;
--idig, need2 /= 10, hcopy /= 10) {
// get single current digits from each number
int hdig = hcopy % 10;
int ndig = need2 % 10;
// do they match
match = (hdig == ndig);
if (! match)
break;
}
counter += match;
}
// special case for 0/0 et. al. [yecch]
if (hay == need)
counter = 1;
printf("%s appears in %s exactly %s times\n",
numprt(need), numprt(hay), numprt(counter));
}
return 0;
}
Here's the program output:
12 appears in 123451289 exactly 2 times
123 appears in 123451289 exactly 1 times
1234 appears in 123451289 exactly 1 times
1 appears in 123451289 exactly 2 times
0 appears in 10 exactly 1 times
0 appears in 0 exactly 1 times
1000000000 appears in 1000000000 exactly 1 times
2000000000 appears in 2000000000 exactly 1 times
This looks along the lines of what you're attempting.
You can use the pow() function from math.h to raise 10 to the power of how many digits you need for your modulus operation.
Compile with -lm or make your own function to calculate 10^num_digits
#include <stdio.h>
#include <math.h>
int main() {
int x = 123456789;
double num_digits = 3.0;
int last_digits = x % (int)pow(10.0, num_digits);
printf("x = %d\nLast %d Digits of x = %d\n", x, (int)num_digits, last_digits);
return 0;
}
Outputs:
x = 123456789
Last 3 Digits of x = 789
I think you are trying to ask :- if number1 = 1234567 and number2 = 673, then, length of number2 or number2 has 3 digits, so, you now want the last 3 digits in number1, i.e, '456', if I'm not wrong.
If that is the case, then, what you did to find the number of digits in num2 is correct, i.e,
while (copy2>0) {
counter++; // GETTING THE LENGHT OF THE SECOND NUMBER
copy2/=10;
}
you can do the same for number1 and find out its number of digits, then you can compare whether the number of digits in number2 is less than that in number1. Ex, 3 is less than number of digits in number1, so you can proceed further. Let's say number of digits in number1 is 7 and you want the last 3 digits, so you can do iterate over the digits in number1 till count of digits in number2 and pop out each last digit and store them in an array.
The code:
#include <stdio.h>
int main()
{
int num1,num2;
int count1 = 0, count2 = 0;
scanf("%d",&num1);
scanf("%d",&num2);
if(num1<num2){
int temp = num1;
num1 = num2;
num2 = temp;
}
int copy1 = num1;
int copy2 = num2;
while (copy1>0)
{
count1++;
copy1/=10;
}
while (copy2>0)
{
count2++;
copy2/=10;
}
// printf("num1 has %d digits and num2 has %d digits\n", count1, count2);
if (count1 >= count2)
{
int arr[count2];
int x = count2;
int p = num1;
int i = 0;
while (x > 0)
{
arr[i++] = p%10;
x --;
p/=10;
}
for (int j = 0; j < i; j++)
{
printf("%d ", arr[j]);
}
}
return 0;
}
output : 8 7 6
let's say, num1 = 12345678, num2 = 158, then arr = {8,7,6}.
You must determine the number of digits N of num2 and test if num1 ends with num2 modulo 10N.
Note these tricky issues:
you should not sort num1 and num2: If num2 is greater than num1, the count is obviously 0.
num2 has at least 1 digit even if it is 0.
if num1 and num2 are both 0, the count is 1.
if num2 is greater then INT_MAX / 10, the computation for mod would overflow, but there can only be one match, if num1 == num2.
it is unclear whether the count for 1111 11 should be 2 or 3. We will consider all matches, including overlapping ones.
to handle larger numbers, we shall use unsigned long long instead of int type.
