Sort structure of arrays using qsort - c

I have a stucture containing two arrays: the row- and the column-index of a matrix. These indices are not order and I would like to sort them using qsort.
What I do not want to use
I am aware that this is easy if I have an array of structures. The could then looks as follows
// structure to store the row/column index
typedef struct Index {
int row;
int col;
} Index;
// function to compare two entries
int cmp(const void *a, const void *b){
Index *Ia = (Index *) a;
Index *Ib = (Index *) b;
if(Ia->row < Ib->row ) return -1;
if(Ia->row == Ib->row && Ia->col < Ib->col) return -1;
if(Ia->row == Ib->row && Ia->col == Ib->col) return 0;
if(Ia->row == Ib->row && Ia->col > Ib->col) return 1;
if(Ia->row > Ib->row ) return 1;
}
// main program
int main(void) {
int N = 3;
Index mat[N];
// fill the matrix with fictitious data
mat[0].row = 1; mat[0].col = 3;
mat[1].row = 0; mat[0].col = 2;
mat[2].row = 0; mat[0].col = 1;
// sort the "matrix": first ascending rows, then ascending columns
qsort(mat,N,sizeof(Index),cmp);
return 0;
}
What I do want to use
My program is constructed such that I do not have an array of structures, but I have a structure of arrays:
// define structure
typedef struct Matrix {
int* row;
int* col;
} Matrix;
// main program
int main(void) {
// define fictitious data
int row[3] = { 1 , 1 , 0 };
int col[3] = { 3 , 2 , 1 };
// define matrix
Sparse mat;
mat.row = row;
mat.col = col;
// sort
// ...?
return 0;
}
I want to sort the row/column index such as above. So far I copied the data to an array of structures, sorted, and copied back. However, the data-set I am using is so large that I want to avoid this.
Thanks!

Not an answer but a comment on the way you are using the compare() function in qsort(). It would be more efficient like this.
int cmp(const void *a, const void *b){
Index *Ia = (Index *) a;
Index *Ib = (Index *) b;
if(Ia->row < Ib->row) return -1;
if(Ia->row > Ib->row) return 1;
if(Ia->col < Ib->col) return -1;
if(Ia->col > Ib->col) return 1;
return 0;
}

If you don't want to use additional memory then you should write your qsort like below (I made only short tests):
Original source of qsort: http://en.wikibooks.org/wiki/Algorithm_Implementation/Sorting/Quicksort
#include <stdio.h>
typedef struct Matrix {
int* row;
int* col;
} Matrix;
int cmp(Matrix* m, int a, int b)
{
if( m->row[a] != m->row[b] )
return m->row[a] - m->row[b];
return m->col[a] - m->col[b];
}
void swap(Matrix *m, int l, int r)
{
int tmp;
tmp = m->row[l];
m->row[l] = m->row[r];
m->row[r] = tmp;
tmp = m->col[l];
m->col[l] = m->col[r];
m->col[r] = tmp;
}
void sort(Matrix* tab, int begin, int end)
{
if (end > begin) {
int pivot = begin;
int l = begin;
int r = end;
while(l < r) {
if (cmp(tab, l, pivot) <= 0) {
++l;
} else if ( cmp(tab, r, pivot) > 0 ) {
--r;
} else if ( l < r ) {
swap(tab, l, r);
}
}
--l;
swap(tab, begin, l);
sort(tab, begin, l);
sort(tab, r, end);
}
}
int main(void) {
const int N = 3;
Matrix matrix;
int row[N] = { 1 , 1 , 0 };
int col[N] = { 3 , 2 , 1 };
matrix.row = row;
matrix.col = col;
sort( &matrix, 0, N );
for(int i = 0; i < N; ++i)
printf("%d %d\n", matrix.row[i], matrix.col[i]);
return 0;
}

#include <stdio.h>
#include <stdlib.h>
typedef struct Matrix {
int* row;
int* col;
} Matrix;
Matrix *mat_cmp;//see from the comparison function
int cmp(const void *a, const void *b){
int ia = *(int *)a;
int ib = *(int *)b;
int ra = mat_cmp->row[ia];
int rb = mat_cmp->row[ib];
if(ra == rb){
int ca = mat_cmp->col[ia];
int cb = mat_cmp->col[ib];
return (ca > cb) - (ca < cb);
} else
return (ra > rb) - (ra < rb);
}
#define N 3
int main(void) {
int row[N] = { 1 , 1 , 0 };
int col[N] = { 3 , 2 , 1 };
int i, index[N];
Matrix mat = { .row=row, .col=col};
for(i=0; i<N; ++i)
index[i] = i;//set index(0..N-1)
mat_cmp = &mat;
qsort(index, N, sizeof(*index), cmp);
for(i=0;i<N;i++){
printf("%d,%d\n", mat.row[index[i]], mat.col[index[i]]);
}
return 0;
}

