Cleaning up variable with highly similar observations - dataset

So I have a dataset in Stata that has a variable called "program description" that has very similar observations although the observations don't follow any pattern. My objective is to clean the variable so that the observations which are very similar will have the same name.
Here is an example of what the variable looks like:
Variable Name
phys ed
physical education
phys ed k-12
learning disabilities
learn dis
learn disable
Therefore, I would like the first three to just be called "phys ed" (or some derivative of that) and the last three to just be called "learning disabilities"
I've been using the function strpos() to replace observations that contain certain phrases but because the variable has 100k observations and a lot of different names, this takes a while.

You can use strgroup from SSC, but it's unlikely to get you all the way there. For example, this seems to work:
. strgroup string , gen(group) threshold(.7) normalize(longer)
. list, clean noobs
string group
phys ed 1
physical education 1
phys ed k-12 1
learning disabilities 2
learn dis 2
learn disable 2
However, "physics" would have been mapped to group 1 with these settings. Also, note that this command is case sensitive, so it might make sense to uppercase/lowercase everything first. The threshold is really a kind of tuning parameter.
I've also had some luck with Google/Open Refine with these problems. This is called reconciliation.
With all these approaches, some standardization goes a long way.

Related

How to repeat a command on different values of the same variable using SPSS LOOP?

Probably an easy question:
I want to run this piece of syntax:
SUMMARIZE
/TABLES=AGENCY
PIN
AGE
GENDER
DISABILITY
MAINSERVICE
MRESAGENCY
MRESSUPPORT
/FORMAT=LIST NOCASENUM TOTAL
/TITLE='Case Summaries'
/MISSING=VARIABLE
/CELLS=COUNT.
for 264 different agencies which are all values contained in the variable 'AGENCY'.
I want to create a different table for each agency outlining the above information for them.
I think I can do this using a DO REPEAT or LOOP on SPSS.
Any advice would be much appreciated.
Thank you :)
note: I have Google'd and read endless amounts on looping I am just a little unsure as to which method is what I am looking for
Take a look at SPLIT FILE, which meets your needs

Find-S concept learning algorithm

I am implementing and analysing the Find-S Algorithm (which I understood quite well). However, for the testing part, I am not sure whether the order of the examples in the training set affect the output.
Is this known or still unproven?
The order of examples will not affect the output if the function which expands the hypothesis is associative -- that is, if f(f(h0),x1),x2) = f(f(h0,x2),x1) for all h0,x1,x2.
The order of instances will affect your output because when FIND-S try to maximally specific hypothesis, it looks attributes and their values. It is discussed in Tom Mitchell's Machine Learning Book under title of '2.4 FIND-S FINDING A MAXIMALLY SPECIFIC HYPOTHESIS'.

parsing text of a yes/no query

I am automating a process which asks questions (via SMS but shouldn't matter) to real people. The questions have yes/no answers, but the person might respond in a number of ways such as: sure, not at this time, yeah, never or in any other way that they might. I would like to attempt to parse this text and determine if it was a yes or no answer (of course it might not always be right).
I figured the ideas and concepts to do this might already exist as it seems like a common task for an AI, but don't know what it might be called so I can't find information on how I might implement it. So my questions is, have algorithms been developed to do this kind of parsing and if so where can I find more information on how to implement them?
This can be viewed as a binary (yes or no) classification task. You could write a rule-based model to classify or a statistics-based model.
A rule-based model would be like if answer in ["never", "not at this time", "nope"] then answer is "no". When spam filters first came out they contained a lot of rules like these.
A statistics-based model would probably be more suitable here, as writing your own rules gets tiresome and does not handle new cases as well.
For this you need to label a training dataset. After a little preprocessing (like lowercasing all the words, removing punctuation and maybe even a little stemming) you could get a dataset like
0 | never in a million years
0 | never
1 | yes sir
1 | yep
1 | yes yes yeah
0 | no way
Now you can run classification algorithms like Naive Bayes or Logistic Regression over this set (after you vectorize the words in either binary, which means is the word present or not, word count, which means the term frequency, or a tfidf float, which prevent bias to longer answers and common words) and learn which words more often belong to which class.
In the above example yes would be strongly correlated to a positive answer (1) and never would be strongly related to a negative answer (0). You could work with n-grams so a not no would be treated as a single token in favor of the positive class. This is called the bag-of-words approach.
To combat spelling errors you can add a spellchecker like Aspell to the pre-processing step. You could use a charvectorizer too, so a word like nno would be interpreted as nn and no and you catch errors like hellyes and you could trust your users to repeat spelling errors. If 5 users make the spelling error neve for the word never then the token neve will automatically start to count for the negative class (if labeled as such).
You could write these algorithms yourself (Naive Bayes is doable, Paul Graham has wrote a few accessible essays on how to classify spam with Bayes Theorem and nearly every ML library has a tutorial on how to do this) or make use of libraries or programs like Scikit-Learn (MultinomialNB, SGDclassifier, LinearSVC etc.) or Vowpal Wabbit (logistic regression, quantile loss etc.).
Im thinking on top of my head, if you get a response which you dont know if its yes / no, you can keep the answers in a DB like unknown_answers and 2 more tables as affirmative_answers / negative_answers, then in a little backend system, everytime you get a new unknown_answer you qualify them as yes or no, and there the system "learns" about it and with time, you will have a very big and good database of affirmative / negative answers.

