Trailing zeroes in a Factorial - c

I am trying to write a code for calculating the number of trailing zeroes in a factorial of a specific number (large numbers). However, for small numbers, i get the correct result, but for large the deviations keeps increasing. What's wrong with my logic
#include <stdio.h>
int main(void) {
int t;
scanf("%d", &t);
while (t > 0) {
int factorten = 0, factorfive = 0, factortwo = 0, remainingfive = 0,
remainingtwo = 0;
unsigned int factors = 0;
unsigned int n;
scanf("%u", &n);
for (unsigned int i = n; i > 0; i--) {
if (i % 10 == 0) {
factorten++;
continue;
} else if (i % 5 == 0) {
factorfive++;
continue;
} else if (i % 2 == 0) {
// int new = i;
// while(new % 2 == 0)
//{
// new = new / 2;
factortwo++;
//}
continue;
}
}
factors = factors + factorten;
printf("%u\n", factors);
if (factorfive % 2 == 0 && factorfive != 0) {
factors = factors + (factorfive / 2);
} else {
remainingfive = factorfive % 2;
factors = factors + ((factorfive - remainingfive) / 2);
}
printf("%u\n", factors);
if (factortwo % 5 == 0 && factortwo != 0) {
factors = factors + (factortwo / 5);
} else {
remainingtwo = factortwo % 5;
factors = factors + ((factortwo - remainingtwo) / 5);
}
printf("%u\n", factors);
if ((remainingfive * remainingtwo % 10) == 0 &&
(remainingfive * remainingtwo % 10) != 0) {
factors++;
}
printf("%u\n", factors);
t--;
}
}
Sample Input:
6
3
60
100
1024
23456
8735373
Sample Output:
0
14
24
253
5861
2183837
My OUTPUT
0
13
23
235
5394
2009134

Edit: ignore the first two, they are suboptimal. The third algorithm is optimal.
I think this does what you're trying to do, but is a lot simpler and works:
int tzif(int n)
{
int f2 = 0, f5 = 0;
for (;n > 1; n--)
{
int x = n;
for (;x % 2 == 0; x /= 2)
f2++;
for (;x % 5 == 0; x /= 5)
f5++;
}
return f2 > f5 ? f5 : f2;
}
It counts 2-factors and 5-factors of numbers N...2. Then it returns the smaller of the two (because adding 2-factors is useless without adding 5-factors and vice-versa). Your code is too strange for me to analyze.
I think this should work too, because a factorial will have enough 2-factors to "cover" the 5-factors:
int tzif(int n)
{
int f5 = 0;
for (;n > 1; n--)
for (x = n;x % 5 == 0; x /= 5)
f5++;
return f5;
}
This only counts 5-factors and returns that.
Another method I think should work:
int tzif(int n)
{
int f5 = 0;
for (int d = 5; d <= n; d *= 5)
f5 += n / d;
return f5;
}
Count every fifth number (each has a 5-factor), then every 25-th number (each has another 5-factor), etc.

Have 3 counters - c2,c5,c10.
I think the checks should be
divisible by 5 but not by 10 -> c5++
divisible by 2 but not by 10 -> c2++
divisible by 10. Here if true, then count number of 0's. (c10++)
At last number of 0's will be
smaller_of(c2,c5) + c10
Try to code using this. Should work.

First the trailing 0 in N! are determined by factors 2 and 5 (10). The factors 2 always would be more that the factors 5 in this case you only need to calculate how factors 5 are in the N!.
(N!/5) would give you the number of multiple of 5 (5^1) in N!
(N!/25) would give you the number of multiple of 25 (5^2) in N!
(N!/125) would give you the number of multiple of 125 (5^3) in N!
...
(N!/5^n) would give you the number of multiple of 5^n in N!
When you add the multiple of 5 you are adding too the multiple of 25, 125, ..., 5^n, when you add multiple of 25 you are adding too the multiple of 125, ..., 5^n, etc...
In that case you only need to iterate the power of 5 less or equal than N and add the number of multiple of that 5 power.
Code:
long long trailing_zeros(long long N) {
long long zeros = 0;
for (long long power5 = 5; power5 <= N; power5 *= 5)
zeros += N / power5;
return zeros;
}

