I'm trying to integrate the function 1/((1+x^2)x^0.5) using the trapezium rule. I need the precision to be as great as possible so I am therefore increasing the number of strips, N, until the computer cannot recognise a change between the total for consecutive N. However, the end condition is not currently working, leading to continuous integration. Does anyone have any better suggestions than my current code?
Many thanks,
Beth
#include<stdio.h>
#include<math.h>
#include<float.h>
double inter(double x, double h, double y, double N, double total)
{
total= total +0.5*(1/((1+pow(x,2))*sqrt(x)));
x=x+h;
while (x<y)
{
total=total+(1/((1+pow(x,2))*sqrt(x)));
x=x+h;
//printf("x - %.16lf \n", x);
}
total= total +0.5*(1/((1+pow(x,2))*sqrt(x)));
total=total*h;
//printf("t - %lf \n", total);
return total;
}
main()
{
double x,y,total,h,value,newvalue,f, N;
int finish;
x=0.1;
y=1000;
total=0;
N=1000;
finish=0;
value=0;
while(finish==0)
{
h=(y-x)/(N-1);
newvalue=inter(x,h,y,N,total);
printf("h-%.16lf\n", h);
printf("N-%.16lf\n", N);
printf("New value %.16lf\n", newvalue);
printf("c-%.16lf\n", value);
if(value==newvalue)
{
finish=1;
printf("finish-%d\n", finish);
}
else
{
value=newvalue;
newvalue=newvalue-3;
N=N+1000;
printf("newvalue-%lf\n", newvalue);
printf("value-%lf\n", value);
}
}
printf("%lf\n", value);
}
If you wish to create an automatic refinement of your numerical integration, one technique is to look at the relative convergence of your integration.
double previous = 0;
double current = inter( x, (y-x)/(N-1), y, N, total ); // Solve some baseline
do
{
N = N + 1000;
h = (y-x)/(N-1);
previous = current;
current = inter( x, h, y, N, total );
} while( abs( current - previous ) / current > 0.001 );
That code will stop after you observe less than 0.1% relative refinement in your estimation. Decreasing 0.001 will effectively increase your accuracy. Usually the best way to compare doubles is through a tolerance check like:
abs( a - b ) < k
where k is some factor of the order of accuracy you wish to achieve.
This integral is difficult because the f(x) -> ∞ as x -> 0. In this example, I changed the range to 1 to 1000. I also used a summation function to minimize rounding error when summing up a large number of values. The integral from wolframalpha ~= .487474, this program results in ~=.487475 . The exact integral can be found using this link:
integral 1/((1+x^2)sqrt(x))
#include<stdio.h>
#include<math.h>
#include<float.h>
/* clear array */
void clearsum(double asum[2048])
{
size_t i;
for(i = 0; i < 2048; i++)
asum[i] = 0.;
}
/* add a number into array */
void addtosum(double d, double asum[2048])
{
size_t i;
while(1){
/* i = exponent of d */
i = ((size_t)((*(unsigned long long *)&d)>>52))&0x7ff;
if(i == 0x7ff){ /* max exponent, could be overflow */
asum[i] += d;
return;
}
if(asum[i] == 0.){ /* if empty slot store d */
asum[i] = d;
return;
}
d += asum[i]; /* else add slot to d, clear slot */
asum[i] = 0.; /* and continue until empty slot */
}
}
/* return sum from array */
double returnsum(double asum[2048])
{
double sum = 0.;
size_t i;
for(i = 0; i < 2048; i++)
sum += asum[i];
return sum;
}
double fx(double x)
{
return 1./((1.+x*x)*sqrt(x));
}
double inter(double x, double y, double n)
{
double asum[2048]; /* for summation functions */
double h;
double d;
if(n < 1.){
n = 1.;
h = 0.;
} else {
h = (y-x)/(n-1.0);
}
y -= h/2.;
clearsum(asum);
d = .5*h*fx(x);
addtosum(d, asum);
for( ; x < y; x += h){
d = h*fx(x);
addtosum(d, asum);
}
d = .5*h*fx(x);
addtosum(d, asum);
d = returnsum(asum);
return d;
}
int main()
{
double x,y,n,value,newvalue;
x=1.0;
y=1000.;
value=0.;
for(n = 100000000.; 1; n += 100000000.)
