Finding odd integer's middle number - c

OK, so to be clear I'm counting the distance. If the number is even it's easy to calculate, however if it's odd hmm I have an idea but I can't apply it. The task sounds like so: I need to find the distance between objects. As for example given data:
4 // how many objects (n)
4 10 0 12 every object's distance
After sorting the numbers ( im using arrays ) the answer is: (4-0)+(12-10)=6;
So my code after sorting even numbers appears to be correct, however when the number is odd calculations are like so:
5 (n)
4 10 0 12 2
Answer= (2-0)+(4-2)+(12-10)=6;
All I need to do (I think) is for function to stop when there is half of odd number and do a certain function;Here's my code:
if(n%2!=0){
for(i=0;i<n;i++){
if(i==((n/2)+1)){ // THIS PART
length+=mas[(n/2)+1]-mas[n/2];
i++;
break;
}
length+=mas[i+1]-mas[i];
i++;
}
}

#include <stdio.h>
int sum_distance(int n, int a[n]){
if(n < 2)
return 0;
int sum = 0;
int i=0;
if(n & 1){//n is odd
sum = a[1] - a[0];
++i;
}
for(;i<n; i+=2){
sum += a[i+1] - a[i];
}
return sum;
}
int main(){
int a[4] = { 0, 4, 10, 12};
int b[5] = { 0, 2, 4, 10, 12};//they are sorted
printf("%d\n", sum_distance(4, a));//6
printf("%d\n", sum_distance(5, b));//6
return 0;
}

Related

Problem with Running test on CodeWare.com

is there any thing wrong with my code? this a question from codewar and I am trying to solve, and it worked on atom but when I ran a test on website, it showed an error?
If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.
Finish the solution so that it returns the sum of all the multiples of 3 or 5 below the number passed in.
Note: If the number is a multiple of both 3 and 5, only count it once. Also, if a number is negative, return 0(for languages that do have them)
link of the question https://www.codewars.com/kata/514b92a657cdc65150000006/train/c
#include <stdio.h>
int sum_of_mul_of_3or5(int n)
{
if(n<0){return 0;}
int s = n,sum = 0,array[s];
for(int i=1; i<n;i++)
{
array[i-1] = 0;
if(i%3 == 0|| i%5 == 0){array[i-1] = i;}
sum += array[i-1];
}
for(int i=0; i<n; i++)
{
printf("%d ",array[i]);
}
return sum;
}
int main(){
int limit; printf("Enter a limit number: "); scanf("%d",&limit);
int sum = sum_of_mul_of_3or5(limit);
printf("\n");
printf("%d",sum);
return 0;}
Your algorithm is O(N) - it should be O(1).
Count how many 15 under given n. e.g 200, there are N=13 chunks of length 15. Every 15 (from K to K+14) you get K,K+3,K+5,K+6,K+9,K+10,K+12, total 7N+45. Sum them up, simply use N(N+1)/2*7+45N. Then add back the extra ending parts you have not accounted between 195 and 199.