#include<iostream>
int main()
{
int size,i;
std::cin >> size;
int*fact;
fact = new int[size];
for (i = 0; i < size; i++)
{
std::cin >> fact[size];
}
for (i = 0; i < size; i++)
{
int con = 5;
int multiple = 0;
do
{
multiple = multiple+(fact[size] / con);
con = con * 5;
} while (con < fact[size]);
std::cout << multiple <<'\n';
}
return 0;
}
this code works perfectly for a single input..bt for multiple inputs it prints the o/p for the last entered number...what is wrong..i jst cant think off it

Related

Trying to implement Luhn's Algorithm in C

Iam trying to implement Luhn's algorithm in the C language to check credit card validity, for those who don't know... this is it:
Multiply every other digit by 2, starting with the number’s
second-to-last digit, and then add those products’ digits together.
Add the sum to the sum of the digits that weren’t multiplied by 2.
If the total’s last digit is 0 (or, put more formally, if the total
modulo 10 is congruent to 0), the number is valid!
and to implement that, I looped through the whole number and if the number place I was in had a modulo 2 equal to 0 then I would multiply by two and add to a variable called totalEven.
if that wasn't the case I would add the number I was in to totalOdd without multiplication.
I would then increment the place by one and check the other numbers until I reach 16 (the max digits for a card).
I would later add both variables and check if the total modulo ten was equal to 0. If it means the credit card number is correct, else it is false.
here is the code:
#include <stdio.h>
#include <cs50.h>
//list of variables
//is the card valid
bool isValid = true;
// the creditcard number
long input;
//mod stands for modules, and is used to single out each number as seen later
int mod = 10;
//the location at which number I am checking
int place = 1;
//num is the number I am checking that has been singled out
int num = 0;
//total of numbers * 2 located at locations numbered with even numbers
int totalEven = 0;
//total of numbers located at locations numbered with odd numbers
int totalOdd = 0;
//gets input and stores it in well.. input
input = get_long("Number: ");
// a formula to single out a number, starting with the ones and then as you can see, mod is muliplied by 10 to go over the second number.
num = ((input % mod) - (input % (mod /10))) / (mod/10);
//loops 16 times
for(int i = 0; i < 16; i++)
{
// if the place is even execute below
if(place % 2 == 0)
{
totalEven = totalEven + num * 2;
}
//else do this
else if (place % 2 != 0)
{
totalOdd = totalOdd + num;
}
//moves to the next number
mod = mod * 10;
place++;
}
//fufils the last step of the algorithm
if((totalEven + totalOdd) % 10 == 0 )
{
isValid = true;
}
else
{
isValid = false;
}
problem is that this block of code gives me invalid or !isValid even though the credit card number is supposed to be correct and I checked my "formula" and it works just fine...
I have absolutely no idea what to do... I am a humble hobbyist so plz don't roast me for the monstrosity above.
here is a complete version of the code
#include <stdio.h>
#include <cs50.h>
long power();
int main(void)
{
//AMERX 15 STRT 34 OR 37
//MC 16 STRT 51, 52, 53, 54, 55
//VZA 13 OR 16 STRT 4
long input;
bool isValid = true;
string type;
int mod = 10;
int place = 1;
int num = 0;
int totalEven = 0;
int totalOdd = 0;
do
{
input = get_long("Number: ");
}
while(input < 0);
for(int i = 0; i < 16; i++)
{
num = ((input % mod) - (input % (mod /10))) / (mod/10);
if(place % 2 == 0)
{
totalEven = totalEven + num * 2;
}
else
{
totalOdd = totalOdd + num;
}
mod = mod * 10;
place++;
}
if((totalEven + totalOdd) % 10 == 0 )
{
isValid = true;
}