{
newvalue=inter(x,y,n);
printf("new value %.16lf %.0lf\n", newvalue, n);
if(fabs(newvalue-value) < (newvalue*1E-7))
break;
value = newvalue;
}
return 0;
}
Using Simpson's rule, the results are more accurate and converge at much smaller values for n:
#include<stdio.h>
#include<math.h>
#include<float.h>
/* clear array */
void clearsum(double asum[2048])
{
size_t i;
for(i = 0; i < 2048; i++)
asum[i] = 0.;
}
/* add a number into array */
void addtosum(double d, double asum[2048])
{
size_t i;
while(1){
/* i = exponent of d */
i = ((size_t)((*(unsigned long long *)&d)>>52))&0x7ff;
if(i == 0x7ff){ /* max exponent, could be overflow */
asum[i] += d;
return;
}
if(asum[i] == 0.){ /* if empty slot store d */
asum[i] = d;
return;
}
d += asum[i]; /* else add slot to d, clear slot */
asum[i] = 0.; /* and continue until empty slot */
}
}
/* return sum from array */
double returnsum(double asum[2048])
{
double sum = 0.;
size_t i;
for(i = 0; i < 2048; i++)
sum += asum[i];
return sum;
}
double fx(double x)
{
return 1./((1.+x*x)*sqrt(x));
}
double simpson(double x, double y, double n)
{
double asum[2048]; /* for summation functions */
double h;
double a;
if(n < 1.){
n = 1.;
h = 0.;
} else {
h = (y-x)/(n-1.0);
}
y += h/2.;
clearsum(asum);
for( ; x < y; x += h){
a = h/6.*(fx(x) + 4.*fx(x + h/2.) + fx(x + h));
addtosum(a, asum);
}
a = returnsum(asum);
return a;
}
int main()
{
double x,y,n,value,newvalue;
x=1.0;
y=1000.;
value=0.;
for(n = 1000.; 1; n += 1000.)
{
newvalue=simpson(x,y,n);
printf("new value %.16lf %.0lf\n", newvalue, n);
if(fabs(newvalue-value) < (newvalue*1E-10))
break;
value = newvalue;
}
return 0;
}
Related
EDIT: I've added the main, factorial, and trapGamma function to give the full picture but I am specifically talking about the for loop for iSum in the I function.
Basically I've run out of ideas and exhausted everywhere I know of to find an answer to this. I need to code a program that will compute a complex function which represents an M/M/1 queue.
The function includes sub functions such as calculating the integral of a gamma function and computing factorials. I've written all the code for the computations but my sum is giving me huge numbers when I would expect nothing higher than about .35
#include <math.h>
#include <stdio.h>
double I(int k, double t);
double trapGamma(double z);
unsigned long long int factorial(unsigned int n);
int main()
{
int k;
int i = 0;
double dt = 0.1;
printf("Ikx = [ \n");
for (t = 14.0 ; t <= 15.0; t += dt)
{
printf("%f " , t);
for (k = 1 ; k <= 10 ; k++)
{
I(k, t);
printf("%f " , I(k, t));
}
printf("\n");
}
printf(" ];\n");
return (0);
}
double I(int k, double t)
{
unsigned long long int x;
unsigned int n = 20;
double numerator, y, pow1, c;
double iSum;
double Ix;
int i = 0;
iSum = 0.0;
Ix = 0.0;
a = .25 * pow(t , 2);
b = pow(a, i);
x = factorial(n);
y = trapGamma(k + i + 1);
iSum = (b / (x * y));
//This is the sum loop that I'm having trouble with, I've broke the iSum equation down for my own readability while coding right above this comment
for (i = 0; i <= 100 ; i++)
{
iSum += i;
}
Ix = (pow((.5 * t), k) ) * iSum;
return Ix;
}
/*
I've checked both the factorial and trapGamma functions and they are giving me the expected results.
*/
unsigned long long int factorial(unsigned int n)
{
if(n <= 1)
return 1;
else
return (n * factorial(n - 1));
}
double trapGamma (double z)
{
int i , N = 100;
double gamma;
double a = 0.0;
double b = 15.0;
double x1, x2, y1, y2;
double areai;
double w = (b - a) / N;
gamma = 0.0;
for (i = 1; i < N; i++)
{
x1 = a + ((i - 1) * w); //the left bound point
x2 = a + (i*w); //the right bound point
y1 = pow(x1,z - 1)*exp(-x1); //the height of our left bound
y2 = pow(x2, z - 1)*exp(-x2); //the height of our right bound
areai = ((y1 + y2) / 2.0) * (x2 - x1);
gamma += areai;
}
return gamma;
}
This is building upon another project where I used a bessel function to create the M/M/1 queue over a 60 second span so I can see what this one is supposed to be. I've checked both my trapGamma and factorial functions results on there own and they are both working as expected.
