Adding two strings made of digits recursively in C - c

For this problem, I am to first take in two strings using fgets. I then need to check if the string is comprised entirely of digits thus making it a number. I was able to do this part recursively, but the next task is if the strings are numbers, I need to sum them up recursively as well. So for example,
the output of the program may look something like this:
First number > 9023905350290349
Second number > 90283056923840923840239480239480234
Sum is 90283056923840923849263385589770583
Again, I need to do this recursively, so I was thinking I could march along the stream of digits and add them together, but I am not so sure how to write this program recursively. Also since the input is in character form, I would also have to convert it to an integer, which I believe I can do by converting the individual characters to the integer ASCII value then subtracting 48 away from it. Any help would be appreciated. Thanks!

You're on the right track. Your recursive approach to checking if the input is a number looks something like the following, right? Notice that you can go ahead and subtract '0' from a character without bothering to convert it to 48 yourself.
int number_length(char *s, int pos) {
int d;
if (s[pos] == '\0') {
return pos;
}
d = s[pos] - '0';
if (d < 0 || d > 9) {
return -1;
}
return number_length(s, pos+1);
}
The above function returns -1 if the input is invalid, and the length of the number otherwise. We can use the length of the input numbers when we start the recursive addition process.
Where should the recursion begin? When we add a pair of numbers, it is convenient to start from the least significant digits.
If we have a pair of char * variables a and b pointing to the numbers, and if we know that a contains a_length digits and b contains b_length digits, then:
The least significant digit of a is at a_length-1.
The least significant digit of b is at b_length-1.
We don't know in advance how long the result is going to be, so let's build up the digits in an int * array starting from position 0. This means that we'll have the result digits in reverse, so we'll print them out starting from the end and going back to 0.
The core of the computation is this:
Given a position a_pos in a and b_pos in b, as well as a carry digit carry, compute the sum of the digits in a and b together with the carry digit.
Update the carry digit.
Add the result digit to the result array and update the length of the array.
In C, we can express the computation as follows:
d = a[a_pos--] + b[b_pos--] - 2*'0' + carry;
carry = (d >= 10 ? 1 : 0);
result[result_pos++] = d%10;
The expression a[a_pos--] + b[b_pos--] becomes invalid once a_pos or b_pos has become negative. In other words, we must deal with situations where we have run out of digits in one or both numbers. We must take care to:
Handle cases where we've already processed the most significant digit of a but not b, or b but not a.
When we've reached the end of both a and b, remember to check the carry digit: if it's 1, add it to the result and increment the length of the result.
Below is a complete implementation in ANSI C.
#include <stdio.h>
#include <string.h>
#define BUFFER_SIZE 8192
char a[BUFFER_SIZE], b[BUFFER_SIZE];
int result[BUFFER_SIZE];
int number_length(char *s, int pos) {
int d;
if (s[pos] == '\0') {
return pos;
}
d = s[pos] - '0';
if (d < 0 || d > 9) {
return -1;
}
return number_length(s, pos+1);
}
int add(char *a, int a_pos, char *b, int b_pos,
int *result, int result_pos, int carry) {
int d;
if (a_pos < 0 && b_pos < 0) {
if (carry == 1) {
result[result_pos++] = 1;
}
return result_pos;
}
if (a_pos < 0) {
result[result_pos++] = b[b_pos--] - '0' + carry;
carry = 0;
} else if (b_pos < 0) {
result[result_pos++] = a[a_pos--] - '0' + carry;
carry = 0;
} else {
d = a[a_pos--] + b[b_pos--] - 2*'0' + carry;
carry = (d >= 10 ? 1 : 0);
result[result_pos++] = d%10;
}
return add(a, a_pos, b, b_pos, result, result_pos, carry);
}
int main() {
int a_length, b_length, i, result_length;
printf("First number > ");
scanf("%s", a);
if ((a_length = number_length(a, 0)) == -1) {
printf("%s is not a number.\n", a);
return 0;
}
printf("Second number > ");
scanf("%s", b);
if ((b_length = number_length(b, 0)) == -1) {
printf("%s is not a number.\n", b);
return 0;
}
result_length = add(a, a_length-1, b, b_length-1, result, 0, 0);
for (i = result_length-1; i >= 0; --i) {
printf("%d", result[i]);
}
printf("\n");
return 0;
}

UPDATE: the comment below made me realize that I've obviously misunderstood the question. My previous solution of course wouldn't have worked with huge numbers like the ones in the OP's question. I've updated my answer accordingly as "right to left" approach. The only problem is that the resulting string can have a leading zero...
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
void add_helper(const char *s1, const char *s2, int s1_pos, int s2_pos,
char *result, int pos, int carry) {
int d1 = 0;
int d2 = 0;
if (s1_pos >= 0) {
d1 = s1[s1_pos] - '0';
s1_pos--;
}
if (s2_pos >= 0) {
d2 = s2[s2_pos] - '0';
s2_pos--;
}
int d = d1 + d2 + carry;
carry = d > 9 ? 1 : 0;
result[pos] = '0' + (d % 10);
pos--;
if (s1_pos >= 0 || s2_pos >= 0)
add_helper(s1, s2, s1_pos, s2_pos, result, pos, carry);
else if (pos >= 0)
result[pos] = '0' + carry;
}
char *add_recurse(const char *s1, const char *s2) {
size_t s1_len = strlen(s1);
size_t s2_len = strlen(s2);
size_t result_len = (s1_len > s2_len ? s1_len : s2_len) + 1;
char *result = calloc(result_len, 1);
add_helper(s1, s2, s1_len-1, s2_len-1, result, result_len - 1, 0);
return result;
}
int main(int argc, char **argv)
{
char *num_str1 = "9023905350290349";
char *num_str2 = "90283056923840923840239480239480234";
printf("sum is %s\n", add_recurse(num_str1, num_str2));
}
Note that there is no error handling whatsoever and I assume the preconditions, that the input strings are valid strings consisting of only digits, which you said you have already checked it.
ADDED SINGLE PASS VERSION (for Jean-Baptiste Yunès, who considers the usage of 'strlen' a little bit cheating...):
int add_helper2(const char *s1, const char *s2, int acc1, int acc2,
int *s1_pos, int *s2_pos, int *pos, char **result) {
int carry = 0;
int d1 = 0;
int d2 = 0;
if (s1[acc1] || s2[acc2]) {
int t1 = (s1[acc1] != 0);
int t2 = (s2[acc2] != 0);
carry = add_helper2(s1, s2, acc1+t1, acc2+t2, s1_pos,
s2_pos, pos, result);
} else {
size_t result_len = (acc1 > acc2 ? acc1 : acc2) + 1;
*result = calloc(result_len, 1);
*s1_pos = acc1 - 1;
*s2_pos = acc2 - 1;
*pos = result_len - 1;
return 0;
}
if (*s1_pos >= 0) {
d1 = s1[*s1_pos] - '0';
*s1_pos -= 1;
}
if (*s2_pos >= 0) {
d2 = s2[*s2_pos] - '0';
*s2_pos -= 1;
}
int d = d1 + d2 + carry;
carry = d > 9 ? 1 : 0;
(*result)[*pos] = '0' + (d % 10);
*pos -= 1;
return carry;
}
char *add_recurse2(const char *s1, const char *s2) {
char *result;
int s1_pos, s2_pos, pos;
int carry = add_helper2(s1, s2, 0, 0, &s1_pos, &s2_pos, &pos, &result);
result[0] = '0' + carry;
return result;
}

Make it in a single recursive descent is not so easy, but this can make it :
char n1[] = "9023905350290349";
char n2[] = "90283056923840923840239480239480234";
char n3[1000];
char addchar(char c,char d,int r) {
return ((c-'0')+(d-'0')+r)%10 + '0';
}
int overflow(char c,char d,int r) {
return ((c-'0')+(d-'0')+r)/10;
}
int d;
int add(int i) {
if (d==0 && n1[i]!=0 && n2[i]!=0) {
int r= add(i+1);
if (d<0) {
n3[i+1] = addchar((i+d<0)?'0':n1[i+d],n2[i],r);
r = overflow((i+d<0)?'0':n1[i+d],n2[i],r);
}
if (d>0) {
n3[i+1] = addchar(n1[i],(i-d<0)?'0':n2[i-d],r);
r = overflow(n1[i],(i-d<0)?'0':n2[i-d],r);
}
if (d==0) {
n3[i+1] = addchar(n1[i],n2[i],r);
r = overflow(n1[i],n2[i],r);
}
if (i==0) {
n3[i] = r+'0';
r = 0;
}
return r;
}
if (d>=0 && n1[i]!=0) {
d++;
int r = add(i+1);
n3[i+1] = addchar(n1[i],(i-d<0)?'0':n2[i-d],r);
return overflow(n1[i],(i-d<0)?'0':n2[i-d],r);
}
if (d<=0 && n2[i]!=0) {
d--;
int r = add(i+1);
n3[i+1] = addchar((i+d<0)?'0':n1[i+d],n2[i],r);
return overflow((i+d<0)?'0':n1[i+d],n2[i],r);
}
n3[i+1] = '\0';
return 0;
}
int main() {
add(0);
printf("%s %s %s\n",n1,n2,n3);
}
The basic idea is to calculate the maximal length and the difference between lengths of numbers when descending through recursion, and then adding the right digits when returning from the recursion. The main difficulty is to manage the difference between the lengths.
This algorithm adds a leading zero to the result when there is no overflow on the left.

You could check for error in strings and do the sum at the same time,
#include <stdio.h>
#include <stdlib.h>
#define MAX_RES 1000
char *s1,*s2,*res;
int getcharval(char *s, int i) {
int n = s[i] - '0';
return n<0 || n>9 ? -1 : n;
}
char *recsum(int i1, int i2, int carry, char *pres) {
int n1 = !i1 ? 0 : getcharval(s1, --i1);
int n2 = !i2 ? 0 : getcharval(s2, --i2);
if (n1 < 0 || n2 < 0) return NULL;
int n = n1 + n2 + carry;
*--pres = (n % 10) + '0';
return !i1 && !i2 ? pres : recsum(i1, i2, n/10, pres);
}
with s1 points to string 1, s2 points to string 2, res points to the result area.
The recursive function recsum does the work, taking i1 decreasing index to next char in s1, i2 decreasing index to next char in s2, carry is the result from the previous calculation and pres (p-res) points to the next result char (+1) in res.
The helper function getcharval gets the digit from strings s index i, and returns that number (0 to 9) or -1 if the character is not a digit.
recsum returns a pointer to the result, i.e. a pointer into res where the result starts.
If there was an error in either string, the function returns NULL instead.
An example as how to use recsum, for a result having 1000 chars max (MAX_RES)
int main (int argc, char **argv)
{
s1 = "02313123";
s2 = "92382472699";
res = malloc(MAX_RES+1);
res[MAX_RES] = 0;
char *ret = recsum(strlen(s1), strlen(s2), 0, res+MAX_RES);
if (!ret) printf("There is an error\n");
else printf("%s + %s = %s\n", s1, s2, ret);
return 0;
}

Since If think this is homework, I only show pseudocode.
def str_sum(a,b):
index_a = len(a)
index_b = len(b)
res_len = max(len(a), len(b))
result = calloc(res_len+2, 1)
if not result:
raise OutOfMemory()
index_a -=1
index_b -= 1
acc = 0
res_index = 0
while (index_a >=0) or (index_b >= 0):
chr_a = '0'
chr_b = '0'
if(index_a >=0):
chr_a = a[index_a]
if(index_b >=0):
chr_b = b[index_b]
temp = acc + ord(chr_a) - ord('0') + ord(chr_b) - ord('0')
result[res_index] = chr((temp % 10) + ord('0'))
acc = temp / 10
index_a -=1
index_b -= 1
res_index += 1
inplace_rewind(result)
return ''.join(result)
print str_sum('9023905350290349', '90283056923840923840239480239480234')

Related

How can I multiply two strings containing 'huge numbers' (over 30 digits)?