Non divisible subset-Hackerrank solution in C

I am new to programming and C is the only language I know. Read a few answers for the same question written in other programming languages. I have written some code for the same but I only get a few test cases correct (4 to be precise). How do I edit my code to get accepted?
I have tried comparing one element of the array with the rest and then I remove the element (which is being compared with the initial) if their sum is divisible by k and then this continues until there are two elements in the array where their sum is divisible by k. Here is the link to the question:
https://www.hackerrank.com/challenges/non-divisible-subset/problem
#include<stdio.h>
#include<stdlib.h>
void remove_element(int array[],int position,long int *n){
int i;
for(i=position;i<=(*n)-1;i++){
array[i]=array[i+1];
}
*n=*n-1;
}
int main(){
int k;
long int n;
scanf("%ld",&n);
scanf("%d",&k);
int *array=malloc(n*sizeof(int));
int i,j;
for(i=0;i<n;i++)
scanf("%d",&array[i]);
for(i=n-1;i>=0;i--){
int counter=0;
for(j=n-1;j>=0;j--){
if((i!=j)&&(array[i]+array[j])%k==0)
{
remove_element(array,j,&n);
j--;
continue;
}
else if((i!=j)&&(array[i]+array[j])%k!=0){
counter++;
}
}
if(counter==n-1){
printf("%ld",n);
break;
}
}
return 0;
}
I only get about 4 test cases right from 20 test cases.
What Gerhardh in his comment hinted at is that
for(i=position;i<=(*n)-1;i++){
array[i]=array[i+1];
}
reads from array[*n] when i = *n-1, overrunning the array. Change that to
for (i=position; i<*n-1; i++)
array[i]=array[i+1];
Additionally, you have
remove_element(array,j,&n);
j--;
- but j will be decremented when continuing the for loop, so decrementing it here is one time too many, while adjustment of i is necessary, since remove_element() shifted array[i] one position to the left, so change j-- to i--.
Furthermore, the condition
if(counter==n-1){
printf("%ld",n);
break;
}
makes just no sense; remove that block and place printf("%ld\n", n); before the return 0;.
To solve this efficiently, you have to realize several things:
Two positive integer numbers a and b are divisible by k (also positive integer number) if ((a%k) + (b%k))%k = 0. That means, that either ((a%k) + (b%k)) = 0 (1) or ((a%k) + (b%k)) = k (2).
Case (1) ((a%k) + (b%k)) = 0 is possible only if both a and b are multiples of k or a%k=0 and b%k=0. For case (2) , there are at most k/2 possible pairs. So, our task is to pick elements that don't fall in case 1 or 2.
To do this, map each number in your array to its corresponding remainder by modulo k. For this, create a new array remainders in which an index stands for a remainder, and a value stands for numbers having such remainder.
Go over the new array remainders and handle 3 cases.
4.1 If remainders[0] > 0, then we can still pick only one element from the original (if we pick more, then sum of their remainders 0, so they are divisible by k!!!).
4.2 if k is even and remainders[k/2] > 0, then we can also pick only one element (otherwise their sum is k!!!).
4.3 What about the other numbers? Well, for any remainder rem > 0 make sure to pick max(remainders[rem], remainders[k - rem]). You can't pick both since rem + k - rem = k, so numbers from such groups can be divisible by k.
Now, the code:
int nonDivisibleSubset(int k, int s_count, int* s) {
static int remainders[101];
for (int i = 0; i < s_count; i++) {
int rem = s[i] % k;
remainders[rem]++;
}
int maxSize = 0;
bool isKOdd = k & 1;
int halfK = k / 2;
for (int rem = 0; rem <= halfK; rem++) {
if (rem == 0) {
maxSize += remainders[rem] > 0;
continue;
}
if (!isKOdd && (rem == halfK)) {
maxSize++;
continue;
}
int otherRem = k - rem;
if (remainders[rem] > remainders[otherRem]) {
maxSize += remainders[rem];
} else {
maxSize += remainders[otherRem];
}
}
return maxSize;
}

How to see if numbers have same digits in array?

I'm a bit stuck on one of my problems not because I don't know, but because I can't use more complex operations.(functions and multiple arrays)
So I need to make a program in C that ask for an input of an array(max 100 elements) and then program needs to sort that matrix by numbers with same digits.
So I made everything that I know, I tested my program with sorting algorithm from minimum to maximum values and it works, only thing that I can't understand is how should I test if the number have same digits inside the loop? (I can't use functions.)
So I know the method of finding if the number have the same digits but I don't know how to compare them. Here is an example of what I need.
This is what I have for now this sorts numbers from min to max.
#include <stdio.h>
int main() {
int matrix[100];
int i,j;
int temp,min;
int elements_number=0;
printf("Enter the values of matrix-max 100 elements-type -1 to end: ");
for(i=0;i<100;i++){
scanf("%d",&matrix[i]);
elements_number++;
if(matrix[i]==-1){
elements_number--;
break;
}
}
for (i=0; i<elements_number; i++) {
min=i;
for (j=i+1; j<elements_number; j++) {
if (matrix[j] < matrix[min])
min = j;
}
temp = matrix[i];
matrix[i] = matrix[min];
matrix[min] = temp;
}
for(i=0;i<elements_number;i++){
if(i!=elements_number-1){
printf("%d,",matrix[i]); }
else printf("%d.",matrix[i]);
}
return 0;
}
I need this output for these numbers:
INPUT :
1 22 43 444 51 16 7 8888 90 11 -1
OUTPUT:
1,22,444,7,8888,11,43,51,16,90.
Integers with 1 digit count as "numbers with same number of digits" like 7 and 1 in this example.
Hope that you can help.
After processing the array, the single-digit numbers should all be in the left part of the array, the other numbers in the right part. Within each part, the original order of the elements should be preserved. This is called a stable partition. It is different from sorting, because the elements are only classified into two groups. Sorting means that there is a clear relationship between any two elements in the array.
This can be done by "filtering" the array for single-digit numbers and storing the other numbers that were filtered out in a temporary second array. Then append the contents of that second array to the (now shorter) first array.
Here's how that could work:
#include <stdlib.h>
#include <stdio.h>
void print(const int *arr, int n)
{
for (int i = 0; i < 10; i++) {
if (i) printf(", ");
printf("%d", arr[i]);
}
puts(".");
}
int is_rep_digit(int n)
{
int q = n % 10;
n /= 10;
while (n) {
if (n % 10 != q) return 0;
n /= 10;
}
return 1;
}
int main()
{
int arr[10] = {1, 22, 43, 444, 51, 16, 7, 8888, 90, 11};
int aux[10]; // auxliary array for numbers with several digits
int i, j, k;
print(arr, 10);
j = 0; // number of single-digit numbers
k = 0; // number of other numbers
for (i = 0; i < 10; i++) {
if (is_rep_digit(arr[i])) {
arr[j++] = arr[i]; // pick single-digit number
} else {
aux[k++] = arr[i]; // copy other numbers to aux
}
}
k = 0;
while (j < 10) { // copy aux to end of array
arr[j++] = aux[k++];
}
print(arr, 10);
return 0;
}
Edit: I've just seen your requirement that you can't use functions. You could use Barmar's suggestion to test divisibility by 1, 11, 111 and so on. The tricky part is to find the correct divisor, however.
Anyway, the point I wanted to make here is that you don't need a full sorting algorithm here.