Related

having trouble with this c quick sort while using an array struct

The program doesn't crash, the build is successful, and it runs through the rest of main properly. The only problem is that the sort doesn't actually sort the array.
I left out the creation of the array and the rest of main simply because I've already tested them with another sort, and they work properly. However I'm supposed to use a higher level sort so I have to change things.
//struct for the array
typedef double darray_value_t;
typedef struct darray_t_tag {
darray_value_t *data;
size_t size;
size_t capacity;
} darray_t;
//top of main
quickSort(&dataset, 0, dataset.size - 1);
//rest of main
//functions used to for the quick sort
void quickSort(darray_t *dataset, int lowValue, int highValue) {
if (lowValue < highValue) {
int part = partition(dataset, lowValue, highValue);
quickSort(dataset, lowValue, part - 1);
quickSort(dataset, part + 1, highValue);
}
}
darray_value_t partition(darray_t *dataset, int lowValue, int highValue) {
int pivot = dataset->data[highValue];
int i = (lowValue - 1);
for (int j = lowValue; j < highValue; j++) {
if (dataset->data[j] <= pivot) {
i++;
swapValues(&dataset->data[i], &dataset->data[j]);
}
}
swapValues(&dataset->data[i + 1], &dataset->data[highValue]);
return (i + 1);
}
void swapValues(darray_value_t *a, darray_value_t *b) {
darray_value_t temp = *a;
*a = *b;
*b = temp;
}
There are multiple problems in your code:
the return value of partition should be int, not darray_value_t,
conversely, the type of pivot should be darray_value_t, not int.
Here is a modified version:
#include <stdio.h>
//struct for the array
typedef double darray_value_t;
typedef struct darray_t_tag {
darray_value_t *data;
size_t size;
size_t capacity;
} darray_t;
void swapValues(darray_value_t *a, darray_value_t *b) {
darray_value_t temp = *a;
*a = *b;
*b = temp;
}
int partition(darray_t *dataset, int lowValue, int highValue) {
darray_value_t pivot = dataset->data[highValue];
int i = lowValue;
for (int j = lowValue; j < highValue; j++) {
if (dataset->data[j] <= pivot) {
swapValues(&dataset->data[i++], &dataset->data[j]);
}
}
swapValues(&dataset->data[i], &dataset->data[highValue]);
return i;
}
//functions used to for the quick sort
void quickSort(darray_t *dataset, int lowValue, int highValue) {
if (lowValue < highValue) {
int part = partition(dataset, lowValue, highValue);
quickSort(dataset, lowValue, part - 1);
quickSort(dataset, part + 1, highValue);
}
}
int main() {
darray_value_t arr[] = { 2.0, 1.5, 4.5, -1 };
darray_t dataset = { arr, 4, 4 };
quickSort(&dataset, 0, dataset.size - 1);
for (size_t i = 0; i < dataset.size; i++) {
printf(" %g", dataset.data[i]);
}
printf("\n");
return 0;
}

How to sort a struct of a pair of integers using quicksort?

Suppose I have the following struct:
struct Pair {
int x;
int y;
}
I want to sort the array by the first element in the pair, i.e. x and then by the second element so if we are given the following:
input: [(1,2), (1,0), (2,3), (1,4), (2,2)]
output: [(1,0), (1,2), (1,4), (2,2), (2,3)]
Right now I have two functions, one of them sorts the array by first element and the second one sorts it by second element but this is less efficient. How can I iterate through the array once and achieve the desired result?
void sort1(Pair ps[], int size) {
int i, j;
for (i = 0; i < size; i++) {
for (j = i + 1; j < size; j++) {
if (ps[j].x > ps[j+1].x) {
Pair temp = ps[j+1];
ps[j+1] = ps[j];
ps[j] = temp;
}
}
}
}
void sort2(Pair ps[], int size) {
int i, j;
for (i = 0; i < size; i++) {
for (j = i + 1; j < size; j++) {
if (ps[j].y > ps[j+1].y) {
Pair temp = ps[j+1];
ps[j+1] = ps[j];
ps[j] = temp;
}
}
}
}
Also, is there a quick way to do this using a built-in sorting function?
You can use qsort() which is a C library implementation of quicksort.
In order to use this function, you need to design a cmp function which compares two x values against one another, and if their are ties, then sort by y.
In order for this to not be cluttered into one cmp function, you can firstly make a smaller function which tests equality of two integers:
int compare_int(const int a , const int b) {
if (a < b) {
return -1;
} else if (a > b) {
return 1;
}
return 0;
}
Then you can integrate this into your main cmp function, which qsort() will be calling. This function can simply be:
int cmp_func(const void *a, const void *b) {
const pair_t *num1 = (pair_t *)a;
const pair_t *num2 = (pair_t *)b;
if (num1->x == num2->x) {
return compare_int(num1->y, num2->y);
} else if (num1->x > num2->x) {
return +1;
}
return -1;
}
Then you can simply call qsort() as the following:
qsort(ps, sizeof(ps)/sizeof(ps[0]), sizeof(pair_t), cmp_func);
Here is some example code which does this:
#include <stdio.h>
#include <stdlib.h>
#define ARRAYSIZE(x) ((sizeof(x))/sizeof(x[0]))
typedef struct {
int x;
int y;
} pair_t;
int compare_int(const int a , const int b) {
if ( a < b ) {
return -1;
} else if ( a > b ) {
return 1;
}
return 0;
}
int cmp_func(const void *a, const void *b) {
const pair_t *num1 = (pair_t *)a;
const pair_t *num2 = (pair_t *)b;
if (num1->x == num2->x) {
return compare_int(num1->y, num2->y);
} else if (num1->x > num2->x) {
return +1;
}
return -1;
}
void print_array(pair_t ps[], size_t n) {
printf("[");
for (size_t i = 0; i < n; i++) {
printf("(%d,%d)", ps[i].x, ps[i].y);
if (i != n-1) {
printf(", ");
}
}
printf("]\n");
}
int main(void) {
pair_t ps[] = {{1,2}, {1,0}, {2,3}, {1,4}, {2,2}};
printf("Input: ");
print_array(ps, ARRAYSIZE(ps));
qsort(ps, ARRAYSIZE(ps), sizeof(pair_t), cmp_func);
printf("Output: ");
print_array(ps, ARRAYSIZE(ps));
return 0;
}
Which outputs:
Input: [(1,2), (1,0), (2,3), (1,4), (2,2)]
Output: [(1,0), (1,2), (1,4), (2,2), (2,3)]
Note: your original code, which is implementing bubble sort, has O(n^2) run-time on average. However, if you use qsort() instead, you will be able to achieve a much faster average of O(logN) run-time. This difference will help achieve quicker results if n grows larger.
You just need a proper function to compare two pairs:
int comparePairs (const void * a, const void * b)
{
const Pair* A = (const Pair*) a;
const Pair* B = (const Pair*) b;
return (A.x == B.x) ? (A.y - B.y) : (A.x - B.x);
}
Then you can use the built-in function qsort.

qsort structures on the basis of one element sorting [duplicate]