I'm doing school project which I'm needed to first receive 2 huge numbers (unlimited size, for the sake of example, lets say over 30 digits), second step is to take the 2 input numbers the create new number of the multiplication of the two, which I'm really breaking a sweat trying to do so.
My code so far:
Type definition to making sure I'm handling the right variables:
typedef char* verylong;
#define MAX_SIZE 100
Input method:
verylong input_long() {
int i, len; //i for loop, len for strlen - using integer for it to avoid invoking the method more than 1 time
verylong number;
char temp_str[MAX_SIZE]; //the input from user - limited to 100
gets(temp_str); //user input
len = strlen(temp_str); //saving the length of the input
number = (char*)calloc(len + 1, sizeof(char)); //allocating memory for the verylong and saving space for \0
for (i = 0; i < len; i++) {
if (temp_str[i] - '0' < 0 || temp_str[i] - '0' > 9) { //the input is not a digit
printf("\nBad input!\n");
return NULL;
}
number[i] = temp_str[i]; //all is good -> add to the verylong number
}
number[i] = '\0'; //setting last spot
return number;
}
My sad attempt of completing my task:
verylong multiply_verylong(verylong vl1, verylong vl2) {
verylong mult;
int cur, i, j, k, lrg, sml, temp_size;
char *temp;
j = 1;
temp = (char*)calloc(lrg + sml + 1, sizeof(char)); //maximum amount of digits
if (strlen(vl1) > strlen(vl2)) {
lrg = strlen(vl1);
sml = strlen(vl2);
}
else {
lrg = strlen(vl2);
sml = strlen(vl1);
}
cur = 0;
for (i = sml-1; i >= 0; i--) {
k = 0;
temp_size = 0;
cur = (vl1[i] - '0')*(vl2[i] - '0');
printf("\ncur=%d", cur);
if (cur > 9)
temp_size = 2;
else
temp_size = 1;
while (k < temp_size) {
if (cur > 9)
temp[j++] = (cur % 10) + '0';
else
temp[j++] = cur + '0';
cur /= 10;
k++;
}
}
mult = (char*)calloc(j + 1, sizeof(char));
for (i = 0; i < j; i++) {
mult[i] = temp[i];
}
mult[i] = '\0';
free(temp);
return mult;
}
Long story short, I know I'm doing mistake at my multiplication method since I'm adding the numbers by simply adding the mult of 2 digits at a time, over that I truly am lost.
Thanks.
My advice would be to break the task into a number of simpler task.
How would you do the multiplication on paper?
123 * 456 -> 1 * (456 * 100) + 2 * (456 * 10) + 3 * (456 * 1)
or written differently
3 * ( 1 * 456)
+ 2 * ( 10 * 456)
+ 1 * (100 * 456)
---------------
SUM TO GET RESULT
or
3 * 456
+ 2 * 4560
+ 1 * 45600
---------------
SUM TO GET RESULT
From this you can identify 3 tasks
Multiplying with powers of 10, i.e. 1, 10, 100, etc. (i.e. add zeros to the end)
Multiplying a string-number with a single digit
Adding two string-numbers.
Write simple functions for each of these steps.
char* mulPowerOf10(char* sn, unsigned power)
{
...
}
char* mulDigit(char* sn, char digit)
{
...
}
char* addNumbers(char* snA, char* snB)
{
...
}
Using these 3 simple functions you can put the real multiplication together. In psedo-code:
char* mulNumbers(char* snA, char* snB)
{
char* result = malloc(2);
strcpy(result, "0");
unsigned power = 0;
for_each_digit D in snA
{
char* t1 = mulPowerOf10(snB, power)
char* t2 = mulDigit(t1, D)
result = addNumbers(result, t2)
++power;
}
free(.. what needs to be freed ..);
return result;
}
Here is a code example.
I found it simpler to store the number as a sequence of digits along with the length in a struct. The number may have leading zeros.
#define MAX_SIZE 1024
typedef struct Number {
int len;
char digits[];
} Number;
// Instantiate a number with room for len digits.
Number *newNumber(int len) {
Number *n = malloc(sizeof(Number)+len);
n->len = len;
memset(n->digits, 0, len);
return n;
}
// inputNumber reads a number from stdin. It return NULL if the input
// is invalid, otherwise it returns a Number containing the given digits.
Number *inputNumber() {
char temp[MAX_SIZE];
if (fgets(temp, sizeof temp, stdin) == NULL)
return NULL; // use fgets because gets is deprecated since C11
// remove trailing \n if any
int len = strlen(temp);
if (len > 0 && temp[len-1] == '\n')
temp[--len] = '\0';
// check input validity
if (len == 0)
return NULL;
for (int i = 0; temp[i] != '\0'; i++)
if (temp[i] < '0' || temp[i] > '9')
return NULL;
Number *n = newNumber(len);
for (int i = 0; temp[i] != '\0'; i++)
n->digits[i] = temp[i] - '0';
return n;
}
To multiply two numbers n1 and n2, we multiply n1 with each digit of n2, and accumulate the result shifted on the left by the position of the n2 digit in the final result.
For instance, to multiply 123*456, we compute 123*4 + 123*5*10 + 123*6*100. Note that *10 and *100 are simply left shifts.
We thus need a function that multiplies a number with a digit, and another function that accumulates a number with a left shift in a result number.
// multiply stores the result of n time digit in result.
// Requires the len of result is the len of n + 1.
void multiplyNumber(Number *n, char digit, Number *result) {
char carry = 0;
for (int i = r->len-1, j = n->len-1; i > 0; i--, j--) {
char x = n->digits[j] * d + carry;
r->digits[i] = x%10;
carry = x/10;
}
r->digits[0] = carry;
}
// accumutateNumber adds n with the left shift s to the number r.
// Requires the len of r is at least len of n + s + 1.
void accumulateNumber(Number *n, int s, Number *r) {
char carry = 0;
for (int i = r->len-1-s, j = n->len-1; j >= 0; i--, j--) {
char x = r->digits[i] + n->digits[j] + carry;
r->digits[i] = x%10;
carry = x/10;
}
r->digits[r->len-1-s-n->len] = carry;
}
Finally, we also need a function to print the number
void printNumber(Number *n) {
int i = 0;
// skip 0 at the front
while (i < n->len && n->digits[i] == 0)
i++;
if (i == n->len) {
printf("0\n");
return;
}
while (i < n->len)
putchar(n->digits[i++] + '0');
putchar('\n');
}
And this is it. We can now write the main function with the input of the numbers, the multiplication of number 1 with each digit of number 2 and accumulate the result with a shift to get the final result.
int main() {
printf("number 1: ");
Number *n1 = inputNumber();
if (n1 == NULL) {
printf("number 1 is invalid\n");
return 1;
}
printf("number 2: ");
Number *n2 = inputNumber();
if (n2 == NULL) {
printf("number 2 is invalid\n");
return 1;
}
Number *r = newNumber(n1->len+n2->len);
Number *tmp = newNumber(n1->len+1);
for (int i = 0; i < n2->len; i++) {
multiplyNumber(n1, n2->digits[n2->len-1-i], tmp);
accumulateNumber(tmp, i, r);
}
printf("result: ");
printNumber(r);
return 0;
}
Here you may have a look at a 'string only' version, multiplying like you would do with a pencil.
It works with 2 loops. The outer loop takes the digits of value2 from the right and multiplies in the inner loop with every digit of value1 from right. The right digit of the multiplication is stored in result, the rest goes in carry for the next inner loop.
At the end of the inner loop, carry is added to result.
After the first outer loop, we have to add previous results to our multiplication.
This is done in if(!first && *lresp) r += toI(*lresp)
The final loop moves the result to the start of the char array.
#include <stdio.h>
#include <stdlib.h>
#define toI(x) ((x)-'0')
#define toC(x) ((x)+'0')
#define max(a,b) ((a)>(b)) ? (a):(b)
char *mul(char *buf1, char *buf2) {
int size, v1, v2, r, carry=0, first=1;
char *startp1, *endp1, *lendp1, *startp2, *endp2;
char *startres, *endres, *resp, *lresp, *result;
for(endp1 = startp1 = buf1; *endp1; endp1++); // start and endpointer 1st value
for(endp2 = startp2 = buf2; *endp2; endp2++); // start and end pointer 2nd value
size = endp2-startp2 + endp1-startp1; // result size
startres = endres = resp = result = malloc(size+10); // some reserve
endres += size+10-1; // result end pointer
for(resp = startres; resp <= endres; resp++) *resp = '\0'; // init result
for(endp1--, endp2--, resp-=2; endp2>=startp2; endp2--, resp--, first=0) {
v2 = toI(*endp2); // current digit of value2
for(lresp = resp, lendp1 = endp1; lendp1 >= startp1; lendp1--, lresp--) {
v1 = toI(*lendp1); // current digit of value1
r = v1 * v2 + carry; // multiply + carry
if(!first && *lresp) r += toI(*lresp); // add result of previous loops
*lresp = toC(r%10); // store last digit
carry = r/10;
}
for( ; carry != 0; carry /= 10)
*lresp-- = toC(carry%10);
}
// we began right with reserve, now move to start of result
for(lresp++; lresp < endres; lresp++, startres++)
*startres=*lresp;
*startres = '\0';
return result;
}
int main() {
char *result = mul("123456789", "12345678");
printf("\n%s\n", result);
free(result);
}

How to format number adding points between each 3 numbers [duplicate]