How are summations supposed to be coded?
If the intent of the posted code is to calculate the modified Bessel function I, there are some pitfalls and useful semplifications to be aware of. Given
Trying to calculate the factorial, the value of the Gamma function, their product and the powers separately for each term of the sum leads to integer overflow sooner than later.
It's better to update the value of each addend of the sum instead.
Also, given that k is a whole, we have Γ(n) = (n - 1)!
The addends are increasingly smaller and, after some iterations, too small to be added to the sum, given the limited precision of type double.
// Evaluates x^k / k! trying not to overflow
double power_over_factorial(double x, int k)
{
double result = 1.0;
for ( int i = 1; i <= k; ++i )
{
result *= x / i;
}
return result;
}
#define MAX_ITERS 20
double modified_Bessel_I(int k, double x)
{
x /= 2;
const double xx = x * x;
double partial = power_over_factorial(x, k);
double old_sum, sum = partial;
int m = 1;
do
{
old_sum = sum;
partial *= xx / ((m + k) * m);
sum += partial;
}
while ( old_sum != sum && ++m < MAX_ITERS );
return sum;
}
Testable here.
I have an assignment to code a program to calculate cos(x) through the Maclaurin approximation. However I must use a function for the cos(x) and another one to calculate the exponentials that go on the denominators inside the cos(x) function. I think most of this is right, but I'm probably missing on something and I can't figure out what.
#include<stdio.h>
#include <stdlib.h>
#include <math.h>
int fat(int);
float cosx(float);
int main()
{
float x1;
/* Original code: **x1 = x1 * 3.14159 / 180;** `transforms the value to radians` */
x1 = x1 * 3.14159 / 180; /* transforms the value to radians */
printf("Insert number:\n");
scanf("%f", &x1);
printf("Cosine of %f = %f", x1, cosx(x1));
return 0;
}
int fat(int y)
{
int n, fat = 1;
for(n = 1; n <= y; n++)
{
fat = fat * n;
}
return fat;
}
float cosx(float x)
{
int i=1, a = 2, b, c = 1, e;
float cos;
while(i < 20)
{
b = c * (pow(x,a)) / e;
cos = 1 - b;
a += 2;
e = fat(a);
c *= -1;
i++;
}
return cos;
}
If I input 0 it returns -2147483648.000000, which is clearly wrong.
First error is uninitialized variable x1, and right after that you have use:
int x1; // <<< uninitiated variable;
**x1 = x1 * 3.14159 / 180;** `transforms the value to radians
this will produce random value, you should put
int x = 0; // or some other value of your choice
In my opinion you should move x1 = x1 * 3.14159/100; after scanf("%d", x1).
Than again uninitiated value e before use.
int i=1, a = 2, b, c = 1, e;
...
b = c * (pow(x,a)) / e;
...