I'm not C expert and I've read through the forum, but I still need some advice regarding a sorting problem on C.
I have 4 dynamic arrays of doubles in C. All of them are the same size, and lets say n. What I want to do is to sort all of them using one of the arrays as first order and a second array as my second order. So if the arrays are *x, *y, *w and *z. I want to sort them according to the values of *x, then *y.
I must do this efficiently because the arrays are quite large.
Any help will be much appreciated.
The easy way to do this would be to map your four separate arrays onto a single array of a struct type like
struct rec {
double x;
double y;
double w;
double z;
};
struct rec *arr = malloc( sizeof *arr * N ); // where N is the number of
// elements in each array
if ( !arr )
// malloc failed, handle error somehow
for ( size_t i = 0; i < N; i++ )
{
arr[i].x = x[i];
arr[i].y = y[i];
arr[i].w = w[i];
arr[i].z = z[i];
}
and then create a comparison function to pass to qsort:
int cmpRec( const void *lhs, const void *rhs )
{
struct rec *l = lhs;
struct rec *r = rhs;
if ( l->x < r->x )
return -1;
else if ( l->x > r->x )
return 1;
else
{
if ( l->y < r->y )
return -1;
else if ( l->y > r->y )
return 1;
else
return 0;
}
return 0;
}
Now you can use the qsort library function to sort that array of struct:
qsort( arr, N, sizeof *arr, cmpRec );
Once that array is sorted, you can map the results back onto your four original arrays.
Clearly, sorting this using standard qsort() is not going to work; there isn't a mechanism for passing four arrays.
Equally clearly, if the data were structured as an array of structures, then using qsort() would be feasible.
Question 1: Is it feasible to create an array of structures, load it, sort it, and then unload back into the original arrays?
Question 2: Another option is to sort an array of integers:
int indexes[n];
for (int i = 0; i < n; i++)
indexes[i] = i;
qsort(indexes, n, sizeof(indexes[0]), comparator);
The comparator function would have to be able to access the x and y arrays as file scope variables:
int comparator(void const *v1, void const *v2)
{
int i1 = *(int *)v1;
int i2 = *(int *)v2;
extern double *x, *y;
if (x[i1] > x[i2])
return +1;
else if (x[i1] < x[i2])
return -1;
else if (y[i1] > y[i2])
return +1;
else if (y[i1] < y[i2])
return -1;
else
return 0;
}
You'd then be able to access the arrays using x[indexes[i]] etc to access the ith element in sorted order.
Is that acceptable?
If that is not convenient either, then you will end up writing your own sort; it isn't horribly painful, but will require some care.
I spent some time adapting an existing sort test framework to this scenario. The full code is quite large because it includes a lot of testing support code. The core function (compare, swap, partition and quicksort) are here (122 lines, including comment and blank lines):
/* SO 20271977 - sort arrays x, y, z, w (type double, size n) in parallel based on values in x and y */
/*
** To apply this to the real code, where there are 4 arrays to be sorted
** in parallel, you might write:
**
** Array4 a;
** a.x = x;
** a.y = y;
** a.z = z;
** a.w = w;
** a.n = n;
** quicksort_random(&a);
**
** Or even:
**
** quicksort_random((Array4){ .n = n, .x = x, .y = y, .z = z, .w = w });
**
** combining designated initializers and compound literals. Or you could write a
** trivial wrapper so that you can call:
**
** quicksort_random_wrapper(n, x, y, z, w);
*/
/* SOF so-20271977.h */
#include <stddef.h>
typedef struct Array4
{
size_t n;
double *x;
double *y;
double *z;
double *w;
} Array4;
extern void quicksort_random(Array4 *A);
/* EOF so-20271977.h */
#include <assert.h>
#include <stdlib.h> /* lrand48() */
/*
** Note that a more careful implementation would use nrand48() instead
** of lrand48() to prevent its random number generation from interfering
** with other uses of the x-rand48() functions.
*/
typedef size_t (*Part)(Array4 *A, size_t p, size_t r);
static void quicksort_partition(Array4 *A, size_t p, size_t r, Part partition);
static size_t partition_random(Array4 *A, size_t p, size_t r);
/* Quick Sort Wrapper function - specifying random partitioning */
void quicksort_random(Array4 *A)
{
quicksort_partition(A, 0, A->n - 1, partition_random);
}
/* Main Quick Sort function */
static void quicksort_partition(Array4 *A, size_t p, size_t r, Part partition)
{
if (p < r)
{
size_t q = (*partition)(A, p, r);
assert(p <= q && q <= r);
if (q > 0)
quicksort_partition(A, p, q-1, partition);
quicksort_partition(A, q+1, r, partition);
}
}
static inline int compare(Array4 const *A, size_t p, size_t r)
{
if (A->x[p] < A->x[r])
return -1;
else if (A->x[p] > A->x[r])
return +1;
if (A->y[p] < A->y[r])
return -1;
else if (A->y[p] > A->y[r])
return +1;
else
return 0;
}
static inline size_t random_int(size_t p, size_t r)
{
return(lrand48() % (r - p + 1) + p);
}
static inline void swap(Array4 *A, size_t i, size_t j)
{
double d;
d = A->x[i];
A->x[i] = A->x[j];
A->x[j] = d;
d = A->y[i];
A->y[i] = A->y[j];
A->y[j] = d;
d = A->z[i];
A->z[i] = A->z[j];
A->z[j] = d;
d = A->w[i];
A->w[i] = A->w[j];
A->w[j] = d;
}
static size_t partition_random(Array4 *A, size_t p, size_t r)
{
size_t pivot = random_int(p, r);
swap(A, pivot, r);
size_t i = p-1;
size_t j = p;
while (j <= r)
{
if (compare(A, j, r) <= 0)
swap(A, j, ++i);
j++;
}
return i;
}
The test framework (quite ridiculously elaborate if it weren't that I already had a variant of it on hand) is 369 lines including blank lines and comment lines — and all the code above:
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define FLTFMT "%13.6f"
typedef struct Array4
{
size_t n;
double *x;
double *y;
double *z;
double *w;
} Array4;
static int trace = 0;
static void *xmalloc(size_t size)
{
void *space = malloc(size);
if (space == 0)
{
fprintf(stderr, "Out of memory (%zu)\n", size);
exit(1);
}
return space;
}
void quicksort_last(Array4 *A);
void quicksort_random(Array4 *A);
void selectionsort(Array4 *A);
static inline int compare(Array4 const *A, size_t p, size_t r)
{
if (A->x[p] < A->x[r])
return -1;
else if (A->x[p] > A->x[r])
return +1;
if (A->y[p] < A->y[r])
return -1;
else if (A->y[p] > A->y[r])
return +1;
else
return 0;
}
static void dump_array(char const *tag, Array4 const *A)
{
printf("%s [%zu..%zu]:\n", tag, (size_t)0, A->n-1);
for (size_t i = 0; i < A->n; i++)
printf("(" FLTFMT ", " FLTFMT ", " FLTFMT ", " FLTFMT ")\n",
A->x[i], A->y[i], A->z[i], A->w[i]);
}
static void chk_sort(Array4 const *A)
{
for (size_t i = 0; i < A->n - 1; i++)
{
