Matlab: select subarrays from indexes matrix - arrays

I have a logical array B and a matrix A of size nx2 containing n couples of start/stop indexes
A= [start1, stop1; start2, stop2; start3, stop3];
How can I select the subarrays of array B based on start/stop couples contained in array A?
I'm doing it by:
for i=1:1:size(A,1)
B(A(i,1):A(i,2)) = true;
end
Is there any way of doing it in a more elegant way without using the for cycle (even conveniently rearranging array A)?

you can
n = numel(B);
iA = zeros( 1, n+1 ); %// +1 for boundary case
iA( A(:,1) ) = 1;
iA( A(:,2)+1 ) = -1;
iA(end) = []; %// discard boundary entry
B( cumsum(iA) > 0 ) = true;
Assumptions made
A(:,1) is always >= 1
A(:,2) is always <= n (number of elements in B)
the sections defined in A are non overlapping

If each stop is assured to be smaller than the next start (the index ranges don't overlap), another approach is
B(mod(sum(bsxfun(#le, 1:numel(B), [A(:,1)-1; A(:,2)])),2)>0) = true;

Related

Minimize (firstA_max - firstA_min) + (secondB_max - secondB_min)

Given n pairs of integers. Split into two subsets A and B to minimize sum(maximum difference among first values of A, maximum difference among second values of B).
Example : n = 4
{0, 0}; {5;5}; {1; 1}; {3; 4}
A = {{0; 0}; {1; 1}}
B = {{5; 5}; {3; 4}}
(maximum difference among first values of A, maximum difference among second values of B).
(maximum difference among first values of A) = fA_max - fA_min = 1 - 0 = 1
(maximum difference among second values of B) = sB_max - sB_min = 5 - 4 = 1
Therefore, the answer if 1 + 1 = 2. And this is the best way.
Obviously, maximum difference among the values equals to (maximum value - minimum value). Hence, what we need to do is find the minimum of (fA_max - fA_min) + (sB_max - sB_min)
Suppose the given array is arr[], first value if arr[].first and second value is arr[].second.
I think it is quite easy to solve this in quadratic complexity. You just need to sort the array by the first value. Then all the elements in subset A should be picked consecutively in the sorted array. So, you can loop for all ranges [L;R] of the sorted. Each range, try to add all elements in that range into subset A and add all the remains into subset B.
For more detail, this is my C++ code
int calc(pair<int, int> a[], int n){
int m = 1e9, M = -1e9, res = 2e9; //m and M are min and max of all the first values in subset A
for (int l = 1; l <= n; l++){
int g = m, G = M; //g and G are min and max of all the second values in subset B
for(int r = n; r >= l; r--) {
if (r - l + 1 < n){
res = min(res, a[r].first - a[l].first + G - g);
}
g = min(g, a[r].second);
G = max(G, a[r].second);
}
m = min(m, a[l].second);
M = max(M, a[l].second);
}
return res;
}
Now, I want to improve my algorithm down to loglinear complexity. Of course, sort the array by the first value. After that, if I fixed fA_min = a[i].first, then if the index i increase, the fA_max will increase while the (sB_max - sB_min) decrease.
But now I am still stuck here, is there any ways to solve this problem in loglinear complexity?
The following approach is an attempt to escape the n^2, using an argmin list for the second element of the tuples (lets say the y-part). Where the points are sorted regarding x.
One Observation is that there is an optimum solution where A includes index argmin[0] or argmin[n-1] or both.
in get_best_interval_min_max we focus once on including argmin[0] and the next smallest element on y and so one. The we do the same from the max element.
We get two dictionaries {(i,j):(profit, idx)}, telling us how much we gain in y when including points[i:j+1] in A, towards min or max on y. idx is the idx in the argmin array.
calculate the objective for each dict assuming max/min or y is not in A.
combine the results of both dictionaries, : (i1,j1): (v1, idx1) and (i2,j2): (v2, idx2). result : j2 - i1 + max_y - min_y - v1 - v2.
Constraint: idx1 < idx2. Because the indices in the argmin array can not intersect, otherwise some profit in y might be counted twice.
On average the dictionaries (dmin,dmax) are smaller than n, but in the worst case when x and y correlate [(i,i) for i in range(n)] they are exactly n, and we do not win any time. Anyhow on random instances this approach is much faster. Maybe someone can improve upon this.