than you have in the line b = c * pow(x,a) where you go out of range of int variable potentially. If e = 1, x = 2 and a > 31 you are out of range for b. Another problem is pow(x,a) is rising much faster than `e. thus you get bigger and bigger values thus you are getting another overflow. And here is the code that works:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
long double fact(int);
long double cosx(double);
long double my_pow (double b, int e);
int main()
{
double x1 = 45.00;
printf("Insert number:\n");
scanf("%lf", &x1);
x1 = x1 * 3.14159 / 180; // ** `transforms the value to radians`
printf("Cosine of %f = %.10LF", x1, cosx(x1));
return 0;
}
long double fact(int y)
{
int n;
double fact = 1;
for(n = 1; n <= y; n++)
{
fact *= n;
}
return fact;
}
long double cosx(double x)
{
int a = 2, c = -1;
long i = 0, lim = 500;
long double cos = 1;
long double b = 0, e = 0;
while(i < lim) {
e = fact(a);
b = c * my_pow(x,a);
cos += b/e;
// printf ("%le %le %le\n", e, b, cos);
a += 2;
c *= -1;
i++;
}
return cos;
}
long double my_pow (double b, int e) {
long double pow = 1;
for (;e > 0; --e, pow *= b)
;
return pow;
}
I have a homework to implement an FIR filter in C and I wonder whether you think I understood the assignment correctly. The program I wrote that I think solves the problem is:
#include <stdio.h>
float FIRfloats[5];
void floatFIR(float newsample)
{
int i;
float sum=0;
FIRfloats[0]=newsample*0.0299;
FIRfloats[1]=FIRfloats[2]*0.4701;
FIRfloats[2]=FIRfloats[3]*0.4701;
FIRfloats[3]=FIRfloats[4]*0.0299;
/* sum */
for(i=0;i<5;i++)
{
sum=sum+FIRfloats[i];
}
printf("Sum: %f\n", sum);
}
int main ()
{
float n=0.0f;
while (scanf("%f", &n) > 0)
{
floatFIR(n);
}
return 0;
}
And the specification is
Before a new sample xk arrives the old samples are shifted to the
right and then each sample is scaled with a coefficient before the
result yk, the total sum of all scaled samples, is calculated
Coefficients should be c0=0.0299, c1=0.4701, c2=0.4701, c3=0.0299.
Do you think that I solved the assignment correctly? I think it seemed too easy and therefore I wonder.
I'm afraid the implementation provided in the question will not provide the correct results.
In FIR (Finite Impulse Response) filter with 4 coefficients the output series (y) for input series (x) is:
y[t] = c0*x[t] + c1*x[t-1] + c2*x[t-2] + c3*x[t-3]
Therefore the implementation should be similar to:
/* add includes (stdio.h and whatever else you'll need...) */
float floatFIR(float inVal, float* x, float* coef, int len)
{
float y = 0.0;
for (int i = (len-1) ; i > 0 ; i--)
{
x[i] = x[i-1];
y = y + (coef[i] * x[i]);
}
x[0] = inVal;
y = y + (coef[0] * x[0]);
return y;
}
main(int argc, char** argv)
{
float coef[4] = {0.0299, 0.4701, 0.4701, 0.0299};
float x[4] = {0, 0, 0, 0}; /* or any other initial condition*/
float y;
float inVal;
while (scanf("%f", &inVal) > 0)
{
y = floatFIR(inVal, x, coef, 4);
}
return 0;
}
This does the shift and multiplication at the same loop (which does not affect results - only is more efficient.)
If you want to follow the spec exactly, you can change floatFir like this:
float floatFIR(float inVal, float* x, float* coef, int len)
{
float y = 0.0;
for (int i = (len-1) ; i > 0 ; i--)
{
x[i] = x[i-1];
}
x[0] = inVal;
for (int i = 0 ; i < len ; i++)
{
y = y + (coef[i] * x[i]);
}
return y;
}
I keep getting the following error message when I run my code in debug.
Windows has triggered a breakpoint in Linear Equations 331.exe.
This may be due to a corruption of the heap, which indicates a bug in
Linear Equations 331.exe or any of the DLLs it has loaded.
Then it comes up with a break/continue.
The code uses a Gauss-Siedel Iterative method to solve a n x n system of linear equations. In this case I need to find the total amount of stretch (X) for 3 bungee cords in series,with 3 people (A,B,C) attached to it. Each solution has a different permutation of the people attached (i.e. A,B,C ; A,C,B ; B,A,C etc.)
We were supplied with a memory allocation header file called alloc.h, though I don't fully understand how it works which may be causing my problem. It worked fine before I started using ALLOCATE() for more variables. Any help in explaining why this is happening would be really helpful.
