Converting a graph structure to a 2d array - arrays

I'm looking at automatic dungeon and dragons style dungeon creation although not as advanced as those you can find on the web. Ultimately I want an N by N grid, say with 1's for walls 0's for pathways and open spaces, and so on. I'm able to randomly generate a graph structure which represents the connectedness of the dungeon and size of each space. But I want to convert the graph structure into a 2d array as described. I'm not fussy about how the rooms and corridors appear so long as there are no crossings and it's reasonably compact.
My question is are there any known algorithms to do this?

Short answer:
Yes, there are known algorithms.
Long answer:
They type of algorithm you are looking for has a few parts.
Planar Graphs
The type of graph that you can embed into a grid is a planar graph. A planar graph is a graph that can be drawn on a flat surface or plane. The first step of you algorithm has to be to check to see if your graph is planar or not. In the link above are some ways to check if your graph is planar. If your graph is non-planar you cannot draw it without intersections. This may be a downfall for your random generator.
Embedding Graphs
This link references a paper on embedding graphs in an n by n matrix. It does not exactly match your request, but you can manipulate it post-embed-algorithm to fulfill your needs by replacing each vertex with the largest rooms n by n area. Now this algorithm is probably not the most compact possible given its nature of a straight line, but that leads me to your final request of compactness.
Packing Problems
Packing problems have varying difficulties. From the initial sounds of your problem, yours falls into the harder category, especially since you have the whole corridor linkage making it even more difficult. This problem can be np-complete/np-hard with no efficient algorithm, so stopping at the above step may be the most resonable. Check out the the wikipedia on packing problems to look into your specific case to determine if you want to spend time making it more compact.

Related

AI of spaceship's propulsion: land a 3D ship at position=0 and angle=0

This is a very difficult problem about how to maneuver a spaceship that can both translate and rotate in 3D, for a space game.
The spaceship has n jets placing in various positions and directions.
Transformation of i-th jet relative to the CM of spaceship is constant = Ti.
Transformation is a tuple of position and orientation (quaternion or matrix 3x3 or, less preferable, Euler angles).
A transformation can also be denoted by a single matrix 4x4.
In other words, all jet are glued to the ship and cannot rotate.
A jet can exert force to the spaceship only in direction of its axis (green).
As a result of glue, the axis rotated along with the spaceship.
All jets can exert force (vector,Fi) at a certain magnitude (scalar,fi) :
i-th jet can exert force (Fi= axis x fi) only within range min_i<= fi <=max_i.
Both min_i and max_i are constant with known value.
To be clear, unit of min_i,fi,max_i is Newton.
Ex. If the range doesn't cover 0, it means that the jet can't be turned off.
The spaceship's mass = m and inertia tensor = I.
The spaceship's current transformation = Tran0, velocity = V0, angularVelocity = W0.
The spaceship physic body follows well-known physic rules :-
Torque=r x F
F=ma
angularAcceleration = I^-1 x Torque
linearAcceleration = m^-1 x F
I is different for each direction, but for the sake of simplicity, it has the same value for every direction (sphere-like). Thus, I can be thought as a scalar instead of matrix 3x3.
Question
How to control all jets (all fi) to land the ship with position=0 and angle=0?
Math-like specification: Find function of fi(time) that take minimum time to reach position=(0,0,0), orient=identity with final angularVelocity and velocity = zero.
More specifically, what are names of technique or related algorithms to solve this problem?
My research (1 dimension)
If the universe is 1D (thus, no rotation), the problem will be easy to solve.
( Thank Gavin Lock, https://stackoverflow.com/a/40359322/3577745 )
First, find the value MIN_BURN=sum{min_i}/m and MAX_BURN=sum{max_i}/m.
Second, think in opposite way, assume that x=0 (position) and v=0 at t=0,
then create two parabolas with x''=MIN_BURN and x''=MAX_BURN.
(The 2nd derivative is assumed to be constant for a period of time, so it is parabola.)
The only remaining work is to join two parabolas together.
The red dash line is where them join.
In the period of time that x''=MAX_BURN, all fi=max_i.
In the period of time that x''=MIN_BURN, all fi=min_i.
It works really well for 1D, but in 3D, the problem is far more harder.
Note:
Just a rough guide pointing me to a correct direction is really appreciated.
I don't need a perfect AI, e.g. it can take a little more time than optimum.
I think about it for more than 1 week, still find no clue.
Other attempts / opinions
I don't think machine learning like neural network is appropriate for this case.
Boundary-constrained-least-square-optimisation may be useful but I don't know how to fit my two hyper-parabola to that form of problem.
This may be solved by using many iterations, but how?
I have searched NASA's website, but not find anything useful.
The feature may exist in "Space Engineer" game.
Commented by Logman: Knowledge in mechanical engineering may help.
Commented by AndyG: It is a motion planning problem with nonholonomic constraints. It could be solved by Rapidly exploring random tree (RRTs), theory around Lyapunov equation, and Linear quadratic regulator.
Commented by John Coleman: This seems more like optimal control than AI.