import numpy as np
from random import randrange
import time
def get_best_interval_min_max(points):# sorted input according to x dim
L = len(points)
argmin_b = np.argsort([p[1] for p in points])
b_min,b_max = points[argmin_b[0]][1], points[argmin_b[L-1]][1]
arg = [argmin_b[0],argmin_b[0]]
res_min = dict()
for i in range(1,L):
res_min[tuple(arg)] = points[argmin_b[i]][1] - points[argmin_b[0]][1],i # the profit in b towards min
if arg[0] > argmin_b[i]: arg[0]=argmin_b[i]
elif arg[1] < argmin_b[i]: arg[1]=argmin_b[i]
arg = [argmin_b[L-1],argmin_b[L-1]]
res_max = dict()
for i in range(L-2,-1,-1):
res_max[tuple(arg)] = points[argmin_b[L-1]][1]-points[argmin_b[i]][1],i # the profit in b towards max
if arg[0]>argmin_b[i]: arg[0]=argmin_b[i]
elif arg[1]<argmin_b[i]: arg[1]=argmin_b[i]
# return the two dicts, difference along y,
return res_min, res_max, b_max-b_min
def argmin_algo(points):
# return the objective value, sets A and B, and the interval for A in points.
points.sort()
# get the profits for different intervals on the sorted array for max and min
dmin, dmax, y_diff = get_best_interval_min_max(points)
key = [None,None]
res_min = 2e9
# the best result when only the min/max b value is includes in A
for d in [dmin,dmax]:
for k,(v,i) in d.items():
res = points[k[1]][0]-points[k[0]][0] + y_diff - v
if res < res_min:
key = k
res_min = res
# combine the results for max and min.
for k1,(v1,i) in dmin.items():
for k2,(v2,j) in dmax.items():
if i > j: break # their argmin_b indices can not intersect!
idx_l, idx_h = min(k1[0], k2[0]), max(k1[1],k2[1]) # get index low and idx hight for combination
res = points[idx_h][0]-points[idx_l][0] -v1 -v2 + y_diff
if res < res_min:
key = (idx_l, idx_h) # new merged interval
res_min = res
return res_min, points[key[0]:key[1]+1], points[:key[0]]+points[key[1]+1:], key
def quadratic_algorithm(points):
points.sort()
m, M, res = 1e9, -1e9, 2e9
idx = (0,0)
for l in range(len(points)):
g, G = m, M
for r in range(len(points)-1,l-1,-1):
if r-l+1 < len(points):
res_n = points[r][0] - points[l][0] + G - g
if res_n < res:
res = res_n
idx = (l,r)
g = min(g, points[r][1])
G = max(G, points[r][1])
m = min(m, points[l][1])
M = max(M, points[l][1])
return res, points[idx[0]:idx[1]+1], points[:idx[0]]+points[idx[1]+1:], idx
# let's try it and compare running times to the quadratic_algorithm
# get some "random" points
c1=0
c2=0
for i in range(100):
points = [(randrange(100), randrange(100)) for i in range(1,200)]
points.sort() # sorted for x dimention
s = time.time()
r1 = argmin_algo(points)
e1 = time.time()
r2 = quadratic_algorithm(points)
e2 = time.time()
c1 += (e1-s)
c2 += (e2-e1)
if not r1[0] == r2[0]:
print(r1,r2)
raise Exception("Error, results are not equal")
print("time of argmin_algo", c1, "time of quadratic_algorithm",c2)
UPDATE: #Luka proved the algorithm described in this answer is not exact. But I will keep it here because it's a good performance heuristics and opens the way to many probabilistic methods.
I will describe a loglinear algorithm. I couldn't find a counter example. But I also couldn't find a proof :/
Let set A be ordered by first element and set B be ordered by second element. They are initially empty. Take floor(n/2) random points of your set of points and put in set A. Put the remaining points in set B. Define this as a partition.
Let's call a partition stable if you can't take an element of set A, put it in B and decrease the objective function and if you can't take an element of set B, put it in A and decrease the objective function. Otherwise, let's call the partition unstable.
For an unstable partition, the only moves that are interesting are the ones that take the first or the last element of A and move to B or take the first or the last element of B and move to A. So, we can find all interesting moves for a given unstable partition in O(1). If an interesting move decreases the objective function, do it. Go like that until the partition becomes stable. I conjecture that it takes at most O(n) moves for the partition to become stable. I also conjecture that at the moment the partition becomes stable, you will have a solution.