else
{
isValid = false;
printf("%i , %i", totalEven, totalOdd);
}
if (isValid == true){
if((input < (38 * power(10, 13)) && input >=(37 * power(10, 13))) || (input < (35 * power(10,13)) && input >= (34 * power(10, 13))))
{
type = "AMEX\n";
}
else if(input >= (51 * power(10, 14)) && input < (56 * power(10, 14)))
{
type = "MASTERCARD\n";
}
else if((input < (5 * power(10, 12)) && input >= (4 * power(10, 12))) || (input < (5 * power(10, 15)) && input >= (4 * power(10, 15))))
{
type = "VISA\n";
}
else{
type = "error\n";
}
}
else
{
type = "INVALID\n";
}
if((totalEven + totalOdd) % 10 == 0 )
{
isValid = true;
}
else
{
isValid = false;
}
printf("%s", type);
}
long power(int n, int p)
{
long result = 1;
for(int i = 0; i<p; i++)
{
result = result * n;
}
return result;
I'm not an expert in Luhn algorithm but when I read https://en.wikipedia.org/wiki/Luhn_algorithm it seems to me that you are doing it wrong.
Quote from https://en.wikipedia.org/wiki/Luhn_algorithm :
From the rightmost digit (excluding the check digit) and moving left, double the value of every second digit. The check digit is neither doubled nor included in this calculation; the first digit doubled is the digit located immediately left of the check digit. If the result of this doubling operation is greater than 9 (e.g., 8 × 2 = 16), then add the digits of the result (e.g., 16: 1 + 6 = 7, 18: 1 + 8 = 9) or, alternatively, the same final result can be found by subtracting 9 from that result (e.g., 16: 16 − 9 = 7, 18: 18 − 9 = 9).
I don't see anywhere in your code where you handle that bolded part.
Instead of
totalEven = totalEven + num * 2;
I think you need
int tmp = num * 2;
if (tmp > 9) tmp = tmp - 9;
totalEven = totalEven + tmp;
That said - I think you are making the implementation much more complex than needed by storing the input as a number. Instead of a number you could use an array of digits.
That is - instead of
long input = 1122334455667788
use
int digits[] = {8, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1};
// Notice that index zero is the rightmost digit
In this way the algorithm is much more simple:
// Double every second element and check for overflow
for (idx = 1; idx < 16; idx += 2)
{
digits[idx] = 2 * digits[idx];
if (digits[idx] > 9) digits[idx] = digits[idx] - 9;
}
// Calculate the sum
sum = 0;
for (idx = 0; idx < 16; ++idx)
{
sum = sum + digits[idx];
}
If you must receive the input as a number, start by calling a function that converts the number to an array of digits. You can find many, many examples of how that conversion is done here on SO. Here Converting integer into array of digits is just one of many examples.
As I was looking at your code, there some mistakes I want to point out.
You forgot: #include <string.h> as you did declare string type in the code.
input = get_long("Number: "); should have its own do-while loop in case user inputs letters or incorrect numbers.
if(place % 2 == 0){
totalEven = totalEven + num * 2;
}
else if (place % 2 != 0){
totalEven = totalEven + num;
} should totalOdd = totalOdd + num for the second part
totalEven = totalEven + num * 2 is right and wrong at the same time. It only works if the number multiplied by 2 is less than 10. If the num * 2 >= 10, lets say num = 6, then 6 * 2 is 12 which would then be 1 + 2 + totalEven.
num = ((input % mod) - (input % (mod /10))) / (mod/10); This should be in the first for loop.
In #include <math.h>, there is a power function called pow which does exactly as your power() function.
Caution: I have made use of CS50X Library as the question seems to be the one from the same.
#include <stdio.h>
#include <cs50.h>
// Luhn's Algorithm
int main(void)