Edit: "Near-0 assumption" (optional)
In most case, AI (to be designed) run continuously (i.e. called every time-step).
Thus, with the AI's tuning, Tran0 is usually near-identity, V0 and W0 are usually not so different from 0, e.g. |Seta0|<30 degree,|W0|<5 degree per time-step .
I think that AI based on this assumption would work OK in most case. Although not perfect, it can be considered as a correct solution (I started to think that without this assumption, this question might be too hard).
I faintly feel that this assumption may enable some tricks that use some "linear"-approximation.
The 2nd Alternative Question - "Tune 12 Variables" (easier)
The above question might also be viewed as followed :-
I want to tune all six values and six values' (1st-derivative) to be 0, using lowest amount of time-steps.
Here is a table show a possible situation that AI can face:-
The Multiplier table stores inertia^-1 * r and mass^-1 from the original question.
The Multiplier and Range are constant.
Each timestep, the AI will be asked to pick a tuple of values fi that must be in the range [min_i,max_i] for every i+1-th jet.
Ex. From the table, AI can pick (f0=1,f1=0.1,f2=-1).
Then, the caller will use fi to multiply with the Multiplier table to get values''.
Px'' = f0*0.2+f1*0.0+f2*0.7
Py'' = f0*0.3-f1*0.9-f2*0.6
Pz'' = ....................
SetaX''= ....................
SetaY''= ....................
SetaZ''= f0*0.0+f1*0.0+f2*5.0
After that, the caller will update all values' with formula values' += values''.
Px' += Px''
.................
SetaZ' += SetaZ''
Finally, the caller will update all values with formula values += values'.
Px += Px'
.................
SetaZ += SetaZ'
AI will be asked only once for each time-step.
The objective of AI is to return tuples of fi (can be different for different time-step), to make Px,Py,Pz,SetaX,SetaY,SetaZ,Px',Py',Pz',SetaX',SetaY',SetaZ' = 0 (or very near),
by using least amount of time-steps as possible.
I hope providing another view of the problem will make it easier.
It is not the exact same problem, but I feel that a solution that can solve this version can bring me very close to the answer of the original question.
An answer for this alternate question can be very useful.
The 3rd Alternative Question - "Tune 6 Variables" (easiest)
This is a lossy simplified version of the previous alternative.
The only difference is that the world is now 2D, Fi is also 2D (x,y).
Thus I have to tune only Px,Py,SetaZ,Px',Py',SetaZ'=0, by using least amount of time-steps as possible.
An answer to this easiest alternative question can be considered useful.
I'll try to keep this short and sweet.
One approach that is often used to solve these problems in simulation is a Rapidly-Exploring Random Tree. To give at least a little credibility to my post, I'll admit I studied these, and motion planning was my research lab's area of expertise (probabilistic motion planning).
The canonical paper to read on these is Steven LaValle's Rapidly-exploring random trees: A new tool for path planning, and there have been a million papers published since that all improve on it in some way.
First I'll cover the most basic description of an RRT, and then I'll describe how it changes when you have dynamical constraints. I'll leave fiddling with it afterwards up to you:
Terminology
"Spaces"
The state of your spaceship can be described by its 3-dimension position (x, y, z) and its 3-dimensional rotation (alpha, beta, gamma) (I use those greek names because those are the Euler angles).
state space is all possible positions and rotations your spaceship can inhabit. Of course this is infinite.
collision space are all of the "invalid" states. i.e. realistically impossible positions. These are states where your spaceship is in collision with some obstacle (With other bodies this would also include collision with itself, for example planning for a length of chain). Abbreviated as C-Space.
free space is anything that is not collision space.
General Approach (no dynamics constraints)
For a body without dynamical constraints the approach is fairly straightforward:
Sample a state
Find nearest neighbors to that state
Attempt to plan a route between the neighbors and the state
I'll briefly discuss each step
Sampling a state
Sampling a state in the most basic case means choosing at random values for each entry in your state space. If we did this with your space ship, we'd randomly sample for x, y, z, alpha, beta, gamma across all of their possible values (uniform random sampling).
Of course way more of your space is obstacle space than free space typically (because you usually confine your object in question to some "environment" you want to move about inside of). So what is very common to do is to take the bounding cube of your environment and sample positions within it (x, y, z), and now we have a lot higher chance to sample in the free space.
In an RRT, you'll sample randomly most of the time. But with some probability you will actually choose your next sample to be your goal state (play with it, start with 0.05). This is because you need to periodically test to see if a path from start to goal is available.
Finding nearest neighbors to a sampled state
You chose some fixed integer > 0. Let's call that integer k. Your k nearest neighbors are nearby in state space. That means you have some distance metric that can tell you how far away states are from each other. The most basic distance metric is Euclidean distance, which only accounts for physical distance and doesn't care about rotational angles (because in the simplest case you can rotate 360 degrees in a single timestep).
Initially you'll only have your starting position, so it will be the only candidate in the nearest neighbor list.