The main code is first. Header Files are at the bottom. Sorry if the code is a bit messy. I tried to comment as best as I could:
#define _CRT_SECURE_NO_DEPRECATE
#define _CRT_SECURE_NO_WARNINGS
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "allocate.h"
#include "iter.h"
void position_solve(int n,int k,double X[], double x[],double order[]);
void inverse(int n, double A[],double X[],double b[]);
void swap(double *,double*);
void permute(int n, double a[]);
int noofpermutations();
void next(int n,double a[]);
void permutation(int n, double a[]);
int count = 0;
int main(void)
{
int i,j,k,num=0, n=3, p=noofpermutations(n);
double *A = NULL, *m = NULL, *X = NULL,* b= NULL,*K=NULL, *x=NULL, *order=NULL, *length=NULL;
/* Allocate the required memory */
ALLOCATE(A, double, n * n);
ALLOCATE(m, double, n * p);
ALLOCATE(b, double, n);
ALLOCATE(x, double, n * p);
ALLOCATE(K, double, n * p);
ALLOCATE(X, double, n);
ALLOCATE(order,double, n);
ALLOCATE(length,double,1);
/*Defining the Order of A,B,C jumpers where 1 = A, 2 = B, 3 = C*/
printf("+-----------------------------------------------------------------------------+\n");
printf("The Order of Bungee Jumpers A,B and C is represented by \n1,2,and 3 respectively. \n");
printf("\n+-----------------------------------------------------------------------------+\n");
for(i=0;i<n;i++){
order[i] = i+1;
b[i] = 0;
}
length[0] = 0;
/*Hardcoding k(spring constant),x(initial length of each bungee cord) and m(mass in kg) for 3 bunjee jumpers*/
K[0] = 50;
K[1] = 100;
K[2] = 50;
m[0] = -60*9.81;
m[1] = -70*9.81;
m[2] = -80*9.81;
x[0] = 20;
x[1] = 20;
x[2] = 20;
for(i=3;i<n*p;i++){
K[i] = 0;
m[i] = 0;
x[i] = 0;
}
/*Generate Permutations of K,m for the given Order of Bungee Jumpers */
permutation(n,K);
permutation(n,m);
permutation(n,order);
/*Calculate A matrix*/
for(k=0;k<p;k++){
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
if(i==j){
A[i*n + j] = -K[k*n + i] - K[k*n + j];
}
else if(j == (i+1)){
A[i*n+j] = K[k*n + j];
A[j*n+i] = K[k*n + j];
}
else if(j>(i+1)){
A[i*n + j] = 0;
}
}
}
printf("\nFor a Bungee Jumper order %1.0lf %1.0lf %1.0lf :\n",order[k*n],order[k*n+1],order[k*n+2]);
/*Determine multiple X (stretch of bungee in m) vecotrs*/
/*Extract a single RHS vector (from B) into b*/
for(i=0;i<n;i++){
b[i]= m[k*n + i];
}
/*Perform Iterative Method*/
iter_solve(n, A, b, X);
/* Output X solutions*/
printf("\nX = [\n");
for (j = 0; j < n; j++) {
printf("%f ", X[j]);
printf("\n");
}
printf("]\n");
/*Determine Order of Jumpers*/
position_solve(n,k,X,x,order);
printf("--------------------------------------------\n\n");
/*If A,B,C Permutation find inverse*/
if(((int)(order[k*n])==1) && ((int)(order[k*n+1])==2)){
inverse(n,A,X,b);
}
}
/* Free allocated memory */
FREE(A);
FREE(b);
FREE(x);
FREE(X);
FREE(order);
FREE(length);
FREE(m);
return 0;
}
void iter_solve(int n, double A[], double b[], double x[])
{
int i, j, k = 0;
double sum, delta = 0.2, x_store;
/*Check for division by zero and guess X=Zeros*/
for(i=0;i<n;i++){
x[i] = 0;
if(fabs(A[i*n + i]) < ZERO){
//exit if division by zero occurs
printf("Division by zero occurs. Preconditioning A matrix may be required.");
exit(EXIT_FAILURE);
}
}
/*Perform Gauss-Seidel Iteration*/
while( (delta>TOL) && (k<MAX_ITER) ){
