How to permute the arrays within a cell array without using loops - arrays

I have a two arrays within a <1x2 cell>. I want to permute those arrays. Of course, I could use a loop to permute each one, but is there any way to do that task at once, without using loops?
Example:
>> whos('M')
Name Size Bytes Class Attributes
M 1x2 9624 cell
>> permute(M,p_matrix)
This does not permute the contents of the two arrays within M.
I could use something like:
>> for k=1:size(M,2), M{k} = permute(M{k},p_matrix); end
but I'd prefer not to use loops.
Thanks.

This seems to work -
num_cells = numel(M) %// Number of cells in input cell array
size_cell = size(M{1}) %// Get sizes
%// Get size of the numeric array that will hold all of the data from the
%// input cell array with the second dimension representing the index of
%// each cell from the input cell array
size_num_arr = [size_cell(1) num_cells size_cell(2:end)]
%// Dimensions array for permuting with the numeric array holding all data
perm_dim = [1 3:numel(size_cell)+1 2]
%// Store data from input M into a vertically concatenated numeric array
num_array = vertcat(M{:})
%// Reshape and permute the numeric array such that the index to be used
%// for indexing data from different cells ends up as the final dimension
num_array = permute(reshape(num_array,size_num_arr),perm_dim)
num_array = permute(num_array,[p_matrix numel(size_cell)+1])
%// Save the numeric array as a cell array with each block from
%// thus obtained numeric array from its first to the second last dimension
%// forming each cell
size_num_arr2 = size(num_array)
size_num_arr2c = num2cell(size_num_arr2(1:end-1))
M = squeeze(mat2cell(num_array,size_num_arr2c{:},ones(1,num_cells)))
Some quick tests show that mat2cell would prove to be the bottleneck, so if you don't mind indexing into the intermediate numeric array variable num_array and use it's last dimension for an equivalent indexing into M, then this approach could be useful.
Now, another approach if you would like to preserve the cell format would be with arrayfun, assuming each cell of M to be a 4D numeric array -
M = arrayfun(#(x) num_array(:,:,:,:,x),1:N,'Uniform',0)
This seems to perform much better than with mat2cell in terms of performance.
Please note that arrayfun isn't a vectorized solution as most certainly it uses loops behind-the-scenes and seems like mat2cell is using for loops inside its source code, so please do keep all these issues in mind.

Related

MATLAB pairwise differences in Nth dimension

Say i have a N-Dimensional matrix A that can be of any size. For example:
A = rand([2,5,3]);
I want to calculate all possible pairwise differences between elements of the matrix, along a given dimension. For example, if i wanted to calculate the differences along dimension 3, a shortcut would be to create a matrix like so:
B = cat(3, A(:,:,2) - A(:,:,1), A(:,:,3) - A(:,:,1), A(:,:,3) - A(:,:,2));
However, i want this to be able to operate along any dimension, with a matrix of any size. So, ideally, i'd like to either create a function that takes in a matrix A and calculates all pairwise differences along dimension DIM, or find a builtin MATLAB function that does the same thing.
The diff function seems like it could be useful, but it only calculates differences between adjacent elements, not all possible differences.
Doing my research on this issue, i have found a couple of posts about getting all possible differences, but most of these are for items in a vector (and ignore the dimensionality issue). Does anyone know of a quick fix?
Specific Dimension Cases
If you don't care about a general solution, for a dim=3 case, it would be as simple as couple lines of code -
dim = 3
idx = fliplr(nchoosek(1:size(A,dim),2))
B = A(:,:,idx(:,1)) - A(:,:,idx(:,2))
You can move around those idx(..) to specific dimension positions, if you happen to know the dimension before-hand. So, let's say dim = 4, then just do -
B = A(:,:,:,idx(:,1)) - A(:,:,:,idx(:,2))
Or let's say dim = 3, but A is a 4D array, then do -
B = A(:,:,idx(:,1),:) - A(:,:,idx(:,2),:)
Generic Case
For a Nth dim case, it seems you need to welcome a party of reshapes and permutes -
function out = pairwise_diff(A,dim)
%// New permuting dimensions
new_permute = [dim setdiff(1:ndims(A),dim)];
%// Permuted A and its 2D reshaped version
A_perm = permute(A,new_permute);
A_perm_2d = reshape(A_perm,size(A,dim),[]);
%// Get pairiwse indices for that dimension
N = size(A,dim);
[Y,X] = find(bsxfun(#gt,[1:N]',[1:N])); %//' OR fliplr(nchoosek(1:size(A,dim),2))
%// Get size of new permuted array that would have the length of
%// first dimension equal to number of such pairwise combinations
sz_A_perm = size(A_perm);
sz_A_perm(1) = numel(Y);
%// Get the paiwise differences; reshape to a multidimensiona array of same
%// number of dimensions as the input array
diff_mat = reshape(A_perm_2d(Y,:) - A_perm_2d(X,:),sz_A_perm);
%// Permute back to original dimension sequence as the final output
[~,return_permute] = sort(new_permute);
out = permute(diff_mat,return_permute);
return
So much for a generalization , huh!