Generate a matrix of combinations (permutation) without repetition (array exceeds maximum array size preference)

I am trying to generate a matrix, that has all unique combinations of [0 0 1 1], I wrote this code for this:
v1 = [0 0 1 1];
M1 = unique(perms([0 0 1 1]),'rows');
• This isn't ideal, because perms() is seeing each vector element as unique and doing:
4! = 4 * 3 * 2 * 1 = 24 combinations.
• With unique() I tried to delete all the repetitive entries so I end up with the combination matrix M1 →
only [4!/ 2! * (4-2)!] = 6 combinations!
Now, when I try to do something very simple like:
n = 15;
i = 1;
v1 = [zeros(1,n-i) ones(1,i)];
M = unique(perms(vec_1),'rows');
• Instead of getting [15!/ 1! * (15-1)!] = 15 combinations, the perms() function is trying to do
15! = 1.3077e+12 combinations and it's interrupted.
• How would you go about doing in a much better way? Thanks in advance!
You can use nchoosek to return the indicies which should be 1, I think in your heart you knew this must be possible because you were using the definition of nchoosek to determine the expected final number of permutations! So we can use:
idx = nchoosek( 1:N, k );
Where N is the number of elements in your array v1, and k is the number of elements which have the value 1. Then it's simply a case of creating the zeros array and populating the ones.
v1 = [0, 0, 1, 1];
N = numel(v1); % number of elements in array
k = nnz(v1); % number of non-zero elements in array
colidx = nchoosek( 1:N, k ); % column index for ones
rowidx = repmat( 1:size(colidx,1), k, 1 ).'; % row index for ones
M = zeros( size(colidx,1), N ); % create output
M( rowidx(:) + size(M,1) * (colidx(:)-1) ) = 1;
This works for both of your examples without the need for a huge intermediate matrix.
Aside: since you'd have the indicies using this approach, you could instead create a sparse matrix, but whether that's a good idea or not would depend what you're doing after this point.

Array not defined

I'm still confused why am not able to know the results of this small algorithm of my array. the array has almost 1000 number 1-D. am trying to find the peak and the index of each peak. I did found the peaks, but I can't find the index of them. Could you please help me out. I want to plot all my values regardless the indexes.
%clear all
%close all
%clc
%// not generally appreciated
%-----------------------------------
%message1.txt.
%-----------------------------------
% t=linspace(0,tmax,length(x)); %get all numbers
% t1_n=0:0.05:tmax;
x=load('ww.txt');
tmax= length(x) ;
tt= 0:tmax -1;
x4 = x(1:5:end);
t1_n = 1:5:tt;
x1_n_ref=0;
k=0;
for i=1:length(x4)
if x4(i)>170
if x1_n_ref-x4(i)<0
x1_n_ref=x4(i);
alpha=1;
elseif alpha==1 && x1_n_ref-x4(i)>0
k=k+1;
peak(k)=x1_n_ref; // This is my peak value. but I also want to know the index of it. which will represent the time.
%peak_time(k) = t1_n(i); // this is my issue.
alpha=2;
end
else
x1_n_ref=0;
end
end
%----------------------
figure(1)
% plot(t,x,'k','linewidth',2)
hold on
% subplot(2,1,1)
grid
plot( x4,'b'); % ,tt,x,'k'
legend('down-sampling by 5');
Here is you error:
tmax= length(x) ;
tt= 0:tmax -1;
x4 = x(1:5:end);
t1_n = 1:5:tt; % <---
tt is an array containing numbers 0 through tmax-1. Defining t1_n as t1_n = 1:5:tt will not create an array, but an empty matrix. Why? Expression t1_n = 1:5:tt will use only the first value of array tt, hence reduce to t1_n = 1:5:tt = 1:5:0 = <empty matrix>. Naturally, when you later on try to access t1_n as if it were an array (peak_time(k) = t1_n(i)), you'll get an error.
You probably want to exchange t1_n = 1:5:tt with
t1_n = 1:5:tmax;
You need to index the tt array correctly.
you can use
t1_n = tt(1:5:end); % note that this will give a zero based index, rather than a 1 based index, due to t1_n starting at 0. you can use t1_n = 1:tmax if you want 1 based (matlab style)
you can also cut down the code a little, there are some variables that dont seem to be used, or may not be necessary -- including the t1_n variable:
x=load('ww.txt');
tmax= length(x);
x4 = x(1:5:end);
xmin = 170
% now change the code
maxnopeaks = round(tmax/2);
peaks(maxnopeaks)=0; % preallocate the peaks for speed
index(maxnopeaks)=0; % preallocate index for speed
i = 0;
for n = 2 : tmax-1
if x(n) > xmin
if x(n) >= x(n-1) & x(n) >= x(n+1)
i = i+1;
peaks(i) = t(n);
index(i) = n;
end
end
end
% now trim the excess values (if any)
peaks = peaks(1:i);
index = index(1:i);