for(i = 0; i < n; i++){
x_store = x[i];
sum = 0;
/*Sum for j<i*/
for(j = 0;(j < i); j++){
sum += A[i*n +j]*x[j];
}
/*Sum for i>j*/
for((j=i+1);j<n;j++){
sum += A[i*n +j]*x[j];
}
//Determine X value for current iteration
x[i] = (b[i]- sum)/A[i*n + i];
/*Find the residual difference using L1-norm*/
if((k>0) && (delta>((fabs(x[i] - x_store)/fabs(x[i]))))){
delta = fabs(x[i] - x_store)/fabs(x[i]);
}
}
k++;
}
/*Print Number of iterations*/
printf("\nNumber of iterations: %d using a tolerance of %f \n",k,TOL);
}
void position_solve(int n,int k,double X[], double x[],double order[])
{
int j, position;
double length = 0;
for (j = 0; j < n; j++) {
//printf("%f ", X[j]);
position = (int)(order[k*n +j]);
length += X[j] + x[position];
printf("Bungee Jumper %i: %lf meters\n",position,length);
/*Reset X vector to zero*/
X[j] = 0;
printf("\n");
}
}
void inverse(int n, double A[],double X[],double b[])
{
int i,j;
double *Inv_A;
ALLOCATE(Inv_A, double, n * n);
for(i=0;i<n;i++){
for(j=0;j<n;j++){
if(i==j){
b[i]=1;
}
else{
b[i]=0;
}
}
iter_solve(n,A,b,X);
for(j=0;j<n;j++){
Inv_A[i*n +j] = X[j];
}
}
printf("\nInverse A = [\n");
for(i=0;i<n;i++){
for(j=0;j<n;j++){
printf(" %lf ",A[i*n +j]);
}
printf("\n");
}
printf(" ]\n");
FREE(Inv_A);
}
void swap(double *p1,double *p2)
{ double temp;
temp = *p1;
*p1 = *p2;
*p2 = temp;
}
int noofpermutations(int n)
{ int permutations=1,i;
for(i=1;i<=n;i++)
permutations=permutations*i;
return permutations;
}
void next(int n,double a[])
{ int i;
for(i=0;i<n;i++){
if(count < noofpermutations(n)){
a[(count+1)*n + i] = a[count*n +i];
}
}
count++;
}
void permute(int n, double a[])
{ int j;
while(count<noofpermutations(n)){
for(j=0;j<n-1;j++)
{ swap(&a[count*n + j],&a[(count*n) + (j+1)]);
next(n,a);
}
swap(&a[(count*n)],&a[(count*n) + 1]);
next(n,a);
for(j=n-1;j>0;j--)
{ swap(&a[(count*n)+ j],&a[(count*n) + (j-1)]);
next(n,a);
}
swap(&a[(count*n) + (n-1)],&a[(count*n) + (n-2)]);
next(n,a);
}
}
void permutation(int n,double a[])
{
permute(n,a);
count = 0;
allocate.h
/*
* allocate.h
*
* Dynamic memory allocation macros
*/
#ifndef _allocate_h_
#define _allocate_h_
#include <stdio.h>
#include <stdlib.h>
#define ALLOCATE(VAR,TYPE,SIZE) \
{ \
(VAR) = (TYPE *) calloc ((SIZE), sizeof(TYPE)); \
if ((VAR) == NULL) { \
fprintf (stderr, "ALLOCATE: Memory allocation failed (%s:%d) [%d]\n", __FILE__, __LINE__, (SIZE)); \
exit (EXIT_FAILURE); \
} \
}
#define FREE(VAR) \
{ \
free ((VAR)); \
(VAR) = NULL; \
}
#endif
/*
* iter.h
*
* Routine for solving square systems of linear equations with
* multiple right-hand sides AX=B using Gauss-Seidel iterative methods
*/
/* Zero tolerance for double precision */
#define ZERO 1.0E-12
/* Tolerance for iteration relative change */
#define TOL 0.01
/* Maximum number of iterations */
#define MAX_ITER 500
void iter_solve(int n, double A[], double b[], double x[]);
/*
* Iterative solver, x = (b - LU * xp) / D
* Input:
* n = size of matrix A
* A = factorised A matrix, (nxn) stored by row
* b = right-hand side vector, (nx1)
* Output:
* x = solution vector, (nx1)
* Failure scenarios:
* Division by "zero"
*/
When his error occurs in the debugger, it should tell you where you are in the program that it occurs - hopefully this will let you identify which memory location is being corrupted.