In C, how can I format a large number from e.g. 1123456789 to 1,123,456,789?
I tried using printf("%'10d\n", 1123456789), but that doesn't work.
Could you advise anything? The simpler the solution the better.
If your printf supports the ' flag (as required by POSIX 2008 printf()), you can probably do it just by setting your locale appropriately. Example:
#include <stdio.h>
#include <locale.h>
int main(void)
{
setlocale(LC_NUMERIC, "");
printf("%'d\n", 1123456789);
return 0;
}
And build & run:
$ ./example
1,123,456,789
Tested on Mac OS X & Linux (Ubuntu 10.10).
You can do it recursively as follows (beware INT_MIN if you're using two's complement, you'll need extra code to manage that):
void printfcomma2 (int n) {
if (n < 1000) {
printf ("%d", n);
return;
}
printfcomma2 (n/1000);
printf (",%03d", n%1000);
}
void printfcomma (int n) {
if (n < 0) {
printf ("-");
n = -n;
}
printfcomma2 (n);
}
A summmary:
User calls printfcomma with an integer, the special case of negative numbers is handled by simply printing "-" and making the number positive (this is the bit that won't work with INT_MIN).
When you enter printfcomma2, a number less than 1,000 will just print and return.
Otherwise the recursion will be called on the next level up (so 1,234,567 will be called with 1,234, then 1) until a number less than 1,000 is found.
Then that number will be printed and we'll walk back up the recursion tree, printing a comma and the next number as we go.
There is also the more succinct version though it does unnecessary processing in checking for negative numbers at every level (not that this will matter given the limited number of recursion levels). This one is a complete program for testing:
#include <stdio.h>
void printfcomma (int n) {
if (n < 0) {
printf ("-");
printfcomma (-n);
return;
}
if (n < 1000) {
printf ("%d", n);
return;
}
printfcomma (n/1000);
printf (",%03d", n%1000);
}
int main (void) {
int x[] = {-1234567890, -123456, -12345, -1000, -999, -1,
0, 1, 999, 1000, 12345, 123456, 1234567890};
int *px = x;
while (px != &(x[sizeof(x)/sizeof(*x)])) {
printf ("%-15d: ", *px);
printfcomma (*px);
printf ("\n");
px++;
}
return 0;
}
and the output is:
-1234567890 : -1,234,567,890
-123456 : -123,456
-12345 : -12,345
-1000 : -1,000
-999 : -999
-1 : -1
0 : 0
1 : 1
999 : 999
1000 : 1,000
12345 : 12,345
123456 : 123,456
1234567890 : 1,234,567,890
An iterative solution for those who don't trust recursion (although the only problem with recursion tends to be stack space which will not be an issue here since it'll only be a few levels deep even for a 64-bit integer):
void printfcomma (int n) {
int n2 = 0;
int scale = 1;
if (n < 0) {
printf ("-");
n = -n;
}
while (n >= 1000) {
n2 = n2 + scale * (n % 1000);
n /= 1000;
scale *= 1000;
}
printf ("%d", n);
while (scale != 1) {
scale /= 1000;
n = n2 / scale;
n2 = n2 % scale;
printf (",%03d", n);
}
}
Both of these generate 2,147,483,647 for INT_MAX.
All the code above is for comma-separating three-digit groups but you can use other characters as well, such as a space:
void printfspace2 (int n) {
if (n < 1000) {
printf ("%d", n);
return;
}
printfspace2 (n/1000);
printf (" %03d", n%1000);
}
void printfspace (int n) {
if (n < 0) {
printf ("-");
n = -n;
}
printfspace2 (n);
}
Here's a very simple implementation. This function contains no error checking, buffer sizes must be verified by the caller. It also does not work for negative numbers. Such improvements are left as an exercise for the reader.
void format_commas(int n, char *out)
{
int c;
char buf[20];
char *p;
sprintf(buf, "%d", n);
c = 2 - strlen(buf) % 3;
for (p = buf; *p != 0; p++) {
*out++ = *p;
if (c == 1) {
*out++ = ',';
}
c = (c + 1) % 3;
}
*--out = 0;
}
Egads! I do this all the time, using gcc/g++ and glibc on linux and yes, the ' operator may be non-standard, but I like the simplicity of it.
#include <stdio.h>
#include <locale.h>
int main()
{
int bignum=12345678;
setlocale(LC_ALL,"");
printf("Big number: %'d\n",bignum);
return 0;
}
Gives output of:
Big number: 12,345,678
Just have to remember the 'setlocale' call in there, otherwise it won't format anything.
Perhaps a locale-aware version would be interesting.
#include <stdlib.h>
#include <locale.h>
#include <string.h>
#include <limits.h>
static int next_group(char const **grouping) {
if ((*grouping)[1] == CHAR_MAX)
return 0;
if ((*grouping)[1] != '\0')
++*grouping;
return **grouping;
}
size_t commafmt(char *buf, /* Buffer for formatted string */
int bufsize, /* Size of buffer */
long N) /* Number to convert */
{
int i;
int len = 1;
int posn = 1;
int sign = 1;
char *ptr = buf + bufsize - 1;
struct lconv *fmt_info = localeconv();
char const *tsep = fmt_info->thousands_sep;
char const *group = fmt_info->grouping;
char const *neg = fmt_info->negative_sign;
size_t sep_len = strlen(tsep);
size_t group_len = strlen(group);
size_t neg_len = strlen(neg);
int places = (int)*group;
if (bufsize < 2)
{
ABORT:
*buf = '\0';
return 0;
}
*ptr-- = '\0';
--bufsize;
if (N < 0L)
{
sign = -1;
N = -N;
}
for ( ; len <= bufsize; ++len, ++posn)
{
*ptr-- = (char)((N % 10L) + '0');
if (0L == (N /= 10L))
break;
if (places && (0 == (posn % places)))
{
places = next_group(&group);
for (int i=sep_len; i>0; i--) {
*ptr-- = tsep[i-1];
if (++len >= bufsize)
goto ABORT;
}
}
if (len >= bufsize)
goto ABORT;
}
if (sign < 0)
{
if (len >= bufsize)
goto ABORT;
for (int i=neg_len; i>0; i--) {
*ptr-- = neg[i-1];
if (++len >= bufsize)
goto ABORT;
}
}
memmove(buf, ++ptr, len + 1);
return (size_t)len;
}
#ifdef TEST
#include <stdio.h>
#define elements(x) (sizeof(x)/sizeof(x[0]))
void show(long i) {
char buffer[32];
commafmt(buffer, sizeof(buffer), i);
printf("%s\n", buffer);
commafmt(buffer, sizeof(buffer), -i);
printf("%s\n", buffer);
}
int main() {
long inputs[] = {1, 12, 123, 1234, 12345, 123456, 1234567, 12345678 };
for (int i=0; i<elements(inputs); i++) {
setlocale(LC_ALL, "");
show(inputs[i]);
}
return 0;
}
#endif
This does have a bug (but one I'd consider fairly minor). On two's complement hardware, it won't convert the most-negative number correctly, because it attempts to convert a negative number to its equivalent positive number with N = -N; In two's complement, the maximally negative number doesn't have a corresponding positive number, unless you promote it to a larger type. One way to get around this is by promoting the number the corresponding unsigned type (but it's is somewhat non-trivial).
Without recursion or string handling, a mathematical approach:
#include <stdio.h>
#include <math.h>
void print_number( int n )
{
int order_of_magnitude = (n == 0) ? 1 : (int)pow( 10, ((int)floor(log10(abs(n))) / 3) * 3 ) ;
printf( "%d", n / order_of_magnitude ) ;
for( n = abs( n ) % order_of_magnitude, order_of_magnitude /= 1000;
order_of_magnitude > 0;
n %= order_of_magnitude, order_of_magnitude /= 1000 )
{
printf( ",%03d", abs(n / order_of_magnitude) ) ;
}
}
Similar in principle to Pax's recursive solution, but by calculating the order of magnitude in advance, recursion is avoided (at some considerable expense perhaps).
Note also that the actual character used to separate thousands is locale specific.
Edit:See #Chux's comments below for improvements.
Based on #Greg Hewgill's, but takes negative numbers into account and returns the string size.
size_t str_format_int_grouped(char dst[16], int num)
{
char src[16];
char *p_src = src;
char *p_dst = dst;
const char separator = ',';
int num_len, commas;
num_len = sprintf(src, "%d", num);
if (*p_src == '-') {
*p_dst++ = *p_src++;
num_len--;
}
for (commas = 2 - num_len % 3;
*p_src;
commas = (commas + 1) % 3)
{
*p_dst++ = *p_src++;
if (commas == 1) {
*p_dst++ = separator;
}
}
*--p_dst = '\0';
return (size_t)(p_dst - dst);
}
Needed to do something similar myself but rather than printing directly, needed to go to a buffer. Here's what I came up with. Works backwards.
unsigned int IntegerToCommaString(char *String, unsigned long long Integer)
{
unsigned int Digits = 0, Offset, Loop;
unsigned long long Copy = Integer;
do {
Digits++;
Copy /= 10;
} while (Copy);
Digits = Offset = ((Digits - 1) / 3) + Digits;
String[Offset--] = '\0';
Copy = Integer;
Loop = 0;
do {
String[Offset] = '0' + (Copy % 10);
if (!Offset--)
break;
if (Loop++ % 3 == 2)
String[Offset--] = ',';
Copy /= 10;
} while (1);
return Digits;
}
Be aware that it's only designed for unsigned integers and you must ensure that the buffer is large enough.
There's no real simple way to do this in C. I would just modify an int-to-string function to do it:
void format_number(int n, char * out) {
int i;
int digit;
int out_index = 0;
for (i = n; i != 0; i /= 10) {
digit = i % 10;
if ((out_index + 1) % 4 == 0) {
out[out_index++] = ',';
}
out[out_index++] = digit + '0';
}
out[out_index] = '\0';
// then you reverse the out string as it was converted backwards (it's easier that way).
// I'll let you figure that one out.
strrev(out);
}
My answer does not format the result exactly like the illustration in the question, but may fulfill the actual need in some cases with a simple one-liner or macro. One can extend it to generate more thousand-groups as necessary.
The result will look for example as follows:
Value: 0'000'012'345
The code:
printf("Value: %llu'%03lu'%03lu'%03lu\n", (value / 1000 / 1000 / 1000), (value / 1000 / 1000) % 1000, (value / 1000) % 1000, value % 1000);
#include <stdio.h>
void punt(long long n){
char s[28];
int i = 27;
if(n<0){n=-n; putchar('-');}
do{
s[i--] = n%10 + '0';
if(!(i%4) && n>9)s[i--]='.';
n /= 10;
}while(n);
puts(&s[++i]);
}
int main(){
punt(2134567890);
punt(987);
punt(9876);
punt(-987);
punt(-9876);
punt(-654321);
punt(0);
punt(1000000000);
punt(0x7FFFFFFFFFFFFFFF);
punt(0x8000000000000001); // -max + 1 ...
}
My solution uses a . instead of a ,
It is left to the reader to change this.
This is old and there are plenty of answers but the question was not "how can I write a routine to add commas" but "how can it be done in C"? The comments pointed to this direction but on my Linux system with GCC, this works for me:
#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
int main()
{
unsetenv("LC_ALL");
setlocale(LC_NUMERIC, "");
printf("%'lld\n", 3141592653589);
}
When this is run, I get:
$ cc -g comma.c -o comma && ./comma
3,141,592,653,589
If I unset the LC_ALL variable before running the program the unsetenv is not necessary.
Another solution, by saving the result into an int array, maximum size of 7 because the long long int type can handle numbers in the range 9,223,372,036,854,775,807 to -9,223,372,036,854,775,807. (Note it is not an unsigned value).
Non-recursive printing function
static void printNumber (int numbers[8], int loc, int negative)
{
if (negative)
{
printf("-");
}
if (numbers[1]==-1)//one number
{
printf("%d ", numbers[0]);
}
else
{
printf("%d,", numbers[loc]);
while(loc--)
{
if(loc==0)
{// last number
printf("%03d ", numbers[loc]);
break;
}
else
{ // number in between
printf("%03d,", numbers[loc]);
}
}
}
}
main function call
static void getNumWcommas (long long int n, int numbers[8])
{
int i;
int negative=0;
if (n < 0)
{
negative = 1;
n = -n;
}
for(i = 0; i < 7; i++)
{
if (n < 1000)
{
numbers[i] = n;
numbers[i+1] = -1;
break;
}
numbers[i] = n%1000;
n/=1000;
}
printNumber(numbers, i, negative);// non recursive print
}
testing output
-9223372036854775807: -9,223,372,036,854,775,807
-1234567890 : -1,234,567,890
-123456 : -123,456
-12345 : -12,345
-1000 : -1,000
-999 : -999
-1 : -1
0 : 0
1 : 1
999 : 999
1000 : 1,000
12345 : 12,345
123456 : 123,456
1234567890 : 1,234,567,890
9223372036854775807 : 9,223,372,036,854,775,807
In main() function:
int numberSeparated[8];
long long int number = 1234567890LL;
getNumWcommas(number, numberSeparated);
If printing is all that's needed then move int numberSeparated[8]; inside the function getNumWcommas and call it this way getNumWcommas(number).
Another iterative function
int p(int n) {
if(n < 0) {
printf("-");
n = -n;
}
int a[sizeof(int) * CHAR_BIT / 3] = { 0 };
int *pa = a;
while(n > 0) {
*++pa = n % 1000;
n /= 1000;
}
printf("%d", *pa);
while(pa > a + 1) {
printf(",%03d", *--pa);
}
}
Here is the slimiest, size and speed efficient implementation of this kind of decimal digit formating:
const char *formatNumber (
int value,
char *endOfbuffer,
bool plus)
{
int savedValue;
int charCount;
savedValue = value;
if (unlikely (value < 0))
value = - value;
*--endOfbuffer = 0;
charCount = -1;
do
{
if (unlikely (++charCount == 3))
{
charCount = 0;
*--endOfbuffer = ',';
}
*--endOfbuffer = (char) (value % 10 + '0');
}
while ((value /= 10) != 0);
if (unlikely (savedValue < 0))
*--endOfbuffer = '-';
else if (unlikely (plus))
*--endOfbuffer = '+';
return endOfbuffer;
}