find possible combinations with specific condition

I want to calculate all possible combinations of 1:16 with 10 subsets.
combos = combntns(1:16,10)
But the condition is that the returned combos should have minimum 1 member of the following vectors:
V1=1:4,V2=5:8,V3=9:12,V4=13:16,
Any solution?
With that problem size you can afford to generate all combinations and then select those that meet the requirements:
n = 16; %// number of elements to choose from
c = 10; %// combination size
s = 4; %// size of each group (size of V1, V2 etc)
combos = nchoosek(1:n, c);
ind = all(any(any(bsxfun(#eq, combos, reshape(1:n, 1,1,s,[])),2),3),4);
combos = combos(ind,:);
This can be generalized for generic elements and arbitrary condition vectors, assuming all vectors are the same size:
elements = 1:16; %// elements to choose from
c = 10; %// combination size
vectors = {1:4, 5:8, 9:12, 13:16}; %// cell array of vectors
s = numel(vectors{1});
combos = nchoosek(elements, c);
ind = all(any(any(bsxfun(#eq, combos, reshape(cat(1,vectors{:}).', 1,1,s,[])),2),3),4); %'
combos = combos(ind,:);

Sort array elements by the frequency of its elements

Is it possible in matlab/octave to use the sort function to sort an array based on the relative frequency of their elements?
For example the array
m= [4,4,4,10,10,10,4,4,5]
should result in this array:
[5,10,10,10,4,4,4,4,4]
5 is the less frequent element and is on the top while 4 is the most frequent and it's on bottom.
Should one use the indices provided by histcount?
The following code first calculates how often each element occurs and then uses runLengthDecode to expand the unique elements.
m = [4,4,4,10,10,10,4,4,5];
u_m = unique(m);
elem_count = histc(m,u_m);
[elem_count, idx] = sort(elem_count);
m_sorted = runLengthDecode(elem_count, u_m(idx));
The definition of runLengthDecode is copied from this answer:
For MATLAB R2015a+:
function V = runLengthDecode(runLengths, values)
if nargin<2
values = 1:numel(runLengths);
end
V = repelem(values, runLengths);
end
For versions before R2015a:
function V = runLengthDecode(runLengths, values)
%// Actual computation using column vectors
V = cumsum(accumarray(cumsum([1; runLengths(:)]), 1));
V = V(1:end-1);
%// In case of second argument
if nargin>1
V = reshape(values(V),[],1);
end
%// If original was a row vector, transpose
if size(runLengths,2)>1
V = V.'; %'
end
end
One way would be to use accumarray to find the count of each number (I suspect you can use histcounts(m,max(m))) but then you have to clear all the 0s).
m = [4,4,4,10,10,10,4,4,5];
[~,~,subs]=unique(m);
freq = accumarray(subs,subs,[],#numel);
[~,i2] = sort(freq(subs),'descend');
m(i2)
By combinging my approach with that of m.s. you can get a simpler solution:
m = [4,4,4,10,10,10,4,4,5];
[U,~,i1]=unique(m);
freq= histc(m,U);
[~,i2] = sort(freq(i1),'descend');
m(i2)
You could count the number of repetitions with bsxfun, sort that, and apply that sorting to m:
[~, ind] = sort(sum(bsxfun(#eq,m,m.')));
result = m(ind);

Resources