prime factorization of factorial in C

I'm trying to write a program that will print the factorial of a given number in the form:
10!=2^8 * 3^4 * 5^2 * 7
To make it quick lets say the given number is 10 and we have the prime numbers beforehand. I don't want to calculate the factorial first. Because if the given number is larger, it will eventually go beyond the the range for int type. So the algorithm i follow is:
First compute two’s power. There are five numbers between one and ten that two divides into. These numbers are given 2*1, 2*2, …, 2*5. Further, two also divides two numbers in the set {1,2,3,4,5}. These numbers are 2*1 and 2*2. Continuing in this pattern, there is one number between one and two that two divides into. Then a=5+2+1=8.
Now look at finding three’s power. There are three numbers from one to ten that three divides into, and then one number between one and three that three divides into. Thus b=3+1=4. In a similar fashion c=2. Then the set R={8,4,2,1}. The final answer is:
10!=2^8*3^4*5^2*7
So what i wrote is:
#include <stdio.h>
main()
{
int i, n, count;
int ara[]={2, 3, 5, 7};
for(i=0; i<4; i++)
{
count=0;
for(n=10; n>0; n--)
{
while(n%ara[i]==0)
{
count++;
n=n/ara[i];
}
}
printf("(%d^%d)" , ara[i], count);
}
return 0;
}
and the output is (2^3) (3^2) (5^1) (7^1).
I can't understand what's wrong with my code. Can anyone help me, please?
Much simpler approach:
#include <stdio.h>
int main(int argc, char const *argv[])
{
const int n = 10;
const int primes[] = {2,3,5,7};
for(int i = 0; i < 4; i++){
int cur = primes[i];
int total = 0;
while(cur <= n){
total += (n/cur);
cur = cur*primes[i];
}
printf("(%d^%d)\n", primes[i], total);
}
return 0;
}
Your code divides n when it is divisible for some prime number, making the n jumps.
e.g. when n = 10 and i = 0, you get into while loop, n is divisible by 2 (arr[0]), resulting in n = 5. So you skipped n = [9..5)
What you should do is you should use temp when dividing, as follows:
#include <stdio.h>
main()
{
int i, n, count;
int ara[]={2, 3, 5, 7};
for(i=0; i<4; i++)
{
count=0;
for(n=10; n>0; n--)
{
int temp = n;
while(temp%ara[i]==0)
{
count++;
temp=temp/ara[i];
}
}
printf("(%d^%d)" , ara[i], count);
}
return 0;
}
For finding factorial of a no pl. try this code:
#include <stdio.h>
int main()
{
int c, n, fact = 1;
printf("Enter a number to calculate it's factorial\n");
scanf("%d", &n);
for (c = 1; c <= n; c++)
fact = fact * c;
printf("Factorial of %d = %d\n", n, fact);
return 0;
}

What is Sum of Even Terms In Fibonacci (<4million)? [Large Value Datatype Confusion]