Use as following:
char buffer[16];
fprintf (stderr, "test : %s.", formatNumber (1234567890, buffer + 16, true));
Output:
test : +1,234,567,890.
Some advantages:
Function taking end of string buffer because of reverse ordered formatting. Finally, where is no need in revering generated string (strrev).
This function produces one string that can be used in any algo after. It not depends nor require multiple printf/sprintf calls, which is terrible slow and always context specific.
Minimum number of divide operators (/, %).
Secure format_commas, with negative numbers:
Because VS < 2015 doesn't implement snprintf, you need to do this
#if defined(_WIN32)
#define snprintf(buf,len, format,...) _snprintf_s(buf, len,len, format, __VA_ARGS__)
#endif
And then
char* format_commas(int n, char *out)
{
int c;
char buf[100];
char *p;
char* q = out; // Backup pointer for return...
if (n < 0)
{
*out++ = '-';
n = abs(n);
}
snprintf(buf, 100, "%d", n);
c = 2 - strlen(buf) % 3;
for (p = buf; *p != 0; p++) {
*out++ = *p;
if (c == 1) {
*out++ = '\'';
}
c = (c + 1) % 3;
}
*--out = 0;
return q;
}
Example usage:
size_t currentSize = getCurrentRSS();
size_t peakSize = getPeakRSS();
printf("Current size: %d\n", currentSize);
printf("Peak size: %d\n\n\n", peakSize);
char* szcurrentSize = (char*)malloc(100 * sizeof(char));
char* szpeakSize = (char*)malloc(100 * sizeof(char));
printf("Current size (f): %s\n", format_commas((int)currentSize, szcurrentSize));
printf("Peak size (f): %s\n", format_commas((int)currentSize, szpeakSize));
free(szcurrentSize);
free(szpeakSize);
A modified version of #paxdiablo solution, but using WCHAR and wsprinf:
static WCHAR buffer[10];
static int pos = 0;
void printfcomma(const int &n) {
if (n < 0) {
wsprintf(buffer + pos, TEXT("-"));
pos = lstrlen(buffer);
printfcomma(-n);
return;
}
if (n < 1000) {
wsprintf(buffer + pos, TEXT("%d"), n);
pos = lstrlen(buffer);
return;
}
printfcomma(n / 1000);
wsprintf(buffer + pos, TEXT(",%03d"), n % 1000);
pos = lstrlen(buffer);
}
void my_sprintf(const int &n)
{
pos = 0;
printfcomma(n);
}
I'm new in C programming. Here is my simple code.
int main()
{
// 1223 => 1,223
int n;
int a[10];
printf(" n: ");
scanf_s("%d", &n);
int i = 0;
while (n > 0)
{
int temp = n % 1000;
a[i] = temp;
n /= 1000;
i++;
}
for (int j = i - 1; j >= 0; j--)
{
if (j == 0)
{
printf("%d.", a[j]);
}
else printf("%d,",a[j]);
}
getch();
return 0;
}
Require: <stdio.h> + <string.h>.
Advantage: short, readable, based on the format of scanf-family. And assume no comma on the right of decimal point.
void add_commas(char *in, char *out) {
int len_in = strlen(in);
int len_int = -1; /* len_int(123.4) = 3 */
for (int i = 0; i < len_in; ++i) if (in[i] == '.') len_int = i;
int pos = 0;
for (int i = 0; i < len_in; ++i) {
if (i>0 && i<len_int && (len_int-i)%3==0)
out[pos++] = ',';
out[pos++] = in[i];
}
out[pos] = 0; /* Append the '\0' */
}
Example, to print a formatted double:
#include <stdio.h>
#include <string.h>
#define COUNT_DIGIT_MAX 100
int main() {
double sum = 30678.7414;
char input[COUNT_DIGIT_MAX+1] = { 0 }, output[COUNT_DIGIT_MAX+1] = { 0 };
snprintf(input, COUNT_DIGIT_MAX, "%.2f", sum/12);
add_commas(input, output);
printf("%s\n", output);
}
Output:
2,556.56
Using C++'s std::string as return value with possibly the least overhead and not using any std library functions (sprintf, to_string, etc.).
string group_digs_c(int num)
{
const unsigned int BUF_SIZE = 128;
char buf[BUF_SIZE] = { 0 }, * pbuf = &buf[BUF_SIZE - 1];
int k = 0, neg = 0;
if (num < 0) { neg = 1; num = num * -1; };
while(num)
{
if (k > 0 && k % 3 == 0)
*pbuf-- = ',';
*pbuf-- = (num % 10) + '0';
num /= 10;
++k;
}
if (neg)
*pbuf = '-';
else
++pbuf;
int cc = buf + BUF_SIZE - pbuf;
memmove(buf, pbuf, cc);
buf[cc] = 0;
string rv = buf;
return rv;
}
Here is a simple portable solution relying on sprintf:
#include <stdio.h>
// assuming out points to an array of sufficient size
char *format_commas(char *out, int n, int min_digits) {
int len = sprintf(out, "%.*d", min_digits, n);
int i = (*out == '-'), j = len, k = (j - i - 1) / 3;
out[j + k] = '\0';
while (k-- > 0) {
j -= 3;
out[j + k + 3] = out[j + 2];
out[j + k + 2] = out[j + 1];
out[j + k + 1] = out[j + 0];
out[j + k + 0] = ',';
}
return out;
}
The code is easy to adapt for other integer types.
There are many interesting contributions here. Some covered all cases, some did not. I picked four of the contributions to test, found some failure cases during testing and then added a solution of my own.
I tested all methods for both accuracy and speed. Even though the OP only requested a solution for one positive number, I upgraded the contributions that didn't cover all possible numbers (so the code below may be slightly different from the original postings). The cases that weren't covered include: 0, negative numbers and the minimum number (INT_MIN).
I changed the declared type from "int" to "long long" since it's more general and all ints will get promoted to long long. I also standardized the call interface to include the number as well as a buffer to contain the formatted string (like some of the contributions) and returned a pointer to the buffer:
char* funcName(long long number_to_format, char* string_buffer);
Including a buffer parameter is considered by some to be "better" than having the function: 1) contain a static buffer (would not be re-entrant) or 2) allocate space for the buffer (would require caller to de-allocate the memory) or 3) print the result directly to stdout (would not be as generally useful since the output may be targeted for a GUI widget, file, pty, pipe, etc.).
I tried to use the same function names as the original contributions to make it easier to refer back to the originals. Contributed functions were modified as needed to pass the accuracy test so that the speed test would be meaningful. The results are included here in case you would like to test more of the contributed techniques for comparison. All code and test code used to generate the results are shown below.
So, here are the results:
Accuracy Test (test cases: LLONG_MIN, -999, -99, 0, 99, 999, LLONG_MAX):
----------------------------------------------------
print_number:
-9,223,372,036,854,775,808, -999, -99, 0, 99, 999, 9,223,372,036,854,775,807
fmtLocale:
-9,223,372,036,854,775,808, -999, -99, 0, 99, 999, 9,223,372,036,854,775,807
fmtCommas:
-9,223,372,036,854,775,808, -999, -99, 0, 99, 999, 9,223,372,036,854,775,807
format_number:
-9,223,372,036,854,775,808, -999, -99, 0, 99, 999, 9,223,372,036,854,775,807
itoa_commas:
-9,223,372,036,854,775,808, -999, -99, 0, 99, 999, 9,223,372,036,854,775,807
Speed Test: (1 million calls, values reflect average time per call)
----------------------------------------------------
print_number: 0.747 us (microsec) per call
fmtLocale: 0.222 us (microsec) per call
fmtCommas: 0.212 us (microsec) per call
format_number: 0.124 us (microsec) per call
itoa_commas: 0.085 us (microsec) per call
Since all contributed techniques are fast (< 1 microsecond on my laptop), unless you need to format millions of numbers, any of the techniques should be acceptable. It's probably best to choose the technique that is most readable to you.
Here is the code:
#line 2 "comma.c"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include <locale.h>
#include <limits.h>
// ----------------------------------------------------------
char* print_number( long long n, char buf[32] ) {
long long order_of_magnitude = (n == 0) ? 1
: (long long)pow( 10, ((long long)floor(log10(fabs(n))) / 3) * 3 ) ;
char *ptr = buf;
sprintf(ptr, "%d", n / order_of_magnitude ) ;
for( n %= order_of_magnitude, order_of_magnitude /= 1000;
order_of_magnitude > 0;
n %= order_of_magnitude, order_of_magnitude /= 1000 )
{
ptr += strlen(ptr);
sprintf(ptr, ",%03d", abs(n / order_of_magnitude) );
}
return buf;
}
// ----------------------------------------------------------
char* fmtLocale(long long i, char buf[32]) {
sprintf(buf, "%'lld", i); // requires setLocale in main
return buf;
}
// ----------------------------------------------------------
char* fmtCommas(long long num, char dst[32]) {
char src[27];
char *p_src = src;
char *p_dst = dst;
const char separator = ',';
int num_len, commas;
num_len = sprintf(src, "%lld", num);
if (*p_src == '-') {
*p_dst++ = *p_src++;
num_len--;
}
for (commas = 2 - num_len % 3;
*p_src;
commas = (commas + 1) % 3)
{
*p_dst++ = *p_src++;
if (commas == 1) {
*p_dst++ = separator;
}
}
*--p_dst = '\0';
return dst;
}
// ----------------------------------------------------------
char* format_number(long long n, char out[32]) {
int digit;
int out_index = 0;
long long i = (n < 0) ? -n : n;
if (i == LLONG_MIN) i = LLONG_MAX; // handle MIN, offset by 1
if (i == 0) { out[out_index++] = '0'; } // handle 0
for ( ; i != 0; i /= 10) {
digit = i % 10;
if ((out_index + 1) % 4 == 0) {
out[out_index++] = ',';
}
out[out_index++] = digit + '0';
}
if (n == LLONG_MIN) { out[0]++; } // correct for offset
if (n < 0) { out[out_index++] = '-'; }
out[out_index] = '\0';
// then you reverse the out string
for (int i=0, j = strlen(out) - 1; i<=j; ++i, --j) {
char tmp = out[i];
out[i] = out[j];
out[j] = tmp;
}
return out;
}
// ----------------------------------------------------------
char* itoa_commas(long long i, char buf[32]) {
char* p = buf + 31;
*p = '\0'; // terminate string
if (i == 0) { *(--p) = '0'; return p; } // handle 0
long long n = (i < 0) ? -i : i;
if (n == LLONG_MIN) n = LLONG_MAX; // handle MIN, offset by 1
for (int j=0; 1; ++j) {
*--p = '0' + n % 10; // insert digit
if ((n /= 10) <= 0) break;
if (j % 3 == 2) *--p = ','; // insert a comma
}
if (i == LLONG_MIN) { p[24]++; } // correct for offset
if (i < 0) { *--p = '-'; }
return p;
}
// ----------------------------------------------------------
// Test Accuracy
// ----------------------------------------------------------
void test_accuracy(char* name, char* (*func)(long long n, char* buf)) {
char sbuf[32]; // string buffer
long long nbuf[] = { LLONG_MIN, -999, -99, 0, 99, 999, LLONG_MAX };
printf("%s:\n", name);
printf(" %s", func(nbuf[0], sbuf));
for (int i=1; i < sizeof(nbuf) / sizeof(long long int); ++i) {
printf(", %s", func(nbuf[i], sbuf));
}
printf("\n");
}
// ----------------------------------------------------------
// Test Speed
// ----------------------------------------------------------
void test_speed(char* name, char* (*func)(long long n, char* buf)) {
int cycleCount = 1000000;
//int cycleCount = 1;
clock_t start;
double elapsed;
char sbuf[32]; // string buffer
start = clock();
for (int i=0; i < cycleCount; ++i) {
char* s = func(LLONG_MAX, sbuf);
}
elapsed = (double)(clock() - start) / (CLOCKS_PER_SEC / 1000000.0);
printf("%14s: %7.3f us (microsec) per call\n", name, elapsed / cycleCount);
}
// ----------------------------------------------------------
int main(int argc, char* argv[]){
setlocale(LC_ALL, "");
printf("\nAccuracy Test: (LLONG_MIN, -999, 0, 99, LLONG_MAX)\n");
printf("----------------------------------------------------\n");
test_accuracy("print_number", print_number);
test_accuracy("fmtLocale", fmtLocale);
test_accuracy("fmtCommas", fmtCommas);
test_accuracy("format_number", format_number);
test_accuracy("itoa_commas", itoa_commas);
printf("\nSpeed Test: 1 million calls\n\n");
printf("----------------------------------------------------\n");
test_speed("print_number", print_number);
test_speed("fmtLocale", fmtLocale);
test_speed("fmtCommas", fmtCommas);
test_speed("format_number", format_number);
test_speed("itoa_commas", itoa_commas);
return 0;
}
Can be done pretty easily...
//Make sure output buffer is big enough and that input is a valid null terminated string
void pretty_number(const char* input, char * output)
{
int iInputLen = strlen(input);
int iOutputBufferPos = 0;
for(int i = 0; i < iInputLen; i++)
{
if((iInputLen-i) % 3 == 0 && i != 0)
{
output[iOutputBufferPos++] = ',';
}
output[iOutputBufferPos++] = input[i];
}
output[iOutputBufferPos] = '\0';
}
Example call:
char szBuffer[512];
pretty_number("1234567", szBuffer);
//strcmp(szBuffer, "1,234,567") == 0
void printfcomma ( long long unsigned int n)
{
char nstring[100];
int m;
int ptr;
int i,j;
sprintf(nstring,"%llu",n);
m=strlen(nstring);
ptr=m%3;
if (ptr)
{ for (i=0;i<ptr;i++) // print first digits before comma
printf("%c", nstring[i]);
printf(",");
}
j=0;
for (i=ptr;i<m;i++) // print the rest inserting commas
{
printf("%c",nstring[i]);
j++;
if (j%3==0)
if(i<(m-1)) printf(",");
}
}
// separate thousands
int digit;
int idx = 0;
static char buffer[32];
char* p = &buffer[32];
*--p = '\0';
for (int i = fCounter; i != 0; i /= 10)
{
digit = i % 10;
if ((p - buffer) % 4 == 0)
*--p = ' ';
*--p = digit + '0';
}