Note that address, restart the program in the debugger, set a breakpoint for after the allocations occurs, then set a data breakpoint on that memory location and run to see who's trashing it.
dlls may cause heap corruption if the runtime library for linking of your project differs from the library's
Here is my perceptron implementation in ANSI C:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
float randomFloat()
{
srand(time(NULL));
float r = (float)rand() / (float)RAND_MAX;
return r;
}
int calculateOutput(float weights[], float x, float y)
{
float sum = x * weights[0] + y * weights[1];
return (sum >= 0) ? 1 : -1;
}
int main(int argc, char *argv[])
{
// X, Y coordinates of the training set.
float x[208], y[208];
// Training set outputs.
int outputs[208];
int i = 0; // iterator
FILE *fp;
if ((fp = fopen("test1.txt", "r")) == NULL)
{
printf("Cannot open file.\n");
}
else
{
while (fscanf(fp, "%f %f %d", &x[i], &y[i], &outputs[i]) != EOF)
{
if (outputs[i] == 0)
{
outputs[i] = -1;
}
printf("%f %f %d\n", x[i], y[i], outputs[i]);
i++;
}
}
system("PAUSE");
int patternCount = sizeof(x) / sizeof(int);
float weights[2];
weights[0] = randomFloat();
weights[1] = randomFloat();
float learningRate = 0.1;
int iteration = 0;
float globalError;
do {
globalError = 0;
int p = 0; // iterator
for (p = 0; p < patternCount; p++)
{
// Calculate output.
int output = calculateOutput(weights, x[p], y[p]);
// Calculate error.
float localError = outputs[p] - output;
if (localError != 0)
{
// Update weights.
for (i = 0; i < 2; i++)
{
float add = learningRate * localError;
if (i == 0)
{
add *= x[p];
}
else if (i == 1)
{
add *= y[p];
}
weights[i] += add;
}
}
// Convert error to absolute value.
globalError += fabs(localError);
printf("Iteration %d Error %.2f %.2f\n", iteration, globalError, localError);
iteration++;
}
system("PAUSE");
} while (globalError != 0);
system("PAUSE");
return 0;
}
The training set I'm using: Data Set
I have removed all irrelevant code. Basically what it does now it reads test1.txt file and loads values from it to three arrays: x, y, outputs.
Then there is a perceptron learning algorithm which, for some reason, is not converging to 0 (globalError should converge to 0) and therefore I get an infinite do while loop.
When I use a smaller training set (like 5 points), it works pretty well. Any ideas where could be the problem?
I wrote this algorithm very similar to this C# Perceptron algorithm:
EDIT:
Here is an example with a smaller training set:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
float randomFloat()
{
float r = (float)rand() / (float)RAND_MAX;
return r;
}
int calculateOutput(float weights[], float x, float y)
{
float sum = x * weights[0] + y * weights[1];
return (sum >= 0) ? 1 : -1;
}
int main(int argc, char *argv[])
{
srand(time(NULL));
// X coordinates of the training set.
float x[] = { -3.2, 1.1, 2.7, -1 };
// Y coordinates of the training set.
float y[] = { 1.5, 3.3, 5.12, 2.1 };
// The training set outputs.
int outputs[] = { 1, -1, -1, 1 };
int i = 0; // iterator
FILE *fp;
system("PAUSE");
int patternCount = sizeof(x) / sizeof(int);
float weights[2];
weights[0] = randomFloat();
weights[1] = randomFloat();
float learningRate = 0.1;
int iteration = 0;
float globalError;
do {
globalError = 0;
int p = 0; // iterator
for (p = 0; p < patternCount; p++)
{
// Calculate output.
int output = calculateOutput(weights, x[p], y[p]);
// Calculate error.
float localError = outputs[p] - output;
if (localError != 0)
{
// Update weights.
for (i = 0; i < 2; i++)
{
float add = learningRate * localError;
if (i == 0)
{
add *= x[p];
}
else if (i == 1)
{
add *= y[p];
}
weights[i] += add;
}
}
// Convert error to absolute value.
globalError += fabs(localError);
printf("Iteration %d Error %.2f\n", iteration, globalError);
}
iteration++;
} while (globalError != 0);
// Display network generalisation.
printf("X Y Output\n");
float j, k;
for (j = -1; j <= 1; j += .5)
{
for (j = -1; j <= 1; j += .5)
{
// Calculate output.
int output = calculateOutput(weights, j, k);
printf("%.2f %.2f %s\n", j, k, (output == 1) ? "Blue" : "Red");
}
}
// Display modified weights.
printf("Modified weights: %.2f %.2f\n", weights[0], weights[1]);
system("PAUSE");
return 0;
}
In your current code, the perceptron successfully learns the direction of the decision boundary BUT is unable to translate it.