//if (compare(A, i, i+1) > 0)
{
if (A->x[i] > A->x[i+1])
{
printf("Out of order: A.x[%zu] = " FLTFMT ", A.x[%zu] = " FLTFMT "\n",
i, A->x[i], i+1, A->x[i+1]);
}
else if ((A->x[i] == A->x[i+1] && A->y[i] > A->y[i+1]))
{
printf("Out of order: A.x[%zu] = " FLTFMT ", A.x[%zu] = " FLTFMT ", "
"A.y[%zu] = " FLTFMT ", A.y[%zu] = " FLTFMT "\n",
i, A->x[i], i+1, A->x[i+1], i, A->y[i], i+1, A->y[i+1]);
}
}
}
}
static inline void set(Array4 *A, size_t p, double d)
{
A->x[p] = d;
A->y[p] = d + drand48() - 0.5;
A->z[p] = d / 2.0;
A->w[p] = d * 2.0;
}
static void load_random(Array4 *A)
{
size_t size = A->n;
for (size_t i = 0; i < size; i++)
{
A->x[i] = drand48() * size;
A->y[i] = drand48() * size + drand48() - 0.5;
A->z[i] = drand48() * size / 2.0;
A->w[i] = drand48() * size * 2.0;
}
}
static void load_ascending(Array4 *A)
{
for (size_t i = 0; i < A->n; i++)
set(A, i, i);
}
static void load_descending(Array4 *A)
{
for (size_t i = 0; i < A->n; i++)
set(A, i, A->n - i);
}
static void load_uniform(Array4 *A)
{
for (size_t i = 0; i < A->n; i++)
set(A, i, A->n);
}
static void load_organpipe(Array4 *A)
{
for (size_t i = 0; i <= A->n / 2; i++)
set(A, i, i);
for (size_t i = A->n / 2 + 1; i < A->n; i++)
set(A, i, A->n - i);
}
static void load_invorganpipe(Array4 *A)
{
size_t range = A->n / 2;
for (size_t i = 0; i < A->n / 2; i++)
set(A, i, range - i);
for (size_t i = A->n / 2 + 1; i < A->n; i++)
set(A, i, i - range);
}
typedef void (*Load)(Array4 *A);
typedef void (*Sort)(Array4 *A);
typedef size_t (*Part)(Array4 *A, size_t p, size_t r);
static void test_one_sort(Array4 *A, Sort sort, char const *s_tag,
char const *l_tag, char const *z_tag)
{
if (trace)
{
printf("%s-%s-%s:", z_tag, l_tag, s_tag);
dump_array("Before", A);
}
clock_t start = clock();
(*sort)(A);
clock_t finish = clock();
double sec = (finish - start) / (double)CLOCKS_PER_SEC;
printf("%s-%s-%s: %13.6f\n", z_tag, l_tag, s_tag, sec);
chk_sort(A);
if (trace)
{
printf("%s-%s-%s:", z_tag, l_tag, s_tag);
dump_array("After", A);
}
fflush(stdout);
}
static Array4 *alloc_array(size_t size)
{
Array4 *A = xmalloc(sizeof(*A));
A->n = size;
A->x = xmalloc(size * sizeof(A->x[0]));
A->y = xmalloc(size * sizeof(A->y[0]));
A->z = xmalloc(size * sizeof(A->z[0]));
A->w = xmalloc(size * sizeof(A->w[0]));
return A;
}
static Array4 *dup_array(Array4 *A)
{
size_t size = A->n;
Array4 *B = alloc_array(size);
if (B != 0)
{
B->n = size;
memmove(B->x, A->x, size * sizeof(A->x[0]));
memmove(B->y, A->y, size * sizeof(A->y[0]));
memmove(B->z, A->z, size * sizeof(A->z[0]));
memmove(B->w, A->w, size * sizeof(A->w[0]));
}
return B;
}
static void free_array(Array4 *A)
{
free(A->x);
free(A->y);
free(A->z);
free(A->w);
free(A);
}
static void test_set_sorts(Array4 *A, char const *l_tag, char const *z_tag)
{
struct sorter
{
Sort function;
char const *tag;
} sort[] =
{
{ quicksort_last, "QS.L" },
{ quicksort_random, "QS.R" },
{ selectionsort, "SS.N" },
};
enum { NUM_SORTS = sizeof(sort) / sizeof(sort[0]) };
for (int i = 0; i < NUM_SORTS; i++)
{
Array4 *B = dup_array(A);
test_one_sort(B, sort[i].function, sort[i].tag, l_tag, z_tag);
free(B);
}
}
static void test_set_loads(size_t size, char const *z_tag)
{
struct loader
{
Load function;
char const *tag;
} load[] =
{
{ load_random, "R" },
{ load_ascending, "A" },
{ load_descending, "D" },
{ load_organpipe, "O" },
{ load_invorganpipe, "I" },
{ load_uniform, "U" },
};
enum { NUM_LOADS = sizeof(load) / sizeof(load[0]) };
Array4 *A = alloc_array(size);
for (int i = 0; i < NUM_LOADS; i++)
{
load[i].function(A);
test_set_sorts(A, load[i].tag, z_tag);
}
free_array(A);
}
/* Main Quick Sort function */
static void quicksort_partition(Array4 *A, size_t p, size_t r, Part partition)
{
if (p < r)
{
size_t q = (*partition)(A, p, r);
assert(p <= q && q <= r);
if (q > 0)
quicksort_partition(A, p, q-1, partition);
quicksort_partition(A, q+1, r, partition);
}
}
static size_t partition_random(Array4 *A, size_t p, size_t r);
static size_t partition_last(Array4 *A, size_t p, size_t r);
/* Quick Sort Wrapper function - specifying random partitioning */
void quicksort_random(Array4 *A)
{
quicksort_partition(A, 0, A->n - 1, partition_random);
}
/* Quick Sort Wrapper function - specifying partitioning about last element */
void quicksort_last(Array4 *A)
{
quicksort_partition(A, 0, A->n - 1, partition_last);
}
static inline size_t random_int(size_t p, size_t r)
{
return(lrand48() % (r - p + 1) + p);
}
static inline void swap(Array4 *A, size_t i, size_t j)
{
double d;
d = A->x[i];
A->x[i] = A->x[j];
A->x[j] = d;
d = A->y[i];
A->y[i] = A->y[j];
A->y[j] = d;
d = A->z[i];
A->z[i] = A->z[j];
A->z[j] = d;
d = A->w[i];
A->w[i] = A->w[j];
A->w[j] = d;
}
static size_t partition_random(Array4 *A, size_t p, size_t r)
{
size_t pivot = random_int(p, r);
swap(A, pivot, r);
size_t i = p-1;
size_t j = p;
while (j <= r)
{
if (compare(A, j, r) <= 0)
swap(A, j, ++i);
j++;
}
return i;
}
static size_t partition_last(Array4 *A, size_t p, size_t r)
{
size_t i = p-1;
size_t j = p;
while (j <= r)
{
if (compare(A, j, r) <= 0)
swap(A, j, ++i);
j++;
}
return i;
}
/* Selection Sort algorithm */
void selectionsort(Array4 *A)
{
size_t r = A->n;
for (size_t p = 0; p < r; p++)
{
for (size_t i = p; i < r; i++)
{
if (compare(A, p, i) > 0)
swap(A, p, i);
}
}
}
/*
** To apply this to the real code, where there are 4 arrays to be sorted
** in parallel, you might write:
**
** Array4 a;
** a.x = x;
** a.y = y;
** a.z = z;
** a.w = w;
** a.n = n;
** quicksort_random(&a);
**
** Or even:
**
** quicksort_random((Array4){ .n = n, .x = x, .y = y, .z = z, .w = w });
**
** combining designated initializers and compound literals. Or you could write a
** trivial wrapper so that you can call:
**
** quicksort_random_wrapper(n, x, y, z, w);
*/
int main(void)
{
srand48((long)time(0));
for (size_t i = 10; i <= 40; i += 10)
{
char buffer[10];
snprintf(buffer, sizeof(buffer), "%zuK", i);
test_set_loads(1000*i, buffer);
}
return 0;
}
If you can't use qsort with
typedef struct Point {
double x;
double y;
double w;
double z;
} Point;
Use qsort with
typedef struct UglyThing {
double x;
int i;
} UglyThing;
Create an array of size n, fill x with x values, i with index.
Call qsort. At the end, i will store the permutation order.
Swap the three other arrays according to the permutation order.
Then do the same with little arrays ("with same x") in the y direction.
If this ugly trick is not possible, then I don't see any other solution than reinventing the wheel.
(edit : I have just seen Andrew said something very close to this answer...sorry!)
Bye,
Francis