Add or subtract two numbers represented as Strings without using int, double, long, float, etc

My assignment for this question has already passed and I guess I misunderstood the question altogether by using numerical data types in some parts of my code. So I'm just curious as to how to solve this problem of adding/subtracting subtract two numbers represented as Strings without using numerical data types. By numerical data types, I just mean int, double, long, etc and everything needs to stay in String form.
Here is a function that performs addition of numbers in string format into an array of char, assumed to be sufficiently large and different from a and b:
char *add_numbers(char *dest, const char *a, const char *b) {
size_t lena = strlen(a);
size_t lenb = strlen(b);
size_t len = lena > lenb ? lena + 1 : lenb + 1;
char carry = 0;
dest[len] = '\0';
while (lena > 0 && lenb > 0) {
char digit = a[--lena] - '0' + b[--lenb] + carry;
carry = 0;
if (digit > '9') {
carry = 1;
digit -= 10;
}
dest[--len] = digit;
}
if (lenb > 0) {
lena = lenb;
a = b;
}
while (lena > 0) {
char digit = a[--lena] + carry;
carry = 0;
if (digit > '9') {
carry = 1;
digit -= 10;
}
dest[--len] = digit;
}
if (carry) {
dest[--len] = '1';
} else {
for (;; len++) {
dest[len - 1] = dest[len];
if (dest[len] == '\0')
break;
}
}
return dest;
}
No int, double, long, float. The number is not converted into numerical format, the operation is performed one digit at a time, in string format.
I'm guessing that you need to do arithmetic on strings digit by digit.
Like many assignments you will get in school, there is really no point in being able to do arithmetic this way, you are just supposed to learn something about the different operations and thought patterns you would need to go through.
For addition, lets take the example add("9","12") // returns "21"
In order to write this function, we will do addition the same way you learned to do it in school, first the one's digit, then the ten's and so on.
to do this, we will break call an add_digit function once for every digit.
This function will need to take the corresponding digit from both a and b as well as any carry that resulted from the addition of the previous digits.
The following code is a complete example of doing this.
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
const char * shortest(const char * a, const char * b){
if (strlen(a) <= strlen(b)){
return a;
}
return b;
}
const char * longest(const char * a, const char * b){
if (strlen(a) <= strlen(b)){
return b;
}
return a;
}
const char * add_digit(char a, char b, char carry){
/*printf("a : %c, b : %c, carry : %c\n", a, b, carry);*/
static char out[2] = {'0','0'};
int a_int = (int)(a - 48);
int b_int = (int)(b - 48);
int carry_int = (int)(carry - 48);
int sum = a_int + b_int + carry_int;
if (sum > 9){
out[0] = (sum / 10) + 48;
sum %= 10;
}
out [1] = sum + 48;
return out;
}
const char * add(const char * a, const char * b){
const char * s = shortest(a,b);
const char * l = longest(a,b);
unsigned i;
char carry = '0';
char * out = malloc(strlen(l) + 1);
for (i = strlen(l); i--;){
out[i] = ' ';
}
out[strlen(l)] = '\0';
for (i = 0; i < strlen(l); i++){
const char * digit;
if (i < strlen(s)){
digit = add_digit(s[strlen(s) - i - 1], l[strlen(l) - i - 1], carry);
} else {
digit = add_digit('0', l[strlen(l) - i - 1], carry);
}
carry = digit[0];
out[strlen(l) - i] = digit[1];
}
out[0] = carry;
return out;
}
int main(){
printf("9999 + 9 = %s\n", add("9999", "9"));
}