Planning a route between states
This is called local planning. In a real-world scenario you know where you're going, and along the way you need to dodge other people and moving objects. We won't worry about those things here. In our planning world we assume the universe is static but for us.
What's most common is to assume some linear interpolation between the sampled state and its nearest neighbor. The neighbor (i.e. a node already in the tree) is moved along this linear interpolation bit by bit until it either reaches the sampled configuration, or it travels some maximum distance (recall your distance metric).
What's going on here is that your tree is growing towards the sample. When I say that you step "bit by bit" I mean you define some "delta" (a really small value) and move along the linear interpolation that much each timestep. At each point you check to see if you the new state is in collision with some obstacle. If you hit an obstacle, you keep the last valid configuration as part of the tree (don't forget to store the edge somehow!) So what you'll need for a local planner is:
Collision checking
how to "interpolate" between two states (for your problem you don't need to worry about this because we'll do something different).
A physics simulation for timestepping (Euler integration is quite common, but less stable than something like Runge-Kutta. Fortunately you already have a physics model!
Modification for dynamical constraints
Of course if we assume you can linearly interpolate between states, we'll violate the physics you've defined for your spaceship. So we modify the RRT as follows:
Instead of sampling random states, we sample random controls and apply said controls for a fixed time period (or until collision).
Before, when we sampled random states, what we were really doing was choosing a direction (in state space) to move. Now that we have constraints, we randomly sample our controls, which is effectively the same thing, except we're guaranteed not to violate our constraints.
After you apply your control for a fixed time interval (or until collision), you add a node to the tree, with the control stored on the edge. Your tree will grow very fast to explore the space. This control application replaces linear interpolation between tree states and sampled states.
Sampling the controls
You have n jets that individually have some min and max force they can apply. Sample within that min and max force for each jet.
Which node(s) do I apply my controls to?
Well you can choose at random, or your can bias the selection to choose nodes that are nearest to your goal state (need the distance metric). This biasing will try to grow nodes closer to the goal over time.
Now, with this approach, you're unlikely to exactly reach your goal, so you need to define some definition of "close enough". That is, you will use your distance metric to find nearest neighbors to your goal state, and then test them for "close enough". This "close enough" metric can be different than your distance metric, or not. If you're using Euclidean distance, but it's very important that you goal configuration is also rotated properly, then you may want to modify the "close enough" metric to look at angle differences.
What is "close enough" is entirely up to you. Also something for you to tune, and there are a million papers that try to get you a lot closer in the first place.
Conclusion
This random sampling may sound ridiculous, but your tree will grow to explore your free space very quickly. See some youtube videos on RRT for path planning. We can't guarantee something called "probabilistic completeness" with dynamical constraints, but it's usually "good enough". Sometimes it'll be possible that a solution does not exist, so you'll need to put some logic in there to stop growing the tree after a while (20,000 samples for example)
More Resources:
Start with these, and then start looking into their citations, and then start looking into who is citing them.
Kinodynamic RRT*
RRT-Connect
This is not an answer, but it's too long to place as a comment.
First of all, a real solution will involve both linear programming (for multivariate optimization with constraints that will be used in many of the substeps) as well as techniques used in trajectory optimization and/or control theory. This is a very complex problem and if you can solve it, you could have a job at any company of your choosing. The only thing that could make this problem worse would be friction (drag) effects or external body gravitation effects. A real solution would also ideally use Verlet integration or 4th order Runge Kutta, which offer improvements over the Euler integration you've implemented here.
Secondly, I believe your "2nd Alternative Version" of your question above has omitted the rotational influence on the positional displacement vector you add into the position at each timestep. While the jet axes all remain fixed relative to the frame of reference of the ship, they do not remain fixed relative to the global coordinate system you are using to land the ship (at global coordinate [0, 0, 0]). Therefore the [Px', Py', Pz'] vector (calculated from the ship's frame of reference) must undergo appropriate rotation in all 3 dimensions prior to being applied to the global position coordinates.
Thirdly, there are some implicit assumptions you failed to specify. For example, one dimension should be defined as the "landing depth" dimension and negative coordinate values should be prohibited (unless you accept a fiery crash). I developed a mockup model for this in which I assumed z dimension to be the landing dimension. This problem is very sensitive to initial state and the constraints placed on the jets. All of my attempts using your example initial conditions above failed to land. For example, in my mockup (without the 3d displacement vector rotation noted above), the jet constraints only allow for rotation in one direction on the z-axis. So if aZ becomes negative at any time (which is often the case) the ship is actually forced to complete another full rotation on that axis before it can even try to approach zero degrees again. Also, without the 3d displacement vector rotation, you will find that Px will only go negative using your example initial conditions and constraints, and the ship is forced to either crash or diverge farther and farther onto the negative x-axis as it attempts to maneuver. The only way to solve this is to truly incorporate rotation or allow for sufficient positive and negative jet forces.
However, even when I relaxed your min/max force constraints, I was unable to get my mockup to land successfully, demonstrating how complex planning will probably be required here. Unless it is possible to completely formulate this problem in linear programming space, I believe you will need to incorporate advanced planning or stochastic decision trees that are "smart" enough to continually use rotational methods to reorient the most flexible jets onto the currently most necessary axes.