Array sorting in C

I'm not C expert and I've read through the forum, but I still need some advice regarding a sorting problem on C.
I have 4 dynamic arrays of doubles in C. All of them are the same size, and lets say n. What I want to do is to sort all of them using one of the arrays as first order and a second array as my second order. So if the arrays are *x, *y, *w and *z. I want to sort them according to the values of *x, then *y.
I must do this efficiently because the arrays are quite large.
Any help will be much appreciated.
The easy way to do this would be to map your four separate arrays onto a single array of a struct type like
struct rec {
double x;
double y;
double w;
double z;
};
struct rec *arr = malloc( sizeof *arr * N ); // where N is the number of
// elements in each array
if ( !arr )
// malloc failed, handle error somehow
for ( size_t i = 0; i < N; i++ )
{
arr[i].x = x[i];
arr[i].y = y[i];
arr[i].w = w[i];
arr[i].z = z[i];
}
and then create a comparison function to pass to qsort:
int cmpRec( const void *lhs, const void *rhs )
{
struct rec *l = lhs;
struct rec *r = rhs;
if ( l->x < r->x )
return -1;
else if ( l->x > r->x )
return 1;
else
{
if ( l->y < r->y )
return -1;
else if ( l->y > r->y )
return 1;
else
return 0;
}
return 0;
}
Now you can use the qsort library function to sort that array of struct:
qsort( arr, N, sizeof *arr, cmpRec );
Once that array is sorted, you can map the results back onto your four original arrays.
Clearly, sorting this using standard qsort() is not going to work; there isn't a mechanism for passing four arrays.
Equally clearly, if the data were structured as an array of structures, then using qsort() would be feasible.
Question 1: Is it feasible to create an array of structures, load it, sort it, and then unload back into the original arrays?
Question 2: Another option is to sort an array of integers:
int indexes[n];
for (int i = 0; i < n; i++)
indexes[i] = i;
qsort(indexes, n, sizeof(indexes[0]), comparator);
The comparator function would have to be able to access the x and y arrays as file scope variables:
int comparator(void const *v1, void const *v2)
{
int i1 = *(int *)v1;
int i2 = *(int *)v2;
extern double *x, *y;
if (x[i1] > x[i2])
return +1;
else if (x[i1] < x[i2])
return -1;
else if (y[i1] > y[i2])
return +1;
else if (y[i1] < y[i2])
return -1;
else
return 0;
}
You'd then be able to access the arrays using x[indexes[i]] etc to access the ith element in sorted order.
Is that acceptable?
If that is not convenient either, then you will end up writing your own sort; it isn't horribly painful, but will require some care.
I spent some time adapting an existing sort test framework to this scenario. The full code is quite large because it includes a lot of testing support code. The core function (compare, swap, partition and quicksort) are here (122 lines, including comment and blank lines):
/* SO 20271977 - sort arrays x, y, z, w (type double, size n) in parallel based on values in x and y */
/*
** To apply this to the real code, where there are 4 arrays to be sorted
** in parallel, you might write:
**
** Array4 a;
** a.x = x;
** a.y = y;
** a.z = z;
** a.w = w;
** a.n = n;
** quicksort_random(&a);
**
** Or even:
**
** quicksort_random((Array4){ .n = n, .x = x, .y = y, .z = z, .w = w });
**
** combining designated initializers and compound literals. Or you could write a
** trivial wrapper so that you can call:
**
** quicksort_random_wrapper(n, x, y, z, w);
*/
/* SOF so-20271977.h */
#include <stddef.h>
typedef struct Array4
{
size_t n;
double *x;
double *y;
double *z;
double *w;
} Array4;
extern void quicksort_random(Array4 *A);
/* EOF so-20271977.h */
#include <assert.h>
#include <stdlib.h> /* lrand48() */
/*
** Note that a more careful implementation would use nrand48() instead
** of lrand48() to prevent its random number generation from interfering
** with other uses of the x-rand48() functions.
*/
typedef size_t (*Part)(Array4 *A, size_t p, size_t r);
static void quicksort_partition(Array4 *A, size_t p, size_t r, Part partition);
static size_t partition_random(Array4 *A, size_t p, size_t r);
/* Quick Sort Wrapper function - specifying random partitioning */
void quicksort_random(Array4 *A)
{
quicksort_partition(A, 0, A->n - 1, partition_random);
}
/* Main Quick Sort function */
static void quicksort_partition(Array4 *A, size_t p, size_t r, Part partition)