How to go about creating a prolog program that can work backwards to determine steps needed to reach a goal

I'm not sure what exactly I'm trying to ask. I want to be able to make some code that can easily take an initial and final state and some rules, and determine paths/choices to get there.
So think, for example, in a game like Starcraft. To build a factory I need to have a barracks and a command center already built. So if I have nothing and I want a factory I might say ->Command Center->Barracks->Factory. Each thing takes time and resources, and that should be noted and considered in the path. If I want my factory at 5 minutes there are less options then if I want it at 10.
Also, the engine should be able to calculate available resources and utilize them effectively. Those three buildings might cost 600 total minerals but the engine should plan the Command Center when it would have 200 (or w/e it costs).
This would ultimately have requirements similar to 10 marines # 5 minutes, infantry weapons upgrade at 6:30, 30 marines at 10 minutes, Factory # 11, etc...
So, how do I go about doing something like this? My first thought was to use some procedural language and make all the decisions from the ground up. I could simulate the system and branching and making different choices. Ultimately, some choices are going quickly make it impossible to reach goals later (If I build 20 Supply Depots I'm prob not going to make that factory on time.)
So then I thought weren't functional languages designed for this? I tried to write some prolog but I've been having trouble with stuff like time and distance calculations. And I'm not sure the best way to return the "plan".
I was thinking I could write:
depends_on(factory, barracks)
depends_on(barracks, command_center)
builds_from(marine, barracks)
build_time(command_center, 60)
build_time(barracks, 45)
build_time(factory, 30)
minerals(command_center, 400)
...
build(X) :-
depends_on(X, Y),
build_time(X, T),
minerals(X, M),
...
Here's where I get confused. I'm not sure how to construct this function and a query to get anything even close to what I want. I would have to somehow account for rate at which minerals are gathered during the time spent building and other possible paths with extra gold. If I only want 1 marine in 10 minutes I would want the engine to generate lots of plans because there are lots of ways to end with 1 marine at 10 minutes (maybe cut it off after so many, not sure how you do that in prolog).
I'm looking for advice on how to continue down this path or advice about other options. I haven't been able to find anything more useful than towers of hanoi and ancestry examples for AI so even some good articles explaining how to use prolog to DO REAL THINGS would be amazing. And if I somehow can get these rules set up in a useful way how to I get the "plans" prolog came up with (ways to solve the query) other than writing to stdout like all the towers of hanoi examples do? Or is that the preferred way?
My other question is, my main code is in ruby (and potentially other languages) and the options to communicate with prolog are calling my prolog program from within ruby, accessing a virtual file system from within prolog, or some kind of database structure (unlikely). I'm using SWI-Prolog atm, would I be better off doing this procedurally in Ruby or would constructing this in a functional language like prolog or haskall be worth the extra effort integrating?
I'm sorry if this is unclear, I appreciate any attempt to help, and I'll re-word things that are unclear.
Your question is typical and very common for users of procedural languages who first try Prolog. It is very easy to solve: You need to think in terms of relations between successive states of your world. A state of your world consists for example of the time elapsed, the minerals available, the things you already built etc. Such a state can be easily represented with a Prolog term, and could look for example like time_minerals_buildings(10, 10000, [barracks,factory])). Given such a state, you need to describe what the state's possible successor states look like. For example:
state_successor(State0, State) :-
State0 = time_minerals_buildings(Time0, Minerals0, Buildings0),
Time is Time0 + 1,
can_build_new_building(Buildings0, Building),
building_minerals(Building, MB),
Minerals is Minerals0 - MB,
Minerals >= 0,
State = time_minerals_buildings(Time, Minerals, Building).
I am using the explicit naming convention (State0 -> State) to make clear that we are talking about successive states. You can of course also pull the unifications into the clause head. The example code is purely hypothetical and could look rather different in your final application. In this case, I am describing that the new state's elapsed time is the old state's time + 1, that the new amount of minerals decreases by the amount required to build Building, and that I have a predicate can_build_new_building(Bs, B), which is true when a new building B can be built assuming that the buildings given in Bs are already built. I assume it is a non-deterministic predicate in general, and will yield all possible answers (= new buildings that can be built) on backtracking, and I leave it as an exercise for you to define such a predicate.
Given such a predicate state_successor/2, which relates a state of the world to its direct possible successors, you can easily define a path of states that lead to a desired final state. In its simplest form, it will look similar to the following DCG that describes a list of successive states:
states(State0) -->
( { final_state(State0) } -> []
; [State0],
{ state_successor(State0, State1) },
states(State1)
).
You can then use for example iterative deepening to search for solutions:
?- initial_state(S0), length(Path, _), phrase(states(S0), Path).
Also, you can keep track of states you already considered and avoid re-exploring them etc.
The reason you get confused with the example code you posted is essentially that build/1 does not have enough arguments to describe what you want. You need at least two arguments: One is the current state of the world, and the other is a possible successor to this given state. Given such a relation, everything else you need can be described easily. I hope this answers your question.
Caveat: my Prolog is rusty and shallow, so this may be off base
Perhaps a 'difference engine' approach would be appropriate:
given a goal like 'build factory',
backwards-chaining relations would check for has-barracks and tell you first to build-barracks,
which would check for has-command-center and tell you to build-command-center,
and so on,
accumulating a plan (and costs) along the way
If this is practical, it may be more flexible than a state-based approach... or it may be the same thing wearing a different t-shirt!