Lastly, as I noted in the comments section, "On May 14, 2015, the source code for Space Engineers was made freely available on GitHub to the public." If you believe that game already contains this logic, that should be your starting place. However, I suspect you are bound to be disappointed. Most space game landing sequences simply take control of the ship and do not simulate "real" force vectors. Once you take control of a 3-d model, it is very easy to predetermine a 3d spline with rotation that will allow the ship to land softly and with perfect bearing at the predetermined time. Why would any game programmer go through this level of work for a landing sequence? This sort of logic could control ICBM missiles or planetary rover re-entry vehicles and it is simply overkill IMHO for a game (unless the very purpose of the game is to see if you can land a damaged spaceship with arbitrary jets and constraints without crashing).
I can introduce another technique into the mix of (awesome) answers proposed.
It lies more in AI, and provides close-to-optimal solutions. It's called Machine Learning, more specifically Q-Learning. It's surprisingly easy to implement but hard to get right.
The advantage is that the learning can be done offline, so the algorithm can then be super fast when used.
You could do the learning when the ship is built or when something happens to it (thruster destruction, large chunks torn away...).
Optimality
I observed you're looking for near-optimal solutions. Your method with parabolas is good for optimal control. What you did is this:
Observe the state of the system.
For every state (coming in too fast, too slow, heading away, closing in etc.) you devised an action (apply a strategy) that will bring the system into a state closer to the goal.
Repeat
This is pretty much intractable for a human in 3D (too many cases, will drive you nuts) however a machine may learn where to split the parabolas in every dimensions, and devise an optimal strategy by itself.
THe Q-learning works very similarly to us:
Observe the (secretized) state of the system
Select an action based on a strategy
If this action brought the system into a desirable state (closer to the goal), mark the action/initial state as more desirable
Repeat
Discretize your system's state.
For each state, have a map intialized quasi-randomly, which maps every state to an Action (this is the strategy). Also assign a desirability to each state (initially, zero everywhere and 1000000 to the target state (X=0, V=0).
Your state would be your 3 positions, 3 angles, 3translation speed, and three rotation speed.
Your actions can be any combination of thrusters
Training
Train the AI (offline phase):
Generate many diverse situations
Apply the strategy
Evaluate the new state
Let the algo (see links above) reinforce the selected strategies' desirability value.
Live usage in the game
After some time, a global strategy for navigation emerges. You then store it, and during your game loop you simply sample your strategy and apply it to each situation as they come up.
The strategy may still learn during this phase, but probably more slowly (because it happens real-time). (Btw, I dream of a game where the AI would learn from every user's feedback so we could collectively train it ^^)
Try this in a simple 1D problem, it devises a strategy remarkably quickly (a few seconds).
In 2D I believe excellent results could be obtained in an hour.
For 3D... You're looking at overnight computations. There's a few thing to try and accelerate the process:
Try to never 'forget' previous computations, and feed them as an initial 'best guess' strategy. Save it to a file!
You might drop some states (like ship roll maybe?) without losing much navigation optimality but increasing computation speed greatly. Maybe change referentials so the ship is always on the X-axis, this way you'll drop x&y dimensions!
States more frequently encountered will have a reliable and very optimal strategy. Maybe normalize the state to make your ship state always close to a 'standard' state?
Typically rotation speeds intervals may be bounded safely (you don't want a ship tumbling wildely, so the strategy will always be to "un-wind" that speed). Of course rotation angles are additionally bounded.
You can also probably discretize non-linearly the positions because farther away from the objective, precision won't affect the strategy much.
For these kind of problems there are two techniques available: bruteforce search and heuristics. Bruteforce means to recognize the problem as a blackbox with input and output parameters and the aim is to get the right input parameters for winning the game. To program such a bruteforce search, the gamephysics runs in a simulation loop (physics simulation) and via stochastic search (minimax, alpha-beta-prunning) every possibility is tried out. The disadvantage of bruteforce search is the high cpu consumption.
The other techniques utilizes knowledge about the game. Knowledge about motion primitives and about evaluation. This knowledge is programmed with normal computerlanguages like C++ or Java. The disadvantage of this idea is, that it is often difficult to grasp the knowledge.
The best practice for solving spaceship navigation is to combine both ideas into a hybrid system. For programming sourcecode for this concrete problem I estimate that nearly 2000 lines of code are necessary. These kind of problems are normaly done within huge projects with many programmers and takes about 6 months.

Performing hefty image processing/path planning tasks on Arduino Due

So, I want to make a robot that is able to navigate through an unknown maze. The only information provided to it would be a monochromatic bitmap image of the maze , and the robot has to identify the start and end points from it, the boxes in which it has to pot the balls it carries, and as well plan its path in the maze. It has to do all of it from that bmp image of the maze. Here's a link to a sample Bitmap Image of a Maze.