Here is a modified version:
#include <limits.h>
#include <stdio.h>
int main() {
int counter = 0;
unsigned long long num1, num2;
if (scanf("%llu%llu", &num1, &num2) != 2) {
printf("invalid input\n");
return 1;
}
if (num1 == num2) {
/* special case for "0 0" */
counter = 1;
} else
if (num1 > num2 && num2 <= ULLONG_MAX / 10) {
unsigned long long copy1 = num1;
unsigned long long mod = 10;
while (mod < num2) {
mod *= 10;
}
while (copy1 > 0) {
if (copy1 % mod == num2)
counter++;
copy1 /= 10;
}
}
printf("count=%d\n", counter);
return 0;
}
Note that leading zeroes are not supported in either number: 101 01 should produce a count of 1 but after conversion by scanf(), the numbers are 101 and 1 leading to a count of 2. It is non trivial to handle leading zeroes as well as numbers larger than ULLONG_MAX without arrays.
This was the answer that i was looking for but thank you all for helping :)
#include <stdio.h>
#include <math.h>
int main(){
int num1,counter1,counter2,num2,temp,digit,copy1,copy2;
scanf("%d%d",&num1,&num2);
if(num1<num2){
temp = num1;
num1 = num2;
num2 = temp;
}
copy1 = num1;
copy2 = num2;
counter1 = counter2 = 0;
while (copy2>0) {
counter1++;
copy2/=10;
}
counter1 = pow(10,counter1);
if(num1> 1 && num2>1)
while (copy1>0) {
digit = copy1%counter1;
if(digit==num2){
counter2++;
}
copy1/=10;
} else{
if(num2<1){
while (copy1>0) {
digit = copy1%10;
if(digit==copy2){
counter2++;
}
copy1/=10;
}
}
}
printf("%d",counter2);
}
I am writing a program to see if a user entered number is Armstrong or not, here is my code:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main(){
int x = 0;
printf("Enter a natural number: ");
scanf("%d", &x);
int ans = x;
// Digit Counter
int counter = 0; //Variable for number of digits in the user entered number
int b = x; //For each time number can be divided by 10 and isnt 0
for (int i = 1; i <= x; i++){ // Then counter variable is incremented by 1
b /= 10;
if (b != 0){
counter += 1;
}
}
++counter;
//Digit Counter
int sum = 0;
// Digit Finder
int D;
for (int j = 1; j <= x; j++){
D = x % 10; //Shows remainder of number (last digit) when divided by 10
sum += pow(D, counter); //Raises Digit found by counter and adds to sum
printf("%d\n", sum);
x /= 10; // Divides user entered number by 10 to get rid of digit found
}
if (sum == ans){
printf("%d is a Armstrong number! :)", ans);
}else
printf("%d is not an Armstrong number :(", ans);
//Digit Finder
return 0;
}
My problem is that the program works fine apart from one point, when the program is given a Armstrong number which does not start with 1 then it behaves normally and indicates if it is an Armstrong number or not, but when i input a Armstrong number which start with 1 then it will print out the Armstrong number but -1.
For example: If i input something such as 371 which is an Armstrong number it will show that it is an Armstrong number. However if i input 1634 it will output 1633 which is 1 less than 1634.
How can i fix this problem?, also by the way could someone comment on my code and tell me if it seems good and professional/efficient because i am a beginner in C and would like someone else's opinion on my code.
How can I fix this problem.
You know the number of iterations you want to make once you have calculated the digit count. So instead of looping till you reach the value of x:
for (int j = 1; j <= x; j++){
use the digit counter instead:
for (int j = 1; j <= counter; j++) {
also by the way could someone comment on my code and tell me if it seems good and professional/efficient because i am a beginner in C and would like someone else's opinion on my code.
There's a number of things you can do to improve your code.
First and foremost, any piece of code should be properly indented and formatted. Right now your code has no indenting, which makes it more difficult to read and it just looks ugly in general. So, always indent your code properly. Use an IDE or a good text editor, it will help you.
Be consistent in your code style. If you are writing
if (some_cond) {
...
}
else
//do this
It is not consistent. Wrap the else in braces as well.