Convert integer to string without access to libraries

I recently read a sample job interview question:
Write a function to convert an integer
to a string. Assume you do not have
access to library functions i.e.,
itoa(), etc...
How would you go about this?
fast stab at it: (edited to handle negative numbers)
int n = INT_MIN;
char buffer[50];
int i = 0;
bool isNeg = n<0;
unsigned int n1 = isNeg ? -n : n;
while(n1!=0)
{
buffer[i++] = n1%10+'0';
n1=n1/10;
}
if(isNeg)
buffer[i++] = '-';
buffer[i] = '\0';
for(int t = 0; t < i/2; t++)
{
buffer[t] ^= buffer[i-t-1];
buffer[i-t-1] ^= buffer[t];
buffer[t] ^= buffer[i-t-1];
}
if(n == 0)
{
buffer[0] = '0';
buffer[1] = '\0';
}
printf(buffer);
A look on the web for itoa implementation will give you good examples. Here is one, avoiding to reverse the string at the end. It relies on a static buffer, so take care if you reuse it for different values.
char* itoa(int val, int base){
static char buf[32] = {0};
int i = 30;
for(; val && i ; --i, val /= base)
buf[i] = "0123456789abcdef"[val % base];
return &buf[i+1];
}
The algorithm is easy to see in English.
Given an integer, e.g. 123
divide by 10 => 123/10. Yielding, result = 12 and remainder = 3
add 30h to 3 and push on stack (adding 30h will convert 3 to ASCII representation)
repeat step 1 until result < 10
add 30h to result and store on stack
the stack contains the number in order of | 1 | 2 | 3 | ...
I would keep in mind that all of the digit characters are in increasing order within the ASCII character set and do not have other characters between them.
I would also use the / and the% operators repeatedly.
How I would go about getting the memory for the string would depend on information you have not given.
Assuming it is in decimal, then like this:
int num = ...;
char res[MaxDigitCount];
int len = 0;
for(; num > 0; ++len)
{
res[len] = num%10+'0';
num/=10;
}
res[len] = 0; //null-terminating
//now we need to reverse res
for(int i = 0; i < len/2; ++i)
{
char c = res[i]; res[i] = res[len-i-1]; res[len-i-1] = c;
}
An implementation of itoa() function seems like an easy task but actually you have to take care of many aspects that are related on your exact needs. I guess that in the interview you are expected to give some details about your way to the solution rather than copying a solution that can be found in Google (http://en.wikipedia.org/wiki/Itoa)
Here are some questions you may want to ask yourself or the interviewer:
Where should the string be located (malloced? passed by the user? static variable?)
Should I support signed numbers?
Should i support floating point?
Should I support other bases rather then 10?
Do we need any input checking?
Is the output string limited in legth?
And so on.
Convert integer to string without access to libraries
Convert the least significant digit to a character first and then proceed to more significant digits.
Normally I'd shift the resulting string into place, yet recursion allows skipping that step with some tight code.
Using neg_a in myitoa_helper() avoids undefined behavior with INT_MIN.
// Return character one past end of character digits.
static char *myitoa_helper(char *dest, int neg_a) {
if (neg_a <= -10) {
dest = myitoa_helper(dest, neg_a / 10);
}
*dest = (char) ('0' - neg_a % 10);
return dest + 1;
}
char *myitoa(char *dest, int a) {
if (a >= 0) {
*myitoa_helper(dest, -a) = '\0';
} else {
*dest = '-';
*myitoa_helper(dest + 1, a) = '\0';
}
return dest;
}
void myitoa_test(int a) {
char s[100];
memset(s, 'x', sizeof s);
printf("%11d <%s>\n", a, myitoa(s, a));
}
Test code & output
#include "limits.h"
#include "stdio.h"
int main(void) {
const int a[] = {INT_MIN, INT_MIN + 1, -42, -1, 0, 1, 2, 9, 10, 99, 100,
INT_MAX - 1, INT_MAX};
for (unsigned i = 0; i < sizeof a / sizeof a[0]; i++) {
myitoa_test(a[i]);
}
return 0;
}
-2147483648 <-2147483648>
-2147483647 <-2147483647>
-42 <-42>
-1 <-1>
0 <0>
1 <1>
2 <2>
9 <9>
10 <10>
99 <99>
100 <100>
2147483646 <2147483646>
2147483647 <2147483647>
The faster the better?
unsigned countDigits(long long x)
{
int i = 1;
while ((x /= 10) && ++i);
return i;
}
unsigned getNumDigits(long long x)
{
x < 0 ? x = -x : 0;
return
x < 10 ? 1 :
x < 100 ? 2 :
x < 1000 ? 3 :
x < 10000 ? 4 :
x < 100000 ? 5 :
x < 1000000 ? 6 :
x < 10000000 ? 7 :
x < 100000000 ? 8 :
x < 1000000000 ? 9 :
x < 10000000000 ? 10 : countDigits(x);
}
#define tochar(x) '0' + x
void tostr(char* dest, long long x)
{
unsigned i = getNumDigits(x);
char negative = x < 0;
if (negative && (*dest = '-') & (x = -x) & i++);
*(dest + i) = 0;
while ((i > negative) && (*(dest + (--i)) = tochar(((x) % 10))) | (x /= 10));
}
If you want to debug, You can split the conditions (instructions) into
lines of code inside the while scopes {}.
I came across this question so I decided to drop by the code I usually use for this:
char *SignedIntToStr(char *Dest, signed int Number, register unsigned char Base) {
if (Base < 2 || Base > 36) {
return (char *)0;
}
register unsigned char Digits = 1;
register unsigned int CurrentPlaceValue = 1;
for (register unsigned int T = Number/Base; T; T /= Base) {
CurrentPlaceValue *= Base;
Digits++;
}
if (!Dest) {
Dest = malloc(Digits+(Number < 0)+1);
}
char *const RDest = Dest;
if (Number < 0) {
Number = -Number;
*Dest = '-';
Dest++;
}
for (register unsigned char i = 0; i < Digits; i++) {
register unsigned char Digit = (Number/CurrentPlaceValue);
Dest[i] = (Digit < 10? '0' : 87)+Digit;
Number %= CurrentPlaceValue;
CurrentPlaceValue /= Base;
}
Dest[Digits] = '\0';
return RDest;
}
#include <stdio.h>
int main(int argc, char *argv[]) {
char String[32];
puts(SignedIntToStr(String, -100, 16));
return 0;
}
This will automatically allocate memory if NULL is passed into Dest. Otherwise it will write to Dest.
Here's a simple approach, but I suspect if you turn this in as-is without understanding and paraphrasing it, your teacher will know you just copied off the net:
char *pru(unsigned x, char *eob)
{
do { *--eob = x%10; } while (x/=10);
return eob;
}
char *pri(int x, char *eob)
{
eob = fmtu(x<0?-x:x, eob);
if (x<0) *--eob='-';
return eob;
}
Various improvements are possible, especially if you want to efficiently support larger-than-word integer sizes up to intmax_t. I'll leave it to you to figure out the way these functions are intended to be called.
Slightly longer than the solution:
static char*
itoa(int n, char s[])
{
int i, sign;
if ((sign = n) < 0)
n = -n;
i = 0;
do
{
s[i++] = n % 10 + '0';
} while ((n /= 10) > 0);
if (sign < 0)
s[i++] = '-';
s[i] = '\0';
reverse(s);
return s;
}
Reverse:
int strlen(const char* str)
{
int i = 0;
while (str != '\0')
{
i++;
str++;
}
return i;
}
static void
reverse(char s[])
{
int i, j;
char c;
for (i = 0, j = strlen(s)-1; i<j; i++, j--) {
c = s[i];
s[i] = s[j];
s[j] = c;
}
}
And although the decision davolno long here are some useful features for beginners. I hope you will be helpful.
This is the shortest function I can think of that:
Correctly handles all signed 32-bit integers including 0, MIN_INT32, MAX_INT32.
Returns a value that can be printed immediatelly, e.g.: printf("%s\n", GetDigits(-123))
Please comment for improvements:
static const char LARGEST_NEGATIVE[] = "-2147483648";
static char* GetDigits(int32_t x) {
char* buffer = (char*) calloc(sizeof(LARGEST_NEGATIVE), 1);
int negative = x < 0;
if (negative) {
if (x + (1 << 31) == 0) { // if x is the largest negative number
memcpy(buffer, LARGEST_NEGATIVE, sizeof(LARGEST_NEGATIVE));
return buffer;
}
x *= -1;
}
// storing digits in reversed order
int length = 0;
do {
buffer[length++] = x % 10 + '0';
x /= 10;
} while (x > 0);
if (negative) {
buffer[length++] = '-'; // appending minus
}
// reversing digits
for (int i = 0; i < length / 2; i++) {
char temp = buffer[i];
buffer[i] = buffer[length-1 - i];
buffer[length-1 - i] = temp;
}
return buffer;
}
//Fixed the answer from [10]
#include <iostream>
void CovertIntToString(unsigned int n1)
{
unsigned int n = INT_MIN;
char buffer[50];
int i = 0;
n = n1;
bool isNeg = n<0;
n1 = isNeg ? -n1 : n1;
while(n1!=0)
{
buffer[i++] = n1%10+'0';
n1=n1/10;
}
if(isNeg)
buffer[i++] = '-';
buffer[i] = '\0';
// Now we must reverse the string
for(int t = 0; t < i/2; t++)
{
buffer[t] ^= buffer[i-t-1];
buffer[i-t-1] ^= buffer[t];
buffer[t] ^= buffer[i-t-1];
}
if(n == 0)
{
buffer[0] = '0';
buffer[1] = '\0';
}
printf("%s", buffer);
}
int main() {
unsigned int x = 4156;
CovertIntToString(x);
return 0;
}
This function converts each digits of number into a char and chars add together
in one stack forming a string. Finally, string is formed from integer.
string convertToString(int num){
string str="";
for(; num>0;){
str+=(num%10+'0');
num/=10;
}
return str;
}

How to format a number using comma as thousands separator in C?