I will be using arduino due to do all of this processing. For now, I have read this BMP into a 2D character array, Link to the character array, made a connectivity map/graph from it so that a path planning algorithm could be applied on it (Dijkstra or Breadth First Search).
The problem however is the following, the size of this bitmap is 96x56 pixels. That means the size of the connectivity map/ graph would be [5376][5376] which is very large. To declare this large of an array would require memory in MB whereas the SRAM of the arduino due is only 96KB.
What should I do? Please suggest. I am just a first year electrical engineering student and so don't know much about all of this stuff. One thing that I thought of was to delete the rows that are same (please see the 2D array). However then I thought it, itself will require lots of processing power since I will have to compare every row to others, element by element. The problem here basically are the memory and processing constraints.
I would grateful!
You actually don't have to explicitly store your entire graph in memory. Alternatively, each time the algorithm visits a state, you can query the bitmap to see which neighbors are occupied are not, and generate the valid transitions/costs accordingly. This will take more processing power but will keep the motion model within the memory limitations of the processor.
However, for BFS or Dijkstra's algorithm, you will also have to store a queue of visited states, which could grow exponentially. You might want to consider use of A* instead of Dijkstra's algorithm because A* will explore fewer states than Dijkstra's algorithm to find the optimal solution.

How to understand Locality Sensitive Hashing? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 2 years ago.
Improve this question
I noticed that LSH seems a good way to find similar items with high-dimension properties.
After reading the paper http://www.slaney.org/malcolm/yahoo/Slaney2008-LSHTutorial.pdf, I'm still confused with those formulas.
Does anyone know a blog or article that explains that the easy way?
The best tutorial I have seen for LSH is in the book: Mining of Massive Datasets.
Check Chapter 3 - Finding Similar Items
http://infolab.stanford.edu/~ullman/mmds/ch3a.pdf
Also I recommend the below slide:
http://www.cs.jhu.edu/%7Evandurme/papers/VanDurmeLallACL10-slides.pdf .
The example in the slide helps me a lot in understanding the hashing for cosine similarity.
I borrow two slides from Benjamin Van Durme & Ashwin Lall, ACL2010 and try to explain the intuitions of LSH Families for Cosine Distance a bit.
In the figure, there are two circles w/ red and yellow colored, representing two two-dimensional data points. We are trying to find their cosine similarity using LSH.
The gray lines are some uniformly randomly picked planes.
Depending on whether the data point locates above or below a gray line, we mark this relation as 0/1.
On the upper-left corner, there are two rows of white/black squares, representing the signature of the two data points respectively. Each square is corresponding to a bit 0(white) or 1(black).
So once you have a pool of planes, you can encode the data points with their location respective to the planes. Imagine that when we have more planes in the pool, the angular difference encoded in the signature is closer to the actual difference. Because only planes that resides between the two points will give the two data different bit value.
Now we look at the signature of the two data points. As in the example, we use only 6 bits(squares) to represent each data. This is the LSH hash for the original data we have.
The hamming distance between the two hashed value is 1, because their signatures only differ by 1 bit.
Considering the length of the signature, we can calculate their angular similarity as shown in the graph.
I have some sample code (just 50 lines) in python here which is using cosine similarity.
https://gist.github.com/94a3d425009be0f94751
Tweets in vector space can be a great example of high dimensional data.
Check out my blog post on applying Locality Sensitive Hashing to tweets to find similar ones.
http://micvog.com/2013/09/08/storm-first-story-detection/
And because one picture is a thousand words check the picture below:
http://micvog.files.wordpress.com/2013/08/lsh1.png
Hope it helps.
#mvogiatzis
Here's a presentation from Stanford that explains it. It made a big difference for me. Part two is more about LSH, but part one covers it as well.
A picture of the overview (There are much more in the slides):
Near Neighbor Search in High Dimensional Data - Part1:
http://www.stanford.edu/class/cs345a/slides/04-highdim.pdf
Near Neighbor Search in High Dimensional Data - Part2:
http://www.stanford.edu/class/cs345a/slides/05-LSH.pdf
LSH is a procedure that takes as input a set of documents/images/objects and outputs a kind of Hash Table.
The indexes of this table contain the documents such that documents that are on the same index are considered similar and those on different indexes are "dissimilar".
Where similar depends on the metric system and also on a threshold similarity s which acts like a global parameter of LSH.
It is up to you to define what the adequate threshold s is for your problem.
It is important to underline that different similarity measures have different implementations of LSH.
In my blog, I tried to thoroughly explain LSH for the cases of minHashing( jaccard similarity measure) and simHashing (cosine distance measure). I hope you find it useful:
https://aerodatablog.wordpress.com/2017/11/29/locality-sensitive-hashing-lsh/
I am a visual person. Here is what works for me as an intuition.
Say each of the things you want to search for approximately are physical objects such as an apple, a cube, a chair.
My intuition for an LSH is that it is similar to take the shadows of these objects. Like if you take the shadow of a 3D cube you get a 2D square-like on a piece of paper, or a 3D sphere will get you a circle-like shadow on a piece of paper.