Always check the return value of a function you use, especially for scanf. It will save you from many bugs in the future.
if (scanf("%d", &x) == 1)
//...all OK...
else
// ...EOF or conversion failure...
exit(EXIT_FAILURE);
Your first for loop will iterate x times uselessly. You can stop when you know that you have hit 0:
for (int i = 1; i <= x; i++){ // Then counter variable is incremented by 1
b /= 10;
if (b == 0){
break;
}
counter += 1;
}
C has ++ operator. Use that instead of doing counter += 1
int D; you create this, but don't initialize it. Always initialize your variables as soon as possible
C has const qualifier keyword, which makes a value immutable. This makes your code more readable, as the reader can immediately tell that this value will not change. In your code, you can change ans variable and make it a const int because it never changes:
const int ans = x;
Use more descriptive names for your variables. ans, D don't tell me anything. Use proper names, so that the reader of your code can easily understand your code.
These are some of the things that in my opinion you should do and keep doing to improve your code and coding skills. I am sure there can be more things though. Keep your code readable and as simple as possible.
The condition in this loop
for (int i = 1; i <= x; i++){ // Then counter variable is incremented by 1
b /= 10;
if (b != 0){
counter += 1;
}
}
does not make sense because there will be numerous redundant iterations of the loop.
For example if x is equal to 153 that is contains only 3 digits the loop will iterate exactly 153 times.
Also additional increment of the variable counter after the loop
++counter;
makes the code logically inconsistent.
Instead of the loop you could write at least the following way
int counter = 0;
int b = x;
do
{
++counter;
} while ( b /= 10 );
This loop iterates exactly the number of times equal to the number of digits in a given number.
In this loop
for (int j = 1; j <= x; j++){
D = x % 10; //Shows remainder of number (last digit) when divided by 10
sum += pow(D, counter); //Raises Digit found by counter and adds to sum
printf("%d\n", sum);
x /= 10; // Divides user entered number by 10 to get rid of digit found
}
it seems you did not take into account that the variable x is decreased inside the body of the loop
x /= 10; // Divides user entered number by 10 to get rid of digit found
So the loop can interrupt its iterations too early. In any case the condition of the loop again does not make great sense the same way as the condition of the first loop and only adds a bug.
The type of used variables that store a given number should be unsigned integer type. Otherwise the user can enter a negative number.
You could write a separate function that checks whether a given number is an Armstrong number.
Here you are.
#include <stdio.h>
int is_armstrong( unsigned int x )
{
const unsigned int Base = 10;
size_t n = 0;
unsigned int tmp = x;
do
{
++n;
} while ( tmp /= Base );
unsigned int sum = 0;
tmp = x;
do
{
unsigned int digit = tmp % Base;
unsigned int power = digit;
for ( size_t i = 1; i < n; i++ ) power *= digit;
sum += power;
} while ( ( tmp /= Base ) != 0 && !( x < sum ) );
return tmp == 0 && x == sum;
}
int main(void)
{
unsigned int a[] =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407,
1634, 8208, 9474, 54748, 92727, 93084, 548834
};
const size_t N = sizeof( a ) / sizeof( *a );
for ( size_t i = 0; i < N; i++ )
{
printf( "%u is %san Armstrong number.\n", a[i], is_armstrong( a[i] ) ? "": "not " );
}
return 0;
}
The program output is
0 is an Armstrong number.
1 is an Armstrong number.
2 is an Armstrong number.
3 is an Armstrong number.
4 is an Armstrong number.
5 is an Armstrong number.
6 is an Armstrong number.
7 is an Armstrong number.
8 is an Armstrong number.
9 is an Armstrong number.
153 is an Armstrong number.
370 is an Armstrong number.
371 is an Armstrong number.
407 is an Armstrong number.
1634 is an Armstrong number.
8208 is an Armstrong number.
9474 is an Armstrong number.
54748 is an Armstrong number.
92727 is an Armstrong number.
93084 is an Armstrong number.
548834 is an Armstrong number.
