How to display the tiny triangles or recognize them quickly? - c

What I am doing is a pick program. There are many triangles and I want select the front and visible ones by a rectangular region. The main method is described below.
there are a lot of triangles and each triangle has its own color.
draw all the triangles to a frame buffer.
read the color of pixel in frame buffer and based on the color, we know which triangles are selected.
The problem is that there are some tiny triangles can not be displayed in the final frame buffer. Just like the green triangle in the picture. I think the triangle is too tiny and ignored by the graphic card.
My question is how to display the tiny triangles in the final frame buffer? or how to know which triangles are ignored by the graphic card?

Triangles are not skipped based on their size, but if a pixel center does not fall inside or lie on the top or left edge (this is referred to as coverage testing) they do not generate any fragments during rasterization.
That does mean that certain really small triangles are never rasterized, but it is not entirely because of their size, just that their position is such that they do not satisfy pixel coverage.
Take a moment to examine the following diagram from the DirectX API documentation. Because of the size and position of the the triangle I have circled in red, this triangle does not satisfy coverage for any pixels (I have illustrated the left edge of the triangle in green) and thus never shows up on screen despite having a tangible surface area.
If the triangle highlighted were moved about a half-pixel in any direction it would cover at least one pixel. You still would not know it was a triangle, because it would show up as a single pixel, but it would at least be pickable.
Solving this problem will require you to ditch color picking altogether. Multisample rasterization can fix the coverage issue for small triangles, but it will compute pixel colors as the average of all samples and that will break color picking.
Your only viable solution is to do point inside triangle testing instead of relying on rasterization. In fact, the typical alternative to color picking is to cast a ray from your eye position through the far clipping plane and test for intersection against all objects in the scene.

The usability aspect of what you seem to be doing seems somewhat questionable to me. I doubt that most users would expect a triangle to be pickable if it's so small that they can't even see it. The most obvious solution is that you let the user zoom in if they really need to selectively pick such small details.
On the part that can actually be answered on a technical level: To find out if triangles produced any visible pixels/fragments/samples, you can use queries. If you want to count the pixels for n "objects" (which can be triangles), you would first generate the necessary query object names:
GLuint queryIds[n]; // probably dynamically allocated in real code
glGenQueries(n, queryIds);
Then bracket the rendering of each object with glBeginQuery()/glEndQuery():
loop over objects
glBeginQuery(GL_SAMPLES_PASSED, queryIds[i]);
// draw object
glEndQuery(GL_SAMPLES_PASSED);
Then at the end, you can get all the results:
loop over objects
GLint pixelCount = 0;
glGetQueryObjectiv(queryIds[i], GL_QUERY_RESULT, &pixelCount);
if (pixelCount > 0) {
// object produced visible pixels
}
A couple more points to be aware of:
If you only want to know if any pixels were rendered, but don't care how many, you can use GL_ANY_SAMPLES_PASSED instead of GL_SAMPLES_PASSED.
The query counts samples that pass the depth test, as the rendering happens. So there is an order dependency. A triangle could have visible samples when it is rendered, but they could later be hidden by another triangle that is drawn in front of it. If you only want to count the pixels that are actually visible at the end of the rendering, you'll need a two-pass approach.

Related

OpenGL rendering quality vs. number of vertices

I am coding a modern OpenGL application to visualize 3d atomic models (molecules, periodic systems ...) for chemistry and condense matter physics.
I started to work on this few years ago, the first version of my program was in old OpenGL now I am updating it to modern OpenGL.
I come with a question regarding the quality of the rendering of the OpenGL window. In the following examples I draw 3D cylinders and 3D spheres using instanced drawing, in this model to render the bonds I only draw one cylinder, then I translate/scale/rotate it properly in the vertex shader
to render all bonds, same goes for the sphere to render the atoms.
As you can see it works just fine, and the efficiency of the method is amazing and I can render models with hundreds of thousand of atoms smoothly.
However I noticed something weird, that somehow the quality of the rendering seems to be dependent on the number of vertices (objects, atoms and bonds) in the scene, obviously the number of triangles is the most important parameter but not the only one ... since the quality decrease when a lot of vertices are rendered ... please see the attached snapshots:
To render the spheres in the scene I am using 50x50 vertices, and 2x50 for the cylinders (GL_TRIANGLE_STRIP in both cases)
1) In this test model I load: 96 atoms, 512 half bonds, : ~ 291200 vertices:
2) I zoom in to focus on one selected atom and it surrounding, at this scale the result is impeccable:
3) I reset the view and use the builder in my program to increase the number of boxes
(I am simply doing replicas in the 3 direction of space) here I choose to do 20x20x20 replicas,
see the result bellow, the original box is highlighted.
In that scene there are 768000 atoms, 4096000 half-bonds, and thus: 291200x20x20x20 = 2329600000 vertices
quite a lot, yet it works, but something weird appears ...
4) I zoom in again on that particular area of the model I picked before and there is a decrease in quality in particular
in the areas where 3D objects (spheres/cylinders) superimpose/overlap ...
Can somebody explain to me what I see ?
Note 1: In the same window I can decrease the number of replicas back to the original box, zoom again
and see that the result is back to impeccable.
Note 2: the older version of my program still works fine (old OpenGL, using display list with glutsphere and glutcylinders),
I can do the same things, the rendering will take much much longer, but at the end of the process when I zoom in on the 20x20x20
boxes model, the results remains perfect, like for the single box model, and obviously I use same graphic card, driver and else.
Can somebody explain to me what I see ?
You're seeing the limited precision of the depth buffer. There are only so many bits you can work with and in a perspective projection a lonlinear scaling from Z distance to depth buffer value is applied.
The best course of action is to limit the near/depth range of the perspective projection matrix to what's going to be actually visible on screen, to make better use of the depth buffer. Also it's possible to linearize the depth buffer (but that comes with a performance hit). Also you could try to cleanly intersect the geometry where sticks and spheres meet, i.e. constrain the sphere's vertices to the cylinder surface where the sticks and similarly constrain the sticks' end vertices to the sphere where they meet. That way you avoid overlap and hence these artifacts.