Eventually, there are many more than three dimensions in a search problem (where each word in a text could be one dimension) but the shadow analogy is still very useful to me.
Now we can efficiently compare strings of bits in software. A fixed length bit string is kinda, more or less, like a line in a single dimension.
So with an LSH, I project the shadows of objects eventually as points (0 or 1) on a single fixed length line/bit string.
The whole trick is to take the shadows such that they still make sense in the lower dimension e.g. they resemble the original object in a good enough way that can be recognized.
A 2D drawing of a cube in perspective tells me this is a cube. But I cannot distinguish easily a 2D square from a 3D cube shadow without perspective: they both looks like a square to me.
How I present my object to the light will determine if I get a good recognizable shadow or not. So I think of a "good" LSH as the one that will turn my objects in front of a light such that their shadow is best recognizable as representing my object.
So to recap: I think of things to index with an LSH as physical objects like a cube, a table, or chair, and I project their shadows in 2D and eventually along a line (a bit string). And a "good" LSH "function" is how I present my objects in front of a light to get an approximately distinguishable shape in the 2D flatland and later my bit string.
Finally when I want to search if an object I have is similar to some objects that I indexed, I take the shadows of this "query" object using the same way to present my object in front of the light (eventually ending up with a bit string too). And now I can compare how similar is that bit string with all my other indexed bit strings which is a proxy for searching for my whole objects if I found a good and recognizable way to present my objects to my light.
As a very short, tldr answer:
An example of locality sensitive hashing could be to first set planes randomly (with a rotation and offset) in your space of inputs to hash, and then to drop your points to hash in the space, and for each plane you measure if the point is above or below it (e.g.: 0 or 1), and the answer is the hash. So points similar in space will have a similar hash if measured with the cosine distance before or after.
You could read this example using scikit-learn: https://github.com/guillaume-chevalier/SGNN-Self-Governing-Neural-Networks-Projection-Layer

Suggestions of the easiest algorithms for some Graph operations

The deadline for this project is closing in very quickly and I don't have much time to deal with what it's left. So, instead of looking for the best (and probably more complicated/time consuming) algorithms, I'm looking for the easiest algorithms to implement a few operations on a Graph structure.
The operations I'll need to do is as follows:
List all users in the graph network given a distance X
List all users in the graph network given a distance X and the type of relation
Calculate the shortest path between 2 users on the graph network given a type of relation
Calculate the maximum distance between 2 users on the graph network
Calculate the most distant connected users on the graph network
A few notes about my Graph implementation:
The edge node has 2 properties, one is of type char and another int. They represent the type of relation and weight, respectively.
The Graph is implemented with linked lists, for both the vertices and edges. I mean, each vertex points to the next one and each vertex also points to the head of a different linked list, the edges for that specific vertex.
What I know about what I need to do:
I don't know if this is the easiest as I said above, but for the shortest path between 2 users, I believe the Dijkstra algorithm is what people seem to recommend pretty often so I think I'm going with that.
I've been searching and searching and I'm finding it hard to implement this algorithm, does anyone know of any tutorial or something easy to understand so I can implement this algorithm myself? If possible, with C source code examples, it would help a lot. I see many examples with math notations but that just confuses me even more.
Do you think it would help if I "converted" the graph to an adjacency matrix to represent the links weight and relation type? Would it be easier to perform the algorithm on that instead of the linked lists? I could easily implement a function to do that conversion when needed. I'm saying this because I got the feeling it would be easier after reading a couple of pages about the subject, but I could be wrong.
I don't have any ideas about the other 4 operations, suggestions?
List all users in the graph network given a distance X
A distance X from what? from a starting node or a distance X between themselves? Can you give an example? This may or may not be as simple as doing a BF search or running Dijkstra.
Assuming you start at a certain node and want to list all nodes that have distances X to the starting node, just run BFS from the starting node. When you are about to insert a new node in the queue, check if the distance from the starting node to the node you want to insert the new node from + the weight of the edge from the node you want to insert the new node from to the new node is <= X. If it's strictly lower, insert the new node and if it is equal just print the new node (and only insert it if you can also have 0 as an edge weight).
List all users in the graph network given a distance X and the type of relation
See above. Just factor in the type of relation into the BFS: if the type of the parent is different than that of the node you are trying to insert into the queue, don't insert it.
Calculate the shortest path between 2 users on the graph network given a type of relation
The algorithm depends on a number of factors:
How often will you need to calculate this?
How many nodes do you have?
Since you want easy, the easiest are Roy-Floyd and Dijkstra's.
Using Roy-Floyd is cubic in the number of nodes, so inefficient. Only use this if you can afford to run it once and then answer each query in O(1). Use this if you can afford to keep an adjacency matrix in memory.
Dijkstra's is quadratic in the number of nodes if you want to keep it simple, but you'll have to run it each time you want to calculate the distance between two nodes. If you want to use Dijkstra's, use an adjacency list.