Identifying the components in a English sentence that do not make sense

I'm wondering is there an algorithm or a library which helps me identify the components in an English which has no meaning? e.g., very serious grammar error? If so, could you explain how it works, because I would really like to implement that or use that for my own projects.
Here's a random example:
In the sentence: "I closed so etc page hello the door."
As a human, we can quickly identify that [so etc page hello] does not make any sense. Is it possible for a machine to point out that the string does not make any sense and also contains grammar errors?
If there's such a solution, how precise can that be? Is it possible, for example, given a clip of an English sentence, the algorithm returns a measure, indicating how meaningful, or correct that clip is? Thank you very much!
PS: I've looked at CMU's link grammar as well as the NLTK library. But still I'm not sure how to use for example link grammar parser to do what I would like to do as the if the parser doesn't accept the sentence, I don't know how to tweak it to tell me which part it is not right.. and I'm not sure whether NLTK supported that.
Another thought I had towards solving the problem is to look at the frequencies of the word combination. Since I'm currently interested in correcting very serious errors only. If I define the "serious error" to be the cases where words in a clip of a sentence are rarely used together, i.e., the frequency of the combo should be much lower than those of the other combos in the sentence.
For instance, in the above example: [so etc page hello] these four words really seldom occur together. One intuition of my idea comes from when I type such combo in Google, no related results jump out. So is there any library that provides me such frequency information like Google does? Such frequencies may give a good hint on the correctness of the word combo.
I think that what you are looking for is a language model. A language model assigns a probability to each sentence of k words appearing in your language. The simplest kind of language models are n-grams models: given the first i words of your sentence, the probability of observing the i+1th word only depends on the n-1 previous words.
For example, for a bigram model (n=2), the probability of the sentence w1 w2 ... wk is equal to
P(w1 ... wk) = P(w1) P(w2 | w1) ... P(wk | w(k-1)).
To compute the probabilities P(wi | w(i-1)), you just have to count the number of occurrence of the bigram w(i-1) wi and of the word w(i-1) on a large corpus.
Here is a good tutorial paper on the subject: A Bit of Progress in Language Modeling, by Joshua Goodman.
Yes, such things exist.
You can read about it on Wikipedia.
You can also read about some of the precision issues here.
As far as determining which part is not right after determining the sentence has a grammar issue, that is largely impossible without knowing the author's intended meaning. Take, for example, "Over their, dead bodies" and "Over there dead bodies". Both are incorrect, and could be fixed either by adding/removing the comma or swapping their/there. However, these result in very different meanings (yes, the second one would not be a complete sentence, but it would be acceptable/understandable in context).
Spell checking works because there are a limited number of words against which you can check a word to determine if it is valid (spelled correctly). However, there are infinite sentences that can be constructed, with infinite meanings, so there is no way to correct a poorly written sentence without knowing what the meaning behind it is.
I think what you are looking for is a well-established library that can process natural language and extract the meanings.
Unfortunately, there's no such library. Natural language processing, as you probably can imagine, is not an easy task. It is still a very active research field. There are many algorithms and methods in understanding natural language, but to my knowledge, most of them only work well for specific applications or words of specific types.
And those libraries, such as the CMU one, seems to be still quite rudimental. It can't do what you want to do (like identifying errors in English sentence). You have to develop algorithm to do that using the tools that they provide (such as sentence parser).
If you want to learn about it check out ai-class.com. They have some sections that talks about processing language and words.

Resources