Extracting data from a 3D cell array into a 2D Matrix - MATLAB

I have a cell array that is three dimensional i.e. 16x10x3 and I would like for all values in :,:,1 :,:,2 and :,:,3 to be extracted into a column of a matrix each.
I thought about pre-allocating a matrix and then just running a basic loop such as:
for m=1:3
mat(:,m) = ([a{:,:,m}]);
end
Is there a more efficient way of doing this without having to rely on a loop?
EDIT: There are different numbers of values between :,:,1/2/3.
It's high time you get into bsxfun! Here's the implementation -
%// Get the number of elements in each column of the input cell array
lens = sum(cellfun('length',reshape(a,[],size(a,3))),1)
%// Store the maximum number of elements possible in any column of output array
max_lens = max(lens)
%// Setup output array, with no. of rows as max number of elements in each column
%// and no. of columns would be same as the no. of columns in input cell array
mat = zeros(max_lens,numel(lens))
%// Create as mask that has ones to the "extent" of number of elements in
%// each column of the input cell array using the lengths
mask = bsxfun(#le,[1:max_lens]',lens) %//'
%// Finally, store the values from input cell array into masked positions
mat(mask) = [a{:}]

Matlab: Change elements in 3D array using given conditions

I have a 3 dimensional array (10x3x3) in Matlab and I want to change any value greater than 999 to Inf. However, I only want this to apply to (:,:,2:3) of this array.
All the help I have found online seems to only apply to the whole array, or 1 column of a 2D array. I can't work out how to apply this to a 3D array.
I have tried the following code, but it becomes a 69x3x3 array after I run it, and I don't really get why. I tried to copy the code from someone using a 2D array, so I just think I don't really understand what the code is doing.
A(A(:,:,2)>999,2)=Inf;
A(A(:,:,3)>999,3)=Inf;
One approach with logical indexing -
mask = A>999; %// get the 3D mask
mask(:,:,1) = 0; %// set all elements in the first 3D slice to zeros,
%// to neglect their effect when we mask the entire input array with it
A(mask) = Inf %// finally mask and set them to Infs
Another with linear indexing -
idx = find(A>999); %// Find linear indices that match the criteria
valid_idx = idx(idx>size(A,1)*size(A,2)) %// Select indices from 2nd 3D slice onwards
A(valid_idx)=Inf %// Set to Infs
Or yet another with linear indexing, almost same as the previous one with the valid index being calculated in one step and thus enabling us a one-liner -
A(find(A(:,:,2:3)>999) + size(A,1)*size(A,2))=Inf

How to find the maximum of multiple arrays in MATLAB?

Let's say we have an array x. We can find the maximum value of this array as follows:
maximum = max(x);
If I have two arrays, let's say x and y, I can find the array that contains the maximum value by using the command
maximum_array = max(x, y);
Let's say that this array is y. Then, I can find the maximum value by using the max command with argument y, as before with x:
maximum_value = max(y);
This two-step procedure could be performed with the following compact, one-liner command:
maximum_value = max(max(x, y));
But what happens when we have more than 2 arrays? As far as I know, the max function does not allow to compare more than two arrays. Therefore, I have to use max for pairs of arrays, and then find the max among the intermediate results (which involves also the use of additional variables). Of course, if I have, let's say, 50 arrays, this would be - and it really is - a tedius process.
Is there a more efficient approach?
Approach #1
Concatenate column vector versions of them along dim-2 with cat and then use maximium values with max along dim-2 to get the max.
Thus, assuming x, y and z to be the input arrays, do something like this -
%// Reshape all arrays to column vectors with (:) and then use cat
M = cat(2,x(:),y(:),z(:))
%// Use max along dim-2 with `max(..,[],2)` to get column vector
%// version and then reshape back to the shape of input arrays
max_array = reshape(max(M,[],2),size(x))
Approach #2
You can use ndims to find the number of dimensions in the input arrays and then concatenate along the dimension that is plus 1 of that dimension and finally find max along it to get the maximum values array. This would avoid all of that reshaping back and forth and thus could be more efficient and a more compact code as well -
ndimsp1 = ndims(x)+1 %// no. of dimensions plus 1
maxarr = max(cat(ndimsp1,x,y,z),[],ndimsp1) %// concatenate and find max
I think the easiest approach for a small set of arrays is to column-ify and concatenate:
maxValue = max([x(:);y(:)]);
For a large number of arrays in some data structure (e.g. a cell array or a struct), I simple loop would be best:
maxValue = max(cellOfMats{1}(:));
for k = 2:length(cellOfMats)
maxValue = max([maxValue;cellOfMats{k}(:)]);
end
For the pathological case of a large number of separate arrays with differing names, I say "don't do that" and put them in a data structure or use eval with a loop.

Squeeze Some of Singleton Dimensions in Matlab

How can I squeeze only a subset of singleton dimensions of a matrix in Matlab? The squeeze function removes them all.
I keep the index to those dimensions in a vector called "dims".
Code
%// Input matrix is assumed as A
sz = size(A)
t2 = sz~=1
t2(dims)=1
out = reshape(A,sz(t2)) %// out is the desired output
If you are crazy about dense codes, you can try this -
sz = size(A)
out = reshape(A,sz(sort([dims find(sz~=1)])))
In Matlab, there is no tailing singleton dimension. A n*m*1 matrix is automatically a n*m matrix. Knowing this, your problem could be solved permuting the dimensions you don't want to the end:
X=ones(2,1,2,1,2,1,2,1,2,1)
%dimensions you want to keep in any case
dims=[2:4];
%Notice, S is [2,1,2,1,2,1,2,1,2], last dimension already "gone"
S=size(X)
%keep if size>1
dimensions_to_keep=S>1
%and keep if in "dims" list
dimensions_to_keep(dims)=1
%now permute dimensions you don't want to the end
Y=permute(X,[find(dimensions_to_keep),find(~dimensions_to_keep)])

Resources