By starting with 1 and 2, the first 10 terms of Fibonacci Series will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
Find the sum of all the even-valued terms in the sequence which do not exceed 4 million.
Now, I got the idea for how to do this. But I'm confused about the data types to hold such big data. I'm getting weird results with int. :(
MORE: Its Project Euler 2nd question. But I can't get it. I get crazy values as answer. Can someone please post the ideal program?
EDIT: Here's what I wrote for just printing Fibonacci to screen. Bare Basic. My variable goes crazy even when I give 100 for the limit. Is my code wrong?
// Simple Program to print Fibonacci series in Console
#include <stdio.h>
int main() {
int x=1,y=2,sum=0,limit=0,i=0,temp=0;
printf("Enter Limit:");
scanf("%d",&limit);
if(limit==1)
printf("%d",x);
else if(limit>1) {
printf("%d %d",x,y);
if (limit>2) {
while (i<limit-2) {
temp=y;
sum=x+y;
x=temp;
y=sum;
printf(" %d",sum);
i++;
}
}
}
printf("\n");
return 0;
}
SOLVED: Actually, I managed to get the solution myself. Here's my program. It works.
#include <stdio.h>
int main() {
int x=1,y=2,sum,limit; //Here value of first 2 terms have been initialized as 1 and 2
int evensum=2; //Since in calculation, we omit 2 which is an even number
printf("Enter Limit: "); //Enter limit as 4000000 (4million) to get desired result
scanf("%d",&limit);
while( (x+y)<limit ) {
sum=x+y;
x=y;
y=sum;
if (sum%2==0)
evensum+=sum;
}
printf("%d \n",evensum);
return 0;
}
Since you only want up to four million, it's likely that int is not your problem.
It's quite possible that your program is buggy and that the data storage is just fine, so you should test your program on smaller values. For example, it's clear that the sum of the first three even terms is 44 (hint: every third term is even) so if you run your program with a cap of 50, then you should instantly get 44 back. Keep running small test cases to get confidence in the larger ones.
For security, use the 'long' data type; the C standard requires that to hold at least 4 billion, but on most machines, 'int' will also hold 4 billion.
enum { MAX_VALUE = 4000000 };
int sum = 0;
int f_n0 = 0;
int f_n1 = 1;
int f_n2;
while ((f_n2 = f_n0 + f_n1) < MAX_VALUE)
{
if (f_n2 % 2 == 0)
sum += f_n2;
f_n0 = f_n1;
f_n1 = f_n2;
}
printf("%d\n", sum);
I am not a programmer, but here's an adaptation to Leffler's code without the IF-criterion. It should work for MAX_VALUES above 2 (given there are no mistakes in programming syntax), based on a pattern I found in the even-only fibonacci series: 0,2,8,34,144,610,2584... so interestingly: f_n2 = 4*f_n1 + f_n0. This also means this program only needs 1/3rd of the calculations, since it doesn't even consider/calculate the odd fibonacci numbers.
enum { MAX_VALUE = 4000000 };
int sum = 2;
int f_n0 = 0;
int f_n1 = 2;
int f_n2 = 8;
while (f_n2 < MAX_VALUE)
{
sum += f_n2;
f_n0 = f_n1;
f_n1 = f_n2;
f_n2 = 4*f_n1 + f_n0;
}
printf("%d\n", sum);
Try changing this:
while (i<limit-2)
to this:
while (y<limit)
As written, your program is cycling until it gets to the 4 millionth Fibonacci number (i.e. when i gets to 4 million, though overflow obviously happens first). The loop should check to see when y (the larger Fibonacci number) becomes greater than 4 million.
Guys, I got the answer. I confirmed the result and int can handle it. Here's my program:
#include <stdio.h>
int main() {
int x=1,y=2,sum,limit; //Here value of first 2 terms have been initialized as 1 and 2
int evensum=2; //Since in calculation, we omit 2 which is an even number
printf("Enter Limit: "); //Enter limit as 4000000 (4million) to get desired result
scanf("%d",&limit);
while( (x+y)<limit ) {
sum=x+y;
x=y;
y=sum;
if (sum%2==0)
evensum+=sum;
}
printf("%d \n",evensum);
return 0;
}
Thx for all the replies and help. "Thinking on my feet" to the rescue :)
An amusing solution is to use the closed form for Fibonacci sequences and the closed form for geometric progressions. The end solution looks like this:
sum = ( (1-pow(phi_cb, N+1)) / (1-phi_cb) - (1-pow(onephi_cb,N+1)) / (1-onephi_cb)) / sqrt(5);
where
double phi = 0.5 + 0.5 * sqrt(5);
double phi_cb = pow(phi, 3.0);
double onephi_cb = pow(1.0 - phi, 3.0);