Here are C implementations: Roy-Floyd and Dijkstra_1, Dijkstra_2. You can find a lot on google with "<algorithm name> c implementation".
Edit: Roy-Floyd is out of the question for 18 000 nodes, as is an adjacency matrix. It would take way too much time to build and way too much memory. Your best bet is to either use Dijkstra's algorithm for each query, but preferably implementing Dijkstra using a heap - in the links I provided, use a heap to find the minimum. If you run the classical Dijkstra on each query, that could also take a very long time.
Another option is to use the Bellman-Ford algorithm on each query, which will give you O(Nodes*Edges) runtime per query. However, this is a big overestimate IF you don't implement it as Wikipedia tells you to. Instead, use a queue similar to the one used in BFS. Whenever a node updates its distance from the source, insert that node back into the queue. This will be very fast in practice, and will also work for negative weights. I suggest you use either this or the Dijkstra with heap, since classical Dijkstra might take a long time on 18 000 nodes.
Calculate the maximum distance between 2 users on the graph network
The simplest way is to use backtracking: try all possibilities and keep the longest path found. This is NP-complete, so polynomial solutions don't exist.
This is really bad if you have 18 000 nodes, I don't know any algorithm (simple or otherwise) that will work reasonably fast for so many nodes. Consider approximating it using greedy algorithms. Or maybe your graph has certain properties that you could take advantage of. For example, is it a DAG (Directed Acyclic Graph)?
Calculate the most distant connected users on the graph network
Meaning you want to find the diameter of the graph. The simplest way to do this is to find the distances between each two nodes (all pairs shortest paths - either run Roy-Floyd or Dijkstra between each two nodes and pick the two with the maximum distance).
Again, this is very hard to do fast with your number of nodes and edges. I'm afraid you're out of luck on these last two questions, unless your graph has special properties that can be exploited.
Do you think it would help if I "converted" the graph to an adjacency matrix to represent the links weight and relation type? Would it be easier to perform the algorithm on that instead of the linked lists? I could easily implement a function to do that conversion when needed. I'm saying this because I got the feeling it would be easier after reading a couple of pages about the subject, but I could be wrong.
No, adjacency matrix and Roy-Floyd are a very bad idea unless your application targets supercomputers.
This assumes O(E log V) is an acceptable running time, if you're doing something online, this might not be, and it would require some higher powered machinery.
List all users in the graph network given a distance X
Djikstra's algorithm is good for this, for one time use. You can save the result for future use, with a linear scan through all the vertices (or better yet, sort and binary search).
List all users in the graph network given a distance X and the type of relation
Might be nearly the same as above -- just use some function where the weight would be infinity if it is not of the correct relation.
Calculate the shortest path between 2 users on the graph network given a type of relation
Same as above, essentially, just determine early if you match the two users. (Alternatively, you can "meet in the middle", and terminate early if you find someone on both shortest path spanning tree)
Calculate the maximum distance between 2 users on the graph network
Longest path is an NP-complete problem.
Calculate the most distant connected users on the graph network
This is the diameter of the graph, which you can read about on Math World.
As for the adjacency list vs adjacency matrix question, it depends on how densely populated your graph is. Also, if you want to cache results, then the matrix might be the way to go.
The simplest algorithm to compute shortest path between two nodes is Floyd-Warshall. It's just triple-nested for loops; that's it.
It computes ALL-pairs shortest path in O(N^3), so it may do more work than necessary, and will take a while if N is huge.

How to program a neural network for chess?

I want to program a chess engine which learns to make good moves and win against other players. I've already coded a representation of the chess board and a function which outputs all possible moves. So I only need an evaluation function which says how good a given situation of the board is. Therefore, I would like to use an artificial neural network which should then evaluate a given position. The output should be a numerical value. The higher the value is, the better is the position for the white player.
My approach is to build a network of 385 neurons: There are six unique chess pieces and 64 fields on the board. So for every field we take 6 neurons (1 for every piece). If there is a white piece, the input value is 1. If there is a black piece, the value is -1. And if there is no piece of that sort on that field, the value is 0. In addition to that there should be 1 neuron for the player to move. If it is White's turn, the input value is 1 and if it's Black's turn, the value is -1.
I think that configuration of the neural network is quite good. But the main part is missing: How can I implement this neural network into a coding language (e.g. Delphi)? I think the weights for each neuron should be the same in the beginning. Depending on the result of a match, the weights should then be adjusted. But how? I think I should let 2 computer players (both using my engine) play against each other. If White wins, Black gets the feedback that its weights aren't good.
So it would be great if you could help me implementing the neural network into a coding language (best would be Delphi, otherwise pseudo-code). Thanks in advance!
In case somebody randomly finds this page. Given what we know now, what the OP proposes is almost certainly possible. In fact we managed to do it for a game with much larger state space - Go ( https://deepmind.com/research/case-studies/alphago-the-story-so-far ).