Please remove j++ from 2nd loop for (int j = 1; j <= x; j++)
I tried this:
void armstrong(int x)
{
// count digits
int counter = 0, temp = x, sum = 0;
while(temp != 0)
{
temp = temp/10;
++counter; // Note: pre increment faster
}
// printf("count %d\n",counter);
temp = x;
while(temp != 0)
{
sum += pow(temp % 10, counter);
temp = temp/10;
}
// printf("sum %d\n",sum);
if(x == sum)
{
printf("Armstrong\n");
}
else
{
printf("No Armstrong\n");
}
}
int main(){
armstrong(371);
armstrong(1634);
return 0;
}
Let's take this and add the ability to handle multiple numeric bases while we're at it. Why? BECAUSE WE CAN!!!! :-)
#include <stdio.h>
#include <math.h>
double log_base(int b, double n)
{
return log(n) / log((double)b);
}
int is_armstrong_number(int b, /* base */
int n)
{
int num_digits = trunc(log_base(b, (double)n)) + 1;
int sum = 0;
int remainder = n;
while(remainder > 0)
{
sum = sum + pow(remainder % b, num_digits);
remainder = (int) (remainder / b);
}
return sum == n;
}
int main()
{
printf("All the following are valid Armstrong numbers\n");
printf(" 407 base 10 - result = %d\n", is_armstrong_number(10, 407));
printf(" 0xEA1 base 16 - result = %d\n", is_armstrong_number(16, 0xEA1));
printf(" 371 base 10 - result = %d\n", is_armstrong_number(10, 371));
printf(" 1634 base 10 - result = %d\n", is_armstrong_number(10, 1634));
printf(" 0463 base 8 - result = %d\n", is_armstrong_number(8, 0463));
printf("All the following are NOT valid Armstrong numbers\n");
printf(" 123 base 10 - result = %d\n", is_armstrong_number(10, 123));
printf(" 0x2446 base 16 - result = %d\n", is_armstrong_number(16, 0x2446));
printf(" 022222 base 8 - result = %d\n", is_armstrong_number(8, 022222));
}
At the start of is_armstrong_number we compute the number of digits directly instead of looping through the number. We then loop through the digits of n in base b, summing up the value of the digit raised to the number of digits in the number, for the given numeric base. Once the remainder hits zero we know there are no more digits to compute and we return a flag indicating if the given number is an Armstrong number in the given base.
The goal of this program is to find the smallest number that can be divided by the numbers 1 to 20 without any remainders. The code is working but it takes 33 seconds. Can I improve it so that it can be faster? How?
#include <stdio.h>
int main(){
int number = 19, i, k;
label:
number++;
k = 0;
for (i = 1; i <= 20; i++){
if (number%i == 0){
k++;
}
}
if (k != 20){
goto label;
}
printf("%d\n", number);
return 0;
}
#include <stdio.h>
/* GCD returns the greatest common divisor of a and b (which must be non-zero).
This algorithm comes from Euclid, Elements, circa 300 BCE, book (chapter)
VII, propositions 1 and 2.
*/
static unsigned GCD(unsigned a, unsigned b)
{
while (0 < b)
{
unsigned c = a % b;
a = b;
b = c;
}
return a;
}
int main(void)
{
static const unsigned Limit = 20;
unsigned LCM = 1;
/* Update LCM to the least common multiple of the LCM so far and the next
i. The least common multiple is obtained by multiplying the numbers
and removing the duplicated common factors by dividing by the GCD.
*/
for (unsigned i = 1; i <= Limit; ++i)
LCM *= i / GCD(LCM, i);
printf("The least common multiple of numbers from 1 to %u is %u.\n",
Limit, LCM);
}
Change
int number = 19 ;
to
int number = 0 ;
then:
number++;
to
number += 20 ;
is an obvious improvement that will have a significant impact even if it is still a somewhat naive brute force approach.
At onlinegdb.com your algorithm took 102 seconds to run whereas this change runs in less that one second and produces the same answer.
The initial product of primes value suggested in a comment will provide a further improvement.
You need to multiply all the least common multiples together, but omit numbers that could be multiplied to get any of the others. This translates to multiply by all primes less than N with each prime number raised to the highest power <= N.
const unsigned primes[] = {
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
};
unsigned long long answer(unsigned n){ //for your example n=20
if (n>46) return 0; //will overflow 64 bit unsigned long long
unsigned long long tmp, ret = 1;
for (unsigned i = 0; primes[i]<=n;++i){ //each prime less than n
tmp = primes[i];
while ((tmp*primes[i])<=n) //highest power less than n
tmp *= primes[i];
ret *= tmp;
}
return ret;
}
usage: printf("%llu", answer(20));
If my math/code is right this should be fast and cover numbers up to 46. If your compiler supports unsigned __int128 it can be modified to go up to 88.