unsigned N = floor( log(4000000.0 * sqrt(5) + 0.5) / log(phi) );
N = N / 3;
with all the caveats regarding double to int-type conversions of course.
int is big enough for values in the millions on almost every modern system, but you can use long if you are worried about it. If that still gives you weird results, then the problem is with your algorithm.
Use BigInt.
Then again, unsigned int stores values up to over 4 billion, so you shouldn't be having any problems even with "sum of all fibonacci numbers up to 4 million" (which, obviously, has to be less than 8 mil)?
Your program prints F_1 + ..+ F_limit and not F_1 + ... F_n with F_n < limit as you described.
Check the Wikipedia article on Fibonacci Numbers and Sloane A000045: Fibonacci numbers grows exponentially. Checking this table F_48 = 4807526976 which exceeds int. F_100 is 354224848179261915075 which surely overflows even int64_t (your stack doesn't, though).
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
int main()
{
long first = 1, second = 2, next, c;
int sum=0;
for ( c = 1 ; c <100000000; c++ )
{
next = first + second;
if(next>=4000000)
{
next= next-second;
break;
}
first = second;
second = next;
if(next%2==0){
sum=sum+next;
}
}
printf("the sum of even valued term is %d\n",sum+2);
}
Here's my program:
#include <iostream>
long int even_sum_fibonacci(int n){
int i = 8;
int previous_i = 2;
int next_i = 0;
long int sum = previous_i + i;;
while(n>next_i){
next_i = i*4 + previous_i;
previous_i = i;
i = next_i;
sum = sum + i;
}
return sum - next_i; //now next_i and i are both the bigger number which
//exceeds 4 million, but we counted next_i into sum
//so we'll need to substract it from sum
}
int main()
{
std::cout << even_sum_fibonacci(4000000) << std::endl;
return 0;
}
Because if you look at the fibonacci series (at the first few even numbers)
2 8 34 144 610 2584 ... you'll see that it matches the pattern that
next_number = current_number * 4 + previous_number.
This is one of solutions. So the result is 4613732
You can try the below code.
public static void SumOfEvenFibonacciNumbers()
{
int range = 4000000;
long sum = 0;
long current = 1;
long prev = 0;
long evenValueSum= 0;
while (evenValueSum< range)
{
sum = prev + current;
prev = current;
current = sum;
if (sum % 2 == 0 )
{
evenValueSum = evenValueSum+ sum;
}
}
Console.WriteLine(evenValueSum);
}
You can use the above code.
import numpy as np
M = [[0,1],[1,1]]
F = [[0],[1]]
s = 0
while(F[1][0] < 4000000):
F = np.matmul(M, F)
if not F[0][0]%2:
s+=F[0][0]
print(s)
We can do better than this in O(log n) time. Moreover, a 2 × 2 matrix and a two dimensional vector can be multiplied again in O(1) time. Therefore it suffices to compute Mn.
The following recursive algorithm computes Mn
If n = 0, return I2
If n = 1, return M.
If n = 2m.
Recursively compute N = Mm, and set P = N2.
If n = 2m+1, set P = PM.
Return P.
We have T(n) = T(n/2) + O(1), and by master's theorem T(n) = O(log n)
You can also use recurrence for Even Fibonacci sequence is:
EFn = 4EFn-1 + EFn-2
with seed values
EF0 = 0 and EF1 = 2.
SIMPLE SOLUTION WOULD BE:-
#include <iostream>
using namespace std;
int main(int argc, char** argv) {
int n1=1;
int n2=2;
int num=0,sum;
for (int i=1;i,n1<4000000;i++)
{
cout<<" "<<n1;
num=n1+n2;
if(!(n1%2))
{
sum+=n1;
}
n1=n2;
n2=num;
}
cout<<"\n Sum of even term is = "<<sum;
return 0;
}
Here's my offer, written in Java. I had been using a for loop whose exit value was 4000000 but realized early on there was a serious overflow for the sum of the numbers. Realizing the Fibonacci Number has to be less than 4 million (and not the sum), I changed to a while loop and got it:
class Main {
public static void main(String[] args) {
int counter = 0;
int fibonacciSum = 0, fibonacciNum = 0;
int previous = 1, secondPrevious = 0;
fibonacciNum = previous + secondPrevious;
while (fibonacciNum <= 4000000){
if (fibonacciNum % 2 == 0 ){
counter++;
fibonacciSum += fibonacciNum;
secondPrevious = previous;
previous = fibonacciNum;
}//ends if statement
else {
secondPrevious = previous;
previous = fibonacciNum;
}//ends else statement
fibonacciNum = previous + secondPrevious;//updates number
}//ends loop
System.out.println("\n\n\n" + fibonacciSum);
}//ends main method
}//ends Main

Resources