Measuring the area of an arbitrary shape from an edge map

I'm trying to write an algorithm that will give me the (approximate) area of a shape.
My algorithm is provided with an image, which in then performs a Sobel edge-detection on. Using the edge-detected image, I'd like to find the area of an enclosed space, given a co-ordinate within the area. The co-ordinate is likely to be close to the centre of the shape, but not exactly centred..
If I wanted to be thorough, I'd do it recursively. However, I'm running this code on an embedded platform, so I'm memory-limited. I'd also prefer speedier algorithms.
The algorithm doesn't need to produce the exact area of the shape - something close (an order of magnitude at most) would be OK.
So far, I've considered approximating the shape as both a rectangle and an ellipse, by measuring up, down, left and right from the co-ordinate until an edge is found.
Here's an example of said methods:
- example image:
- ellipse and rectangle-marked:
The green fill is a partial-run of recursively filling the area.
If anyone has some better methods, I'd appreciate it!

I have a dot bouncing around an image. Need to calculate angles of reflection off of groups of pixels (surface of objects)

Suppose we have an image (pixel buffer) that is in black and white, so each pixel is either black or white (not gray scale).
Now somewhere in the middle of that images, place a green dot. It may have a radius of n for rendering purposed, but it is really a just point. Give the dot a randomly selected direction and speed, and start it moving. If the image is all white pixels, the dot will bounce off the edges of the image, infinitely wandering around the picture. This is quite easy... just reverse either the rise or run of the dot's vector.
Next, suppose the image has some globs of black pixels. As the dot encounters these globs of black pixels, the angle of reflection needs to be calculated. This is also quite easy of the the black pixels have a fixed slope, as in my sketch (blue X represents black pixels). You can find the slope of the blue Xs and easily calculate the new vector.
But how about the case where the black pixels form really unfriendly surfaces? What are some approaches to figuring out this angle?
This is the subject that I am interested in.
There must be some algorithms that exist for this kind of purpose, but I never ran across any in school. I am not asking how to code this, rather approaches to writing the algorithm to do this. I have a few ideas that I'll try, but if there are some standard ways to do this that exist, I'd like to learn about them.
Obviously I'd like to start with Black and White then move into RGBA.
I am looking for any reference material on just this sort of subject. Websites, books, or other references are very very welcome.
Also, if there are different StackOverflow tags that could be good, let me know.
Thanks much!
Edit********** More pics and information
Maybe I wasn't clear what I meant by "unfriendly surfaces". In the previous picture, our blue X's happened to just be a line. Picture a case where it is not a line, rather a wierd shape.
We start with our green pixel traveling at a slope of 2. Suppose it's vector is that of 12 pixels per frame. It would have a projected path like this:
But suppose instead of a nice friendly line, we have this:
In my mind I can kinda of see what is likely to happen if this were a ball and some walls.
Look for edge detection algorithms used in image processing. Some edge detectors also approximate the direction of edges.
You can think of the pixel neighborhood of the green dot, maybe somewhere between 3x3 and 7x7, as a small edge direction detection problem. One approach would take two passes at the pixels:
In the first pass, smooth the sharp black/white pixels using a Gaussian filter.
In the second pass, apply an edge detection operator, such as Sobel, Prewitt or Roberts to produce the X and Y derivatives of the pixels' intensity. You can then approximate the direction as:
angle = arctan(dx/dy)
The motivation for the smoothing pass is to give the edge detection operator information from farther-away pixels.
The Wikipedia page on the Canny edge detector has a good discussion on obtaining the direction (the "gradient") of an edge, including an example of a particular Gaussian filter you can use for smoothing.
Am doing something similar with a ball and randomly generated backgrounds.
The filter and edge detection is highly technical but all other processes using a 5*5 or 3*3 grid seem similarly difficult.
However, I think I may have a cheap way around this. Assuming a ball travelling in any direction, scan all leading edges of the ball - a semicircle. The further to the edge of the ball the collision occurs the closer to vertical is the collision. Again, I think, this should allow you to easily infer the background normal and from there the answer is fairly simple