{
if (p < r)
{
size_t q = (*partition)(A, p, r);
assert(p <= q && q <= r);
if (q > 0)
quicksort_partition(A, p, q-1, partition);
quicksort_partition(A, q+1, r, partition);
}
}
static inline int compare(Array4 const *A, size_t p, size_t r)
{
if (A->x[p] < A->x[r])
return -1;
else if (A->x[p] > A->x[r])
return +1;
if (A->y[p] < A->y[r])
return -1;
else if (A->y[p] > A->y[r])
return +1;
else
return 0;
}
static inline size_t random_int(size_t p, size_t r)
{
return(lrand48() % (r - p + 1) + p);
}
static inline void swap(Array4 *A, size_t i, size_t j)
{
double d;
d = A->x[i];
A->x[i] = A->x[j];
A->x[j] = d;
d = A->y[i];
A->y[i] = A->y[j];
A->y[j] = d;
d = A->z[i];
A->z[i] = A->z[j];
A->z[j] = d;
d = A->w[i];
A->w[i] = A->w[j];
A->w[j] = d;
}
static size_t partition_random(Array4 *A, size_t p, size_t r)
{
size_t pivot = random_int(p, r);
swap(A, pivot, r);
size_t i = p-1;
size_t j = p;
while (j <= r)
{
if (compare(A, j, r) <= 0)
swap(A, j, ++i);
j++;
}
return i;
}
The test framework (quite ridiculously elaborate if it weren't that I already had a variant of it on hand) is 369 lines including blank lines and comment lines — and all the code above:
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define FLTFMT "%13.6f"
typedef struct Array4
{
size_t n;
double *x;
double *y;
double *z;
double *w;
} Array4;
static int trace = 0;
static void *xmalloc(size_t size)
{
void *space = malloc(size);
if (space == 0)
{
fprintf(stderr, "Out of memory (%zu)\n", size);
exit(1);
}
return space;
}
void quicksort_last(Array4 *A);
void quicksort_random(Array4 *A);
void selectionsort(Array4 *A);
static inline int compare(Array4 const *A, size_t p, size_t r)
{
if (A->x[p] < A->x[r])
return -1;
else if (A->x[p] > A->x[r])
return +1;
if (A->y[p] < A->y[r])
return -1;
else if (A->y[p] > A->y[r])
return +1;
else
return 0;
}
static void dump_array(char const *tag, Array4 const *A)
{
printf("%s [%zu..%zu]:\n", tag, (size_t)0, A->n-1);
for (size_t i = 0; i < A->n; i++)
printf("(" FLTFMT ", " FLTFMT ", " FLTFMT ", " FLTFMT ")\n",
A->x[i], A->y[i], A->z[i], A->w[i]);
}
static void chk_sort(Array4 const *A)
{
for (size_t i = 0; i < A->n - 1; i++)
{
//if (compare(A, i, i+1) > 0)
{
if (A->x[i] > A->x[i+1])
{
printf("Out of order: A.x[%zu] = " FLTFMT ", A.x[%zu] = " FLTFMT "\n",
i, A->x[i], i+1, A->x[i+1]);
}
else if ((A->x[i] == A->x[i+1] && A->y[i] > A->y[i+1]))
{
printf("Out of order: A.x[%zu] = " FLTFMT ", A.x[%zu] = " FLTFMT ", "
"A.y[%zu] = " FLTFMT ", A.y[%zu] = " FLTFMT "\n",
i, A->x[i], i+1, A->x[i+1], i, A->y[i], i+1, A->y[i+1]);
}
}
}
}
static inline void set(Array4 *A, size_t p, double d)
{
A->x[p] = d;
A->y[p] = d + drand48() - 0.5;
A->z[p] = d / 2.0;
A->w[p] = d * 2.0;
}
static void load_random(Array4 *A)
{
size_t size = A->n;
for (size_t i = 0; i < size; i++)
{
A->x[i] = drand48() * size;
A->y[i] = drand48() * size + drand48() - 0.5;
A->z[i] = drand48() * size / 2.0;
A->w[i] = drand48() * size * 2.0;
}
}
static void load_ascending(Array4 *A)
{
for (size_t i = 0; i < A->n; i++)
set(A, i, i);
}
static void load_descending(Array4 *A)
{
for (size_t i = 0; i < A->n; i++)
set(A, i, A->n - i);
}
static void load_uniform(Array4 *A)
{
for (size_t i = 0; i < A->n; i++)
set(A, i, A->n);
}
static void load_organpipe(Array4 *A)
{
for (size_t i = 0; i <= A->n / 2; i++)
set(A, i, i);
for (size_t i = A->n / 2 + 1; i < A->n; i++)
set(A, i, A->n - i);
}
static void load_invorganpipe(Array4 *A)
{
size_t range = A->n / 2;
for (size_t i = 0; i < A->n / 2; i++)
set(A, i, range - i);
for (size_t i = A->n / 2 + 1; i < A->n; i++)
set(A, i, i - range);
}
typedef void (*Load)(Array4 *A);
typedef void (*Sort)(Array4 *A);
typedef size_t (*Part)(Array4 *A, size_t p, size_t r);
static void test_one_sort(Array4 *A, Sort sort, char const *s_tag,
char const *l_tag, char const *z_tag)
{
if (trace)
{
printf("%s-%s-%s:", z_tag, l_tag, s_tag);
dump_array("Before", A);
}
clock_t start = clock();
(*sort)(A);
clock_t finish = clock();
double sec = (finish - start) / (double)CLOCKS_PER_SEC;
printf("%s-%s-%s: %13.6f\n", z_tag, l_tag, s_tag, sec);
chk_sort(A);
if (trace)
{
printf("%s-%s-%s:", z_tag, l_tag, s_tag);
dump_array("After", A);
}
fflush(stdout);
}
static Array4 *alloc_array(size_t size)
{
Array4 *A = xmalloc(sizeof(*A));
A->n = size;
A->x = xmalloc(size * sizeof(A->x[0]));
A->y = xmalloc(size * sizeof(A->y[0]));