I don't see why you can't have a neural net for a static evaluator if you also do some classic mini-max lookahead with alpha-beta pruning. Lots of Chess engines use minimax with a braindead static evaluator that just adds up the pieces or something; it doesn't matter so much if you have enough levels of minimax. I don't know how much of an improvement the net would make but there's little to lose. Training it would be tricky though. I'd suggest using an engine that looks ahead many moves (and takes loads of CPU etc) to train the evaluator for an engine that looks ahead fewer moves. That way you end up with an engine that doesn't take as much CPU (hopefully).
Edit: I wrote the above in 2010, and now in 2020 Stockfish NNUE has done it. "The network is optimized and trained on the [classical Stockfish] evaluations of millions of positions at moderate search depth" and then used as a static evaluator, and in their initial tests they got an 80-elo improvement when using this static evaluator instead of their previous one (or, equivalently, the same elo with a little less CPU time). So yes it does work, and you don't even have to train the network at high search depth as I originally suggested: moderate search depth is enough, but the key is to use many millions of positions.
Been there, done that. Since there is no continuity in your problem (the value of a position is not closely related to an other position with only 1 change in the value of one input), there is very little chance a NN would work. And it never did in my experiments.
I would rather see a simulated annealing system with an ad-hoc heuristic (of which there are plenty out there) to evaluate the value of the position...
However, if you are set on using a NN, is is relatively easy to represent. A general NN is simply a graph, with each node being a neuron. Each neuron has a current activation value, and a transition formula to compute the next activation value, based on input values, i.e. activation values of all the nodes that have a link to it.
A more classical NN, that is with an input layer, an output layer, identical neurons for each layer, and no time-dependency, can thus be represented by an array of input nodes, an array of output nodes, and a linked graph of nodes connecting those. Each node possesses a current activation value, and a list of nodes it forwards to. Computing the output value is simply setting the activations of the input neurons to the input values, and iterating through each subsequent layer in turn, computing the activation values from the previous layer using the transition formula. When you have reached the last (output) layer, you have your result.
It is possible, but not trivial by any means.
https://erikbern.com/2014/11/29/deep-learning-for-chess/
To train his evaluation function, he utilized a lot of computing power to do so.
To summarize generally, you could go about it as follows. Your evaluation function is a feedforward NN. Let the matrix computations lead to a scalar output valuing how good the move is. The input vector for the network is the board state represented by all the pieces on the board so say white pawn is 1, white knight is 2... and empty space is 0. An example board state input vector is simply a sequence of 0-12's. This evaluation can be trained using grandmaster games (available at a fics database for example) for many games, minimizing loss between what the current parameters say is the highest valuation and what move the grandmasters made (which should have the highest valuation). This of course assumes that the grandmaster moves are correct and optimal.
What you need to train a ANN is either something like backpropagation learning or some form of a genetic algorithm. But chess is such an complex game that it is unlikly that a simple ANN will learn to play it - even more if the learning process is unsupervised.
Further, your question does not say anything about the number of layers. You want to use 385 input neurons to encode the current situation. But how do you want to decide what to do? On neuron per field? Highest excitation wins? But there is often more than one possible move.
Further you will need several hidden layers - the functions that can be represented with an input and an output layer without hidden layer are really limited.
So I do not want to prevent you from trying it, but chances for a successful implemenation and training within say one year or so a practically zero.
I tried to build and train an ANN to play Tic-tac-toe when I was 16 years or so ... and I failed. I would suggest to try such an simple game first.
The main problem I see here is one of training. You say you want your ANN to take the current board position and evaluate how good it is for a player. (I assume you will take every possible move for a player, apply it to the current board state, evaluate via the ANN and then take the one with the highest output - ie: hill climbing)
Your options as I see them are:
Develop some heuristic function to evaluate the board state and train the network off that. But that begs the question of why use an ANN at all, when you could just use your heuristic.
Use some statistical measure such as "How many games were won by white or black from this board configuration?", which would give you a fitness value between white or black. The difficulty with that is the amount of training data required for the size of your problem space.
With the second option you could always feed it board sequences from grandmaster games and hope there is enough coverage for the ANN to develop a solution.
Due to the complexity of the problem I'd want to throw the largest network (ie: lots of internal nodes) at it as I could without slowing down the training too much.
Your input algorithm is sound - all positions, all pieces, and both players are accounted for. You may need an input layer for every past state of the gameboard, so that past events are used as input again.
The output layer should (in some form) give the piece to move, and the location to move to.
Write a genetic algorithm using a connectome which contains all neuron weights and synapse strengths, and begin multiple separated gene pools with a large number of connectomes in each.
Make them play one another, keep the best handful, crossover and mutate the best connectomes to repopulate the pool.
Read blondie24 : http://www.amazon.co.uk/Blondie24-Playing-Kaufmann-Artificial-Intelligence/dp/1558607838.
It deals with checkers instead of chess but the principles are the same.
Came here to say what Silas said. Using a minimax algorithm, you can expect to be able to look ahead N moves. Using Alpha-beta pruning, you can expand that to theoretically 2*N moves, but more realistically 3*N/4 moves. Neural networks are really appropriate here.
Perhaps though a genetic algorithm could be used.

Resources