Blob detection in C (not with OPENCV)

I am trying to do my own blob detection who will receive a real time video, and try to detect a white paper sheet.
Even if is something written inside the paper. I need to detect the paper and is corner, because what i really want is to draw a opengl polygon over the paper in each corner of the paper will be a corner of the polygon. Then i need the coordinates of the paper to do other stuffs.
So i need to:
- detect a square white blob.
- get the coordinates of the cornes
- draw a polygon over the white sheet.
Any ideias how can i do that?
Much depends on context. For example, suppose that you:
know that the paper is always roughly centered (i.e. W/2, Y/2 is always inside the blob), and no more rotated than 45 degrees (30 would be better)
have a suitable border around the sheet so that the corners never touch the edges of the FOV
are able (through analysis of local variance, or if you're lucky, check of background color or luminance) to say whether a point is inside or outside the blob
the inside/outside function never fails (except possibly in the close vicinity of a border)
then you could walk a line from a point on the border (surely outside) and the center (surely inside), even through bisection, and find a point - an areal - on the edge.
Two edge points give a rect (two areals give a beam), two rects give an intersection (two beams give a larger areal) - and there's your corner. You should carry along the detection uncertainty (areal radius) in order to validate corners (another less elegant approach is to roughly calculate where the corner is, and pinpoint it with a spiral search or drunkard's walk).
This algorithm is amenable to parallelization and, as long as the hypotheses hold, should be really fast.
All that said, it remains a hack -- I agree with unwind, why reinvent the wheel? If you have memory or CPU constraints (embedded systems, etc.), I believe there ought to be OpenCV and e-Vision "lite" ports also for ARM and embedded platforms.
(Sorry for my terminology - I'm monkey-translating from Italian. "Areal" is likely to correspond to your "blob", a beam is the family of lines joining all couples of points in two different blobs, line intensity being the product of distance from a point from its areal's center)
I am trying to do my own blob detection who will receive a real time video, and try to detect a white paper sheet.
Your first shot could be a simple flood-fill. That is, select a good threshold to binarize the image and apply the algorithm. The threshold can be fixed if you know the paper is always brighter than X and the background is always darker than this. Or this can be an adaptive threshold, for example Otsu's method. OpenCV offers this for free.
If you'd need to speed it up you could use a union-find data structure.
Finally you'd need to come up with some heuristic how to identify the corners (e.g. the four extreme values in x/y direction).
Then i need [...] the coordinates of the cornes [...]
Then you don't need blob detection, but corner detection or contour detection in the first place. OpenCV has some nice functionality for exactly this.
If you can't use it, I would suggest to binarize the image as above and use a harris-detector to find the corners of the object.
OpenCV's TBB support could also come quite handy if you'd use it and you have problems to meet your real-time requirements.

Eliminating rectangles enclosed within other rectangles in OpenCV

I'm in the process of writing a C program using OpenCV to detect some rectangles made with tape, which are hollow on the inside. Problem is, each physical rectangle gives two digital rectangles: one for the inner perimeter, one for the outer perimeter. The outer rectangle in all cases completely encloses the inner rectangle.
I need some way to remove the inner rectangles, and in a reasonably efficient manner, as this is being run on a video feed and must not drop framerate considerably (approx. 15fps, on a BeagleBoard xM, which is not terribly powerful).
There are always four physical rectangles, and somewhere between four to eight digital rectangles depending on the cleanliness of the processing operations. The outer rectangle is detected reliably; the inner rectangle is not. The image is thresholded, eroded, and dilated such that the image is clean and detection is reliable in general.
I feel that this problem is separate from OpenCV and is really just working with rectangles and could probably be solved by me with some time, but the project is on a crunch deadline, so I'm also throwing this question in. Thanks in advance, guys.
there is a function called grouprectangle in opencv.
The function can remove multiple rectangles...
Have a happy coding.
Since you only have at most 8 digital rectangles, I think it would be fine to use the natural, brute force, algorithm to figure out which rectangles are inside other rectanges. It's OK to do O(N^2) algorithms when N is small, and 8 is small.
Here is the pseudo code:
for each rectangle i {
for each rectangle j {
if i != j and rectangle i is inside rectangle j {
disregard rectangle i
}
}
}
Solved - the speedy solution is to take the distance to one of the corners from the center point of the rectangle, and compare that distance between rectangles whose centers are very close together. The one with the shorter distance must be the inner rectangle.
Code-wise you'd want to calculate the center, then find, say, the bottom right point, which is just the point with both min x and min y. Calculate the distance between them and store it somehow. For each rectangle, iterate over the other ones and check if their centers are very close (a constant of ~30px works fine for this in my case). Compare the distances calculated earlier; the rectangle with the shorter distance should be deleted from the list of rectangles.

Resources