A->z = xmalloc(size * sizeof(A->z[0]));
A->w = xmalloc(size * sizeof(A->w[0]));
return A;
}
static Array4 *dup_array(Array4 *A)
{
size_t size = A->n;
Array4 *B = alloc_array(size);
if (B != 0)
{
B->n = size;
memmove(B->x, A->x, size * sizeof(A->x[0]));
memmove(B->y, A->y, size * sizeof(A->y[0]));
memmove(B->z, A->z, size * sizeof(A->z[0]));
memmove(B->w, A->w, size * sizeof(A->w[0]));
}
return B;
}
static void free_array(Array4 *A)
{
free(A->x);
free(A->y);
free(A->z);
free(A->w);
free(A);
}
static void test_set_sorts(Array4 *A, char const *l_tag, char const *z_tag)
{
struct sorter
{
Sort function;
char const *tag;
} sort[] =
{
{ quicksort_last, "QS.L" },
{ quicksort_random, "QS.R" },
{ selectionsort, "SS.N" },
};
enum { NUM_SORTS = sizeof(sort) / sizeof(sort[0]) };
for (int i = 0; i < NUM_SORTS; i++)
{
Array4 *B = dup_array(A);
test_one_sort(B, sort[i].function, sort[i].tag, l_tag, z_tag);
free(B);
}
}
static void test_set_loads(size_t size, char const *z_tag)
{
struct loader
{
Load function;
char const *tag;
} load[] =
{
{ load_random, "R" },
{ load_ascending, "A" },
{ load_descending, "D" },
{ load_organpipe, "O" },
{ load_invorganpipe, "I" },
{ load_uniform, "U" },
};
enum { NUM_LOADS = sizeof(load) / sizeof(load[0]) };
Array4 *A = alloc_array(size);
for (int i = 0; i < NUM_LOADS; i++)
{
load[i].function(A);
test_set_sorts(A, load[i].tag, z_tag);
}
free_array(A);
}
/* Main Quick Sort function */
static void quicksort_partition(Array4 *A, size_t p, size_t r, Part partition)
{
if (p < r)
{
size_t q = (*partition)(A, p, r);
assert(p <= q && q <= r);
if (q > 0)
quicksort_partition(A, p, q-1, partition);
quicksort_partition(A, q+1, r, partition);
}
}
static size_t partition_random(Array4 *A, size_t p, size_t r);
static size_t partition_last(Array4 *A, size_t p, size_t r);
/* Quick Sort Wrapper function - specifying random partitioning */
void quicksort_random(Array4 *A)
{
quicksort_partition(A, 0, A->n - 1, partition_random);
}
/* Quick Sort Wrapper function - specifying partitioning about last element */
void quicksort_last(Array4 *A)
{
quicksort_partition(A, 0, A->n - 1, partition_last);
}
static inline size_t random_int(size_t p, size_t r)
{
return(lrand48() % (r - p + 1) + p);
}
static inline void swap(Array4 *A, size_t i, size_t j)
{
double d;
d = A->x[i];
A->x[i] = A->x[j];
A->x[j] = d;
d = A->y[i];
A->y[i] = A->y[j];
A->y[j] = d;
d = A->z[i];
A->z[i] = A->z[j];
A->z[j] = d;
d = A->w[i];
A->w[i] = A->w[j];
A->w[j] = d;
}
static size_t partition_random(Array4 *A, size_t p, size_t r)
{
size_t pivot = random_int(p, r);
swap(A, pivot, r);
size_t i = p-1;
size_t j = p;
while (j <= r)
{
if (compare(A, j, r) <= 0)
swap(A, j, ++i);
j++;
}
return i;
}
static size_t partition_last(Array4 *A, size_t p, size_t r)
{
size_t i = p-1;
size_t j = p;
while (j <= r)
{
if (compare(A, j, r) <= 0)
swap(A, j, ++i);
j++;
}
return i;
}
/* Selection Sort algorithm */
void selectionsort(Array4 *A)
{
size_t r = A->n;
for (size_t p = 0; p < r; p++)
{
for (size_t i = p; i < r; i++)
{
if (compare(A, p, i) > 0)
swap(A, p, i);
}
}
}
/*
** To apply this to the real code, where there are 4 arrays to be sorted
** in parallel, you might write:
**
** Array4 a;
** a.x = x;
** a.y = y;
** a.z = z;
** a.w = w;
** a.n = n;
** quicksort_random(&a);
**
** Or even:
**
** quicksort_random((Array4){ .n = n, .x = x, .y = y, .z = z, .w = w });
**
** combining designated initializers and compound literals. Or you could write a
** trivial wrapper so that you can call:
**
** quicksort_random_wrapper(n, x, y, z, w);
*/
int main(void)
{
srand48((long)time(0));
for (size_t i = 10; i <= 40; i += 10)
{
char buffer[10];
snprintf(buffer, sizeof(buffer), "%zuK", i);
test_set_loads(1000*i, buffer);
}
return 0;
}
If you can't use qsort with
typedef struct Point {
double x;
double y;
double w;
double z;
} Point;
Use qsort with
typedef struct UglyThing {
double x;
int i;
} UglyThing;
Create an array of size n, fill x with x values, i with index.
Call qsort. At the end, i will store the permutation order.
Swap the three other arrays according to the permutation order.
Then do the same with little arrays ("with same x") in the y direction.
If this ugly trick is not possible, then I don't see any other solution than reinventing the wheel.
(edit : I have just seen Andrew said something very close to this answer...sorry!)
Bye,
Francis