Explanation:
TLDR version: all numbers are either prime or can be made by multiplying primes.
To get the least common multiple of a set of numbers you break each
number into it's prime multiples and multiply the highest number of
each prime together.
Primes less than 20:
2,3,5,7,11,13,17,19
Non primes under 20:
4 = 2*2
6 = 2*3
8 = 2*2*2
9 = 3*3
10 = 2*5
12 = 2*2*3
14 = 2*2*7
15 = 3*5
16 = 2*2*2*2
18 = 2*3*3
20 = 2*2*5
From this we see that the maximum number of 2s is 4 and the maximum
number of 3s is 2.
2 to the 4th <= 20
3 squared <= 20
All powers >1 of the remaining
primes are greater than 20.
Therefore you get:
2*2*2*2*3*3*5*7*11*13*17*19
Which is what you would see if you watched the tmp variable in a
debugger.
Another reason this is faster is that it avoids modulus and division
(It's expensive on a lot of systems)
Here's a way to do it without defining primes or divisions (except for a single sqrt), using a Sieve of Eratosthenes (circa 200 BCE).
I mark composites with 1, and primes^x with -1. Then i just loop over the array of numbers from sqrt(n) to n and pull out the remaining primes and max power primes.
#include <stdio.h>
#include <math.h>
#define n 20
int main()
{
int prime [100]={0};
int rootN = sqrt(n);
unsigned long long inc,oldInc;
int i;
for (i=2; i<rootN; i++)
{
if (prime[i] == 1) continue;
//Classic Sieve
inc = i*i;
while (inc < n)
{
prime[inc] = 1;
inc += i;
}
//Max power of prime
oldInc = i;
inc = i * i;
while (inc < n)
{
prime[inc] = 1;
oldInc=inc;
inc *= i;
}
prime[oldInc] = -1;
prime[i] = 1;
}
inc = 1;
for(i=rootN; i<n; i++)
{
if (prime[i] == 0 || prime[i] == -1)
{
inc = inc * i;
}
}
printf("%llu",inc);
return 0;
}
Luhn algorithm
Used to verify credit card numbers
From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if the product of this doubling operation is greater than 9 (e.g., 8 × 2 = 16), then sum the digits of the products (e.g., 16: 1 + 6 = 7, 18: 1 + 8 = 9) or alternatively subtract 9 from the product (e.g., 16: 16 - 9 = 7, 18: 18 - 9 = 9).
Take the sum of all the digits.
If the total modulo 10 is equal to 0 (if the total ends in zero) then the number is valid according to the Luhn formula; else it is not valid.
Implementation
#include<stdlib.h>
#include<stdio.h>
#include<stddef.h>
int luhnSum(int);
typedef struct{
int quotient;
int remainder;
}Tuple;
Tuple* split(int number){
/* Split positive number into all but its last digit and its last digit */
Tuple *tuple = malloc(sizeof(Tuple));
tuple->quotient = number / 10;
tuple->remainder = number % 10;
return tuple;
}
int sumDigits(int number){
/* Return the sum of digits of positive number n */
Tuple *tuple = NULL;
if(number < 10){
return number;
}else{
tuple = split(number);
return sumDigits(tuple->quotient) + tuple->remainder;
}
}
int luhnSumDouble(int number){
Tuple *tuple = split(number);
int luhnDigit = sumDigits(2*(tuple->remainder));
if(number < 10){
return luhnDigit;
}else{
return luhnSum(tuple->quotient + luhnDigit);
}
}
int luhnSum(int number){
Tuple *tuple = NULL;
if(number < 10){
return number;
}else{
tuple = split(number);
return luhnSumDouble(tuple->quotient) + tuple->remainder;
}
}
int main(void){
}
How to analyse the space & time complexity of mutual recursion code?