In C, how can I format a large number from e.g. 1123456789 to 1,123,456,789?
I tried using printf("%'10d\n", 1123456789), but that doesn't work.
Could you advise anything? The simpler the solution the better.
If your printf supports the ' flag (as required by POSIX 2008 printf()), you can probably do it just by setting your locale appropriately. Example:
#include <stdio.h>
#include <locale.h>
int main(void)
{
setlocale(LC_NUMERIC, "");
printf("%'d\n", 1123456789);
return 0;
}
And build & run:
$ ./example
1,123,456,789
Tested on Mac OS X & Linux (Ubuntu 10.10).
You can do it recursively as follows (beware INT_MIN if you're using two's complement, you'll need extra code to manage that):
void printfcomma2 (int n) {
if (n < 1000) {
printf ("%d", n);
return;
}
printfcomma2 (n/1000);
printf (",%03d", n%1000);
}
void printfcomma (int n) {
if (n < 0) {
printf ("-");
n = -n;
}
printfcomma2 (n);
}
A summmary:
User calls printfcomma with an integer, the special case of negative numbers is handled by simply printing "-" and making the number positive (this is the bit that won't work with INT_MIN).
When you enter printfcomma2, a number less than 1,000 will just print and return.
Otherwise the recursion will be called on the next level up (so 1,234,567 will be called with 1,234, then 1) until a number less than 1,000 is found.
Then that number will be printed and we'll walk back up the recursion tree, printing a comma and the next number as we go.
There is also the more succinct version though it does unnecessary processing in checking for negative numbers at every level (not that this will matter given the limited number of recursion levels). This one is a complete program for testing:
#include <stdio.h>
void printfcomma (int n) {
if (n < 0) {
printf ("-");
printfcomma (-n);
return;
}
if (n < 1000) {
printf ("%d", n);
return;
}
printfcomma (n/1000);
printf (",%03d", n%1000);
}
int main (void) {
int x[] = {-1234567890, -123456, -12345, -1000, -999, -1,
0, 1, 999, 1000, 12345, 123456, 1234567890};
int *px = x;
while (px != &(x[sizeof(x)/sizeof(*x)])) {
printf ("%-15d: ", *px);
printfcomma (*px);
printf ("\n");
px++;
}
return 0;
}
and the output is:
-1234567890 : -1,234,567,890
-123456 : -123,456
-12345 : -12,345
-1000 : -1,000
-999 : -999
-1 : -1
0 : 0
1 : 1
999 : 999
1000 : 1,000
12345 : 12,345
123456 : 123,456
1234567890 : 1,234,567,890
An iterative solution for those who don't trust recursion (although the only problem with recursion tends to be stack space which will not be an issue here since it'll only be a few levels deep even for a 64-bit integer):
void printfcomma (int n) {
int n2 = 0;
int scale = 1;
if (n < 0) {
printf ("-");
n = -n;
}
while (n >= 1000) {
n2 = n2 + scale * (n % 1000);
n /= 1000;
scale *= 1000;
}
printf ("%d", n);
while (scale != 1) {
scale /= 1000;
n = n2 / scale;
n2 = n2 % scale;
printf (",%03d", n);
}
}
Both of these generate 2,147,483,647 for INT_MAX.
All the code above is for comma-separating three-digit groups but you can use other characters as well, such as a space:
void printfspace2 (int n) {
if (n < 1000) {
printf ("%d", n);
return;
}
printfspace2 (n/1000);
printf (" %03d", n%1000);
}
void printfspace (int n) {
if (n < 0) {
printf ("-");
n = -n;
}
printfspace2 (n);
}
Here's a very simple implementation. This function contains no error checking, buffer sizes must be verified by the caller. It also does not work for negative numbers. Such improvements are left as an exercise for the reader.
void format_commas(int n, char *out)
{
int c;
char buf[20];
char *p;
sprintf(buf, "%d", n);
c = 2 - strlen(buf) % 3;
for (p = buf; *p != 0; p++) {
*out++ = *p;
if (c == 1) {
*out++ = ',';
}
c = (c + 1) % 3;
}
*--out = 0;
}
Egads! I do this all the time, using gcc/g++ and glibc on linux and yes, the ' operator may be non-standard, but I like the simplicity of it.
#include <stdio.h>
#include <locale.h>
int main()
{
int bignum=12345678;
setlocale(LC_ALL,"");
printf("Big number: %'d\n",bignum);
return 0;
}
Gives output of:
Big number: 12,345,678
Just have to remember the 'setlocale' call in there, otherwise it won't format anything.
Perhaps a locale-aware version would be interesting.
#include <stdlib.h>
#include <locale.h>
#include <string.h>
#include <limits.h>
static int next_group(char const **grouping) {
if ((*grouping)[1] == CHAR_MAX)
return 0;
if ((*grouping)[1] != '\0')
++*grouping;
return **grouping;
}
size_t commafmt(char *buf, /* Buffer for formatted string */
int bufsize, /* Size of buffer */
long N) /* Number to convert */
{
int i;
int len = 1;
int posn = 1;
int sign = 1;
char *ptr = buf + bufsize - 1;
struct lconv *fmt_info = localeconv();
char const *tsep = fmt_info->thousands_sep;
char const *group = fmt_info->grouping;
char const *neg = fmt_info->negative_sign;
size_t sep_len = strlen(tsep);
size_t group_len = strlen(group);
size_t neg_len = strlen(neg);
int places = (int)*group;
if (bufsize < 2)
{
ABORT:
*buf = '\0';
return 0;
}
*ptr-- = '\0';
--bufsize;
if (N < 0L)
{
sign = -1;
N = -N;
}
for ( ; len <= bufsize; ++len, ++posn)
{
*ptr-- = (char)((N % 10L) + '0');
if (0L == (N /= 10L))
break;
if (places && (0 == (posn % places)))
{
places = next_group(&group);
for (int i=sep_len; i>0; i--) {
*ptr-- = tsep[i-1];
if (++len >= bufsize)
goto ABORT;
}
}
if (len >= bufsize)
goto ABORT;
}
if (sign < 0)
{
if (len >= bufsize)
goto ABORT;
for (int i=neg_len; i>0; i--) {
*ptr-- = neg[i-1];
if (++len >= bufsize)
goto ABORT;
}
}
memmove(buf, ++ptr, len + 1);
return (size_t)len;
}
#ifdef TEST
#include <stdio.h>
#define elements(x) (sizeof(x)/sizeof(x[0]))
void show(long i) {
char buffer[32];
commafmt(buffer, sizeof(buffer), i);
printf("%s\n", buffer);
commafmt(buffer, sizeof(buffer), -i);
printf("%s\n", buffer);
}
int main() {
long inputs[] = {1, 12, 123, 1234, 12345, 123456, 1234567, 12345678 };
for (int i=0; i<elements(inputs); i++) {
setlocale(LC_ALL, "");
show(inputs[i]);
}
return 0;
}
#endif
This does have a bug (but one I'd consider fairly minor). On two's complement hardware, it won't convert the most-negative number correctly, because it attempts to convert a negative number to its equivalent positive number with N = -N; In two's complement, the maximally negative number doesn't have a corresponding positive number, unless you promote it to a larger type. One way to get around this is by promoting the number the corresponding unsigned type (but it's is somewhat non-trivial).
Without recursion or string handling, a mathematical approach:
#include <stdio.h>
#include <math.h>
void print_number( int n )
{
int order_of_magnitude = (n == 0) ? 1 : (int)pow( 10, ((int)floor(log10(abs(n))) / 3) * 3 ) ;
printf( "%d", n / order_of_magnitude ) ;
for( n = abs( n ) % order_of_magnitude, order_of_magnitude /= 1000;
order_of_magnitude > 0;
n %= order_of_magnitude, order_of_magnitude /= 1000 )
{
printf( ",%03d", abs(n / order_of_magnitude) ) ;
}
}
Similar in principle to Pax's recursive solution, but by calculating the order of magnitude in advance, recursion is avoided (at some considerable expense perhaps).
Note also that the actual character used to separate thousands is locale specific.
Edit:See #Chux's comments below for improvements.
Based on #Greg Hewgill's, but takes negative numbers into account and returns the string size.
size_t str_format_int_grouped(char dst[16], int num)
{
char src[16];
char *p_src = src;
char *p_dst = dst;
const char separator = ',';
int num_len, commas;
num_len = sprintf(src, "%d", num);
if (*p_src == '-') {
*p_dst++ = *p_src++;
num_len--;
}
for (commas = 2 - num_len % 3;
*p_src;
commas = (commas + 1) % 3)
{
*p_dst++ = *p_src++;
if (commas == 1) {
*p_dst++ = separator;
}
}
*--p_dst = '\0';
return (size_t)(p_dst - dst);
}
Needed to do something similar myself but rather than printing directly, needed to go to a buffer. Here's what I came up with. Works backwards.
unsigned int IntegerToCommaString(char *String, unsigned long long Integer)
{
unsigned int Digits = 0, Offset, Loop;
unsigned long long Copy = Integer;
do {
Digits++;
Copy /= 10;
} while (Copy);
Digits = Offset = ((Digits - 1) / 3) + Digits;
String[Offset--] = '\0';
Copy = Integer;
Loop = 0;
do {
String[Offset] = '0' + (Copy % 10);
if (!Offset--)
break;
if (Loop++ % 3 == 2)
String[Offset--] = ',';
Copy /= 10;
} while (1);
return Digits;
}
Be aware that it's only designed for unsigned integers and you must ensure that the buffer is large enough.
There's no real simple way to do this in C. I would just modify an int-to-string function to do it:
void format_number(int n, char * out) {
int i;
int digit;
int out_index = 0;
for (i = n; i != 0; i /= 10) {
digit = i % 10;
if ((out_index + 1) % 4 == 0) {
out[out_index++] = ',';
}
out[out_index++] = digit + '0';
}
out[out_index] = '\0';
// then you reverse the out string as it was converted backwards (it's easier that way).
// I'll let you figure that one out.
strrev(out);
}
My answer does not format the result exactly like the illustration in the question, but may fulfill the actual need in some cases with a simple one-liner or macro. One can extend it to generate more thousand-groups as necessary.
The result will look for example as follows:
Value: 0'000'012'345
The code:
printf("Value: %llu'%03lu'%03lu'%03lu\n", (value / 1000 / 1000 / 1000), (value / 1000 / 1000) % 1000, (value / 1000) % 1000, value % 1000);
#include <stdio.h>
void punt(long long n){
char s[28];
int i = 27;
if(n<0){n=-n; putchar('-');}
do{
s[i--] = n%10 + '0';
if(!(i%4) && n>9)s[i--]='.';
n /= 10;
}while(n);
puts(&s[++i]);
}
int main(){
punt(2134567890);
punt(987);
punt(9876);
punt(-987);
punt(-9876);
punt(-654321);
punt(0);
punt(1000000000);
punt(0x7FFFFFFFFFFFFFFF);
punt(0x8000000000000001); // -max + 1 ...
}
My solution uses a . instead of a ,
It is left to the reader to change this.
This is old and there are plenty of answers but the question was not "how can I write a routine to add commas" but "how can it be done in C"? The comments pointed to this direction but on my Linux system with GCC, this works for me:
#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
int main()
{
unsetenv("LC_ALL");
setlocale(LC_NUMERIC, "");
printf("%'lld\n", 3141592653589);
}
When this is run, I get:
$ cc -g comma.c -o comma && ./comma
3,141,592,653,589
If I unset the LC_ALL variable before running the program the unsetenv is not necessary.
Another solution, by saving the result into an int array, maximum size of 7 because the long long int type can handle numbers in the range 9,223,372,036,854,775,807 to -9,223,372,036,854,775,807. (Note it is not an unsigned value).
Non-recursive printing function
static void printNumber (int numbers[8], int loc, int negative)
{
if (negative)
{
printf("-");
}
if (numbers[1]==-1)//one number
{
printf("%d ", numbers[0]);
}
else
{
printf("%d,", numbers[loc]);
while(loc--)
{
if(loc==0)
{// last number
printf("%03d ", numbers[loc]);
break;
}
else
{ // number in between
printf("%03d,", numbers[loc]);
}
}
}
}
main function call
static void getNumWcommas (long long int n, int numbers[8])
{
int i;
int negative=0;
if (n < 0)
{
negative = 1;
n = -n;
}
for(i = 0; i < 7; i++)
{
if (n < 1000)
{
numbers[i] = n;
numbers[i+1] = -1;
break;
}
numbers[i] = n%1000;
n/=1000;
}
printNumber(numbers, i, negative);// non recursive print
}
testing output
-9223372036854775807: -9,223,372,036,854,775,807
-1234567890 : -1,234,567,890
-123456 : -123,456
-12345 : -12,345
-1000 : -1,000
-999 : -999
-1 : -1
0 : 0
1 : 1
999 : 999
1000 : 1,000
12345 : 12,345
123456 : 123,456
1234567890 : 1,234,567,890
9223372036854775807 : 9,223,372,036,854,775,807
In main() function:
int numberSeparated[8];
long long int number = 1234567890LL;
getNumWcommas(number, numberSeparated);
If printing is all that's needed then move int numberSeparated[8]; inside the function getNumWcommas and call it this way getNumWcommas(number).
Another iterative function
int p(int n) {
if(n < 0) {
printf("-");
n = -n;
}
int a[sizeof(int) * CHAR_BIT / 3] = { 0 };
int *pa = a;
while(n > 0) {
*++pa = n % 1000;
n /= 1000;
}
printf("%d", *pa);
while(pa > a + 1) {
printf(",%03d", *--pa);
}
}
Here is the slimiest, size and speed efficient implementation of this kind of decimal digit formating:
const char *formatNumber (
int value,
char *endOfbuffer,
bool plus)
{
int savedValue;
int charCount;
savedValue = value;
if (unlikely (value < 0))
value = - value;
*--endOfbuffer = 0;
charCount = -1;
do
{
if (unlikely (++charCount == 3))
{
charCount = 0;
*--endOfbuffer = ',';
}
*--endOfbuffer = (char) (value % 10 + '0');
}
while ((value /= 10) != 0);
if (unlikely (savedValue < 0))
*--endOfbuffer = '-';
else if (unlikely (plus))
*--endOfbuffer = '+';
return endOfbuffer;
}
Use as following:
char buffer[16];
fprintf (stderr, "test : %s.", formatNumber (1234567890, buffer + 16, true));
Output:
test : +1,234,567,890.
Some advantages:
Function taking end of string buffer because of reverse ordered formatting. Finally, where is no need in revering generated string (strrev).
This function produces one string that can be used in any algo after. It not depends nor require multiple printf/sprintf calls, which is terrible slow and always context specific.
Minimum number of divide operators (/, %).
Secure format_commas, with negative numbers:
Because VS < 2015 doesn't implement snprintf, you need to do this
#if defined(_WIN32)
#define snprintf(buf,len, format,...) _snprintf_s(buf, len,len, format, __VA_ARGS__)
#endif
And then
char* format_commas(int n, char *out)
{
int c;
char buf[100];
char *p;
char* q = out; // Backup pointer for return...
if (n < 0)
{
*out++ = '-';
n = abs(n);
}
snprintf(buf, 100, "%d", n);
c = 2 - strlen(buf) % 3;
for (p = buf; *p != 0; p++) {
*out++ = *p;
if (c == 1) {
*out++ = '\'';
}
c = (c + 1) % 3;
}
*--out = 0;
return q;
}
Example usage:
size_t currentSize = getCurrentRSS();
size_t peakSize = getPeakRSS();
printf("Current size: %d\n", currentSize);
printf("Peak size: %d\n\n\n", peakSize);
char* szcurrentSize = (char*)malloc(100 * sizeof(char));
char* szpeakSize = (char*)malloc(100 * sizeof(char));
printf("Current size (f): %s\n", format_commas((int)currentSize, szcurrentSize));
printf("Peak size (f): %s\n", format_commas((int)currentSize, szpeakSize));
free(szcurrentSize);
free(szpeakSize);
A modified version of #paxdiablo solution, but using WCHAR and wsprinf:
static WCHAR buffer[10];
static int pos = 0;
void printfcomma(const int &n) {
if (n < 0) {
wsprintf(buffer + pos, TEXT("-"));
pos = lstrlen(buffer);
printfcomma(-n);
return;
}
if (n < 1000) {
wsprintf(buffer + pos, TEXT("%d"), n);
pos = lstrlen(buffer);
return;
}
printfcomma(n / 1000);
wsprintf(buffer + pos, TEXT(",%03d"), n % 1000);
pos = lstrlen(buffer);
}
void my_sprintf(const int &n)
{
pos = 0;
printfcomma(n);
}
I'm new in C programming. Here is my simple code.
int main()
{
// 1223 => 1,223
int n;
int a[10];
printf(" n: ");
scanf_s("%d", &n);
int i = 0;
while (n > 0)
{
int temp = n % 1000;
a[i] = temp;
n /= 1000;
i++;
}
for (int j = i - 1; j >= 0; j--)
{
if (j == 0)
{
printf("%d.", a[j]);
}
else printf("%d,",a[j]);
}
getch();
return 0;
}
Require: <stdio.h> + <string.h>.
Advantage: short, readable, based on the format of scanf-family. And assume no comma on the right of decimal point.
void add_commas(char *in, char *out) {
int len_in = strlen(in);
int len_int = -1; /* len_int(123.4) = 3 */
for (int i = 0; i < len_in; ++i) if (in[i] == '.') len_int = i;
int pos = 0;
for (int i = 0; i < len_in; ++i) {
if (i>0 && i<len_int && (len_int-i)%3==0)
out[pos++] = ',';
out[pos++] = in[i];
}
out[pos] = 0; /* Append the '\0' */
}
Example, to print a formatted double:
#include <stdio.h>
#include <string.h>
#define COUNT_DIGIT_MAX 100
int main() {
double sum = 30678.7414;
char input[COUNT_DIGIT_MAX+1] = { 0 }, output[COUNT_DIGIT_MAX+1] = { 0 };
snprintf(input, COUNT_DIGIT_MAX, "%.2f", sum/12);
add_commas(input, output);
printf("%s\n", output);
}
Output:
2,556.56
Using C++'s std::string as return value with possibly the least overhead and not using any std library functions (sprintf, to_string, etc.).
string group_digs_c(int num)
{
const unsigned int BUF_SIZE = 128;
char buf[BUF_SIZE] = { 0 }, * pbuf = &buf[BUF_SIZE - 1];
int k = 0, neg = 0;
if (num < 0) { neg = 1; num = num * -1; };
while(num)
{
if (k > 0 && k % 3 == 0)
*pbuf-- = ',';
*pbuf-- = (num % 10) + '0';
num /= 10;
++k;
}
if (neg)
*pbuf = '-';
else
++pbuf;
int cc = buf + BUF_SIZE - pbuf;
memmove(buf, pbuf, cc);
buf[cc] = 0;
string rv = buf;
return rv;
}
Here is a simple portable solution relying on sprintf:
#include <stdio.h>
// assuming out points to an array of sufficient size
char *format_commas(char *out, int n, int min_digits) {
int len = sprintf(out, "%.*d", min_digits, n);
int i = (*out == '-'), j = len, k = (j - i - 1) / 3;
out[j + k] = '\0';
while (k-- > 0) {
j -= 3;
out[j + k + 3] = out[j + 2];
out[j + k + 2] = out[j + 1];
out[j + k + 1] = out[j + 0];
out[j + k + 0] = ',';
}
return out;
}
The code is easy to adapt for other integer types.
There are many interesting contributions here. Some covered all cases, some did not. I picked four of the contributions to test, found some failure cases during testing and then added a solution of my own.
I tested all methods for both accuracy and speed. Even though the OP only requested a solution for one positive number, I upgraded the contributions that didn't cover all possible numbers (so the code below may be slightly different from the original postings). The cases that weren't covered include: 0, negative numbers and the minimum number (INT_MIN).
I changed the declared type from "int" to "long long" since it's more general and all ints will get promoted to long long. I also standardized the call interface to include the number as well as a buffer to contain the formatted string (like some of the contributions) and returned a pointer to the buffer:
char* funcName(long long number_to_format, char* string_buffer);
Including a buffer parameter is considered by some to be "better" than having the function: 1) contain a static buffer (would not be re-entrant) or 2) allocate space for the buffer (would require caller to de-allocate the memory) or 3) print the result directly to stdout (would not be as generally useful since the output may be targeted for a GUI widget, file, pty, pipe, etc.).
I tried to use the same function names as the original contributions to make it easier to refer back to the originals. Contributed functions were modified as needed to pass the accuracy test so that the speed test would be meaningful. The results are included here in case you would like to test more of the contributed techniques for comparison. All code and test code used to generate the results are shown below.
So, here are the results:
Accuracy Test (test cases: LLONG_MIN, -999, -99, 0, 99, 999, LLONG_MAX):
----------------------------------------------------
print_number:
-9,223,372,036,854,775,808, -999, -99, 0, 99, 999, 9,223,372,036,854,775,807
fmtLocale:
-9,223,372,036,854,775,808, -999, -99, 0, 99, 999, 9,223,372,036,854,775,807
fmtCommas:
-9,223,372,036,854,775,808, -999, -99, 0, 99, 999, 9,223,372,036,854,775,807
format_number:
-9,223,372,036,854,775,808, -999, -99, 0, 99, 999, 9,223,372,036,854,775,807
itoa_commas:
-9,223,372,036,854,775,808, -999, -99, 0, 99, 999, 9,223,372,036,854,775,807
Speed Test: (1 million calls, values reflect average time per call)
----------------------------------------------------
print_number: 0.747 us (microsec) per call
fmtLocale: 0.222 us (microsec) per call
fmtCommas: 0.212 us (microsec) per call
format_number: 0.124 us (microsec) per call
itoa_commas: 0.085 us (microsec) per call
Since all contributed techniques are fast (< 1 microsecond on my laptop), unless you need to format millions of numbers, any of the techniques should be acceptable. It's probably best to choose the technique that is most readable to you.
Here is the code:
#line 2 "comma.c"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include <locale.h>
#include <limits.h>
// ----------------------------------------------------------
char* print_number( long long n, char buf[32] ) {
long long order_of_magnitude = (n == 0) ? 1
: (long long)pow( 10, ((long long)floor(log10(fabs(n))) / 3) * 3 ) ;
char *ptr = buf;
sprintf(ptr, "%d", n / order_of_magnitude ) ;
for( n %= order_of_magnitude, order_of_magnitude /= 1000;
order_of_magnitude > 0;
n %= order_of_magnitude, order_of_magnitude /= 1000 )
{
ptr += strlen(ptr);
sprintf(ptr, ",%03d", abs(n / order_of_magnitude) );
}
return buf;
}
// ----------------------------------------------------------
char* fmtLocale(long long i, char buf[32]) {
sprintf(buf, "%'lld", i); // requires setLocale in main
return buf;
}
// ----------------------------------------------------------
char* fmtCommas(long long num, char dst[32]) {
char src[27];
char *p_src = src;
char *p_dst = dst;
const char separator = ',';
int num_len, commas;
num_len = sprintf(src, "%lld", num);
if (*p_src == '-') {
*p_dst++ = *p_src++;
num_len--;
}
for (commas = 2 - num_len % 3;
*p_src;
commas = (commas + 1) % 3)
{
*p_dst++ = *p_src++;
if (commas == 1) {
*p_dst++ = separator;
}
}
*--p_dst = '\0';
return dst;
}
// ----------------------------------------------------------
char* format_number(long long n, char out[32]) {
int digit;
int out_index = 0;
long long i = (n < 0) ? -n : n;
if (i == LLONG_MIN) i = LLONG_MAX; // handle MIN, offset by 1
if (i == 0) { out[out_index++] = '0'; } // handle 0
for ( ; i != 0; i /= 10) {
digit = i % 10;
if ((out_index + 1) % 4 == 0) {
out[out_index++] = ',';
}
out[out_index++] = digit + '0';
}
if (n == LLONG_MIN) { out[0]++; } // correct for offset
if (n < 0) { out[out_index++] = '-'; }
out[out_index] = '\0';
// then you reverse the out string
for (int i=0, j = strlen(out) - 1; i<=j; ++i, --j) {
char tmp = out[i];
out[i] = out[j];
out[j] = tmp;
}
return out;
}
// ----------------------------------------------------------
char* itoa_commas(long long i, char buf[32]) {
char* p = buf + 31;
*p = '\0'; // terminate string
if (i == 0) { *(--p) = '0'; return p; } // handle 0
long long n = (i < 0) ? -i : i;
if (n == LLONG_MIN) n = LLONG_MAX; // handle MIN, offset by 1
for (int j=0; 1; ++j) {
*--p = '0' + n % 10; // insert digit
if ((n /= 10) <= 0) break;
if (j % 3 == 2) *--p = ','; // insert a comma
}
if (i == LLONG_MIN) { p[24]++; } // correct for offset
if (i < 0) { *--p = '-'; }
return p;
}
// ----------------------------------------------------------
// Test Accuracy
// ----------------------------------------------------------
void test_accuracy(char* name, char* (*func)(long long n, char* buf)) {
char sbuf[32]; // string buffer
long long nbuf[] = { LLONG_MIN, -999, -99, 0, 99, 999, LLONG_MAX };
printf("%s:\n", name);
printf(" %s", func(nbuf[0], sbuf));
for (int i=1; i < sizeof(nbuf) / sizeof(long long int); ++i) {
printf(", %s", func(nbuf[i], sbuf));
}
printf("\n");
}
// ----------------------------------------------------------
// Test Speed
// ----------------------------------------------------------
void test_speed(char* name, char* (*func)(long long n, char* buf)) {
int cycleCount = 1000000;
//int cycleCount = 1;
clock_t start;
double elapsed;
char sbuf[32]; // string buffer
start = clock();
for (int i=0; i < cycleCount; ++i) {
char* s = func(LLONG_MAX, sbuf);
}
elapsed = (double)(clock() - start) / (CLOCKS_PER_SEC / 1000000.0);
printf("%14s: %7.3f us (microsec) per call\n", name, elapsed / cycleCount);
}
// ----------------------------------------------------------
int main(int argc, char* argv[]){
setlocale(LC_ALL, "");
printf("\nAccuracy Test: (LLONG_MIN, -999, 0, 99, LLONG_MAX)\n");
printf("----------------------------------------------------\n");
test_accuracy("print_number", print_number);
test_accuracy("fmtLocale", fmtLocale);
test_accuracy("fmtCommas", fmtCommas);
test_accuracy("format_number", format_number);
test_accuracy("itoa_commas", itoa_commas);
printf("\nSpeed Test: 1 million calls\n\n");
printf("----------------------------------------------------\n");
test_speed("print_number", print_number);
test_speed("fmtLocale", fmtLocale);
test_speed("fmtCommas", fmtCommas);
test_speed("format_number", format_number);
test_speed("itoa_commas", itoa_commas);
return 0;
}
Can be done pretty easily...
//Make sure output buffer is big enough and that input is a valid null terminated string
void pretty_number(const char* input, char * output)
{
int iInputLen = strlen(input);
int iOutputBufferPos = 0;
for(int i = 0; i < iInputLen; i++)
{
if((iInputLen-i) % 3 == 0 && i != 0)
{
output[iOutputBufferPos++] = ',';
}
output[iOutputBufferPos++] = input[i];
}
output[iOutputBufferPos] = '\0';
}
Example call:
char szBuffer[512];
pretty_number("1234567", szBuffer);
//strcmp(szBuffer, "1,234,567") == 0
void printfcomma ( long long unsigned int n)
{
char nstring[100];
int m;
int ptr;
int i,j;
sprintf(nstring,"%llu",n);
m=strlen(nstring);
ptr=m%3;
if (ptr)
{ for (i=0;i<ptr;i++) // print first digits before comma
printf("%c", nstring[i]);
printf(",");
}
j=0;
for (i=ptr;i<m;i++) // print the rest inserting commas
{
printf("%c",nstring[i]);
j++;
if (j%3==0)
if(i<(m-1)) printf(",");
}
}
// separate thousands
int digit;
int idx = 0;
static char buffer[32];
char* p = &buffer[32];
*--p = '\0';
for (int i = fCounter; i != 0; i /= 10)
{
digit = i % 10;
if ((p - buffer) % 4 == 0)
*--p = ' ';
*--p = digit + '0';
}

Resources