Trouble creating a descending heap sort in C

void heapSort(int list[], int last)
{
// Local Declarations
int sorted;
int holdData;
int walker;
// Statements
for (walker = 1; walker <= last; walker++)
reheapUp (list, walker);
// Min Heap created. Now to sort!
sorted = last;
while (sorted > 0)
{
holdData = list[0];
list[0] = list[sorted];
list[sorted] = holdData;
sorted--;
reheapDown (list, 0, sorted, moves, comparisons);
}
return;
}
void reheapUp (int heap[], int newNode)
{
// Local Declarations
int parent;
int hold;
// Create a min heap
// Statements
if (newNode)
{
parent = (newNode - 1) / 2;
if (heap[newNode] > heap[parent]) // Only change made from ascending order
{
hold = heap[parent];
heap[parent] = heap[newNode];
heap[newNode] = hold;
reheapUp (heap, parent);
}
}
return;
}
void reheapDown (int heap[], int root, int last)
{
// Local Declarations
int hold;
int leftKey;
int rightKey;
int largeChildKey;
int largeChildIndex;
// Statements
if ((root * 2 + 1) <= last)
{
// There is atleast one child
leftKey = heap[root * 2 + 1];
if ((root * 2 + 2) <= last) {
rightKey = heap[root * 2 + 2];
}
else
rightKey = -1;
// Determine which child is larger
if (leftKey > rightKey)
{
largeChildKey = leftKey;
largeChildIndex = root * 2 + 1;
}
else
{
largeChildKey = rightKey;
largeChildIndex = root * 2 + 2;
}
// Test if root > large subtree
if (heap[root] < heap[largeChildIndex])
{
// parent < child
hold = heap[root];
heap[root] = heap[largeChildIndex];
heap[largeChildIndex] = hold;
reheapDown(heap, largeChildIndex, last);
}
}
return;
}
I got ascending order to heap sort to function by creating a max heap. I read that to create a descending order heap sort I need to create a min heap which I did as shown by changing heap[newNode] < heap[parent] to heap[newNode] > heap[parent] as shown in the code. However, it is still out order. Therefore, I wanted to do what are the other steps? Do I need to alter reheapDown somehow as well?
You need to change all value comparisons you make like heap[root] < heap[largeChildIndex] you didn't mention you changed.
First of all you need to change every comparison operators accordingly, just take them all and think of the problem.
Secondly you only have to reheapUp to (last/2) to create the heap, because the key at (last/2+1) doesn't have any childs.
And I made some heap-sort in C before and I had way less lines of code, and only had one "heapify" function. You might want to look at your code and try to simplify things.
EDIT : if you want some inspiration here is what I did
void fixHeap(int position,int length)
{
int child = (2*position)+1;
int temp;
while (child<=length)
{
if (child<length && vector[child]<vector[child+1])
{
child++;
}
if (vector[position]<vector[child])
{
temp = vector[position];
vector[position] = vector[child];
vector[child] = temp;
position = child;
child = (2*position)+1;
}
else
{
return;
}
}
}
void heapSort(int vector[],int N)
{
int counter;
int temp;
for (counter=(N-1)/2; counter>=0; counter--)
{
fixHeap(counter,N-1);
}
for (counter=N-1; counter>0; counter--)
{
temp = vector[counter];
vector[counter] = vector[0];
vector[0] = temp;
fixHeap(0,counter-1);
}
}
Here is heap sort using min heap implementation. Have a look, if it helps!
#include "stdafx.h"
#define LEFT(i) (2 * (i))
#define RIGHT(i) (((2 * (i)) + 1))
#define PARENT(i) ((i) / 2))
void print_heap(int input[], int n)
{
int i;
printf("Printing heap: \n");
for (i = 0; i < n; i++)
printf("%d ", input[i]);
printf("\n");
}
void swap_nodes(int *a, int *b)
{
int tmp;
tmp = *a;
*a = *b;
*b = tmp;
}
void min_heapify(int input[], int i, int n)
{
int least;
int l = LEFT(i + 1) - 1; // Get 0 based array index
int r = RIGHT(i + 1) - 1; // Get 0 based array index
if (l < n && input[l] < input[i]) {
least = l;
} else {
least = i;
}
if (r < n && input[r] < input[least]) {
least = r;
}
if (least != i) {
swap_nodes(&input[i], &input[least]);
min_heapify(input, least, n);
}
}
void heapify(int input[], int n)
{
for (int i = n/2; i >= 0; i--)
min_heapify(input, i, n);
}
void heap_sort(int input[], int n)
{
heapify(input, n);
for (int i = n - 1; i >= 1; i--) {
swap_nodes(&input[0], &input[i]);
n = n - 1;
min_heapify(input, 0, n);
}
}
int _tmain(int argc, _TCHAR* argv[])
{
int input[] = {5, 3, 17, 10, 84, 19, 6, 22, 9, 1};
int n = sizeof(input) / sizeof(input[0]);
print_heap(input, n);
heap_sort(input, n);
print_heap(input, n);
return 0;
}

Resources