y y
^ ^
| - + \\ + | - \\ + +
| - +\\ + + | - \\ + + +
| - - \\ + | - - \\ +
| - - + \\ + | - - \\ + +
---------------------> x --------------------> x
stuck like this need to get like this
(as someone pointed out, here is a more accurate version)
The problem lies in the fact that your perceptron has no bias term, i.e. a third weight component connected to an input of value 1.
w0 -----
x ---->| |
| f |----> output (+1/-1)
y ---->| |
w1 -----
^ w2
1(bias) ---|
The following is how I corrected the problem:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define LEARNING_RATE 0.1
#define MAX_ITERATION 100
float randomFloat()
{
return (float)rand() / (float)RAND_MAX;
}
int calculateOutput(float weights[], float x, float y)
{
float sum = x * weights[0] + y * weights[1] + weights[2];
return (sum >= 0) ? 1 : -1;
}
int main(int argc, char *argv[])
{
srand(time(NULL));
float x[208], y[208], weights[3], localError, globalError;
int outputs[208], patternCount, i, p, iteration, output;
FILE *fp;
if ((fp = fopen("test1.txt", "r")) == NULL) {
printf("Cannot open file.\n");
exit(1);
}
i = 0;
while (fscanf(fp, "%f %f %d", &x[i], &y[i], &outputs[i]) != EOF) {
if (outputs[i] == 0) {
outputs[i] = -1;
}
i++;
}
patternCount = i;
weights[0] = randomFloat();
weights[1] = randomFloat();
weights[2] = randomFloat();
iteration = 0;
do {
iteration++;
globalError = 0;
for (p = 0; p < patternCount; p++) {
output = calculateOutput(weights, x[p], y[p]);
localError = outputs[p] - output;
weights[0] += LEARNING_RATE * localError * x[p];
weights[1] += LEARNING_RATE * localError * y[p];
weights[2] += LEARNING_RATE * localError;
globalError += (localError*localError);
}
/* Root Mean Squared Error */
printf("Iteration %d : RMSE = %.4f\n",
iteration, sqrt(globalError/patternCount));
} while (globalError > 0 && iteration <= MAX_ITERATION);
printf("\nDecision boundary (line) equation: %.2f*x + %.2f*y + %.2f = 0\n",
weights[0], weights[1], weights[2]);
return 0;
}
... with the following output:
Iteration 1 : RMSE = 0.7206
Iteration 2 : RMSE = 0.5189
Iteration 3 : RMSE = 0.4804
Iteration 4 : RMSE = 0.4804
Iteration 5 : RMSE = 0.3101
Iteration 6 : RMSE = 0.4160
Iteration 7 : RMSE = 0.4599
Iteration 8 : RMSE = 0.3922
Iteration 9 : RMSE = 0.0000
Decision boundary (line) equation: -2.37*x + -2.51*y + -7.55 = 0
And here's a short animation of the code above using MATLAB, showing the decision boundary at each iteration:
It might help if you put the seeding of the random generator at the start of your main instead of reseeding on every call to randomFloat, i.e.
float randomFloat()
{
float r = (float)rand() / (float)RAND_MAX;
return r;
}
// ...
int main(int argc, char *argv[])
{
srand(time(NULL));
// X, Y coordinates of the training set.
float x[208], y[208];
Some small errors I spotted in your source code:
int patternCount = sizeof(x) / sizeof(int);
Better change this to
int patternCount = i;
so you doesn't have to rely on your x array to have the right size.
You increase iterations inside the p loop, whereas the original C# code does this outside the p loop. Better move the printf and the iteration++ outside the p loop before the PAUSE statement - also I'd remove the PAUSE statement or change it to
if ((iteration % 25) == 0) system("PAUSE");
Even doing all those changes, your program still doesn't terminate using your data set, but the output is more consistent, giving an error oscillating somewhere between 56 and 60.
The last thing you could try is to test the original C# program on this dataset, if it also doesn't terminate, there's something wrong with the algorithm (because your dataset looks correct, see my visualization comment).
globalError will not become zero, it will converge to zero as you said, i.e. it will become very small.
Change your loop like such:
int maxIterations = 1000000; //stop after one million iterations regardless
float maxError = 0.001; //one in thousand points in wrong class
do {
//loop stuff here
//convert to fractional error
globalError = globalError/((float)patternCount);
} while ((globalError > maxError) && (i<maxIterations));
Give maxIterations and maxError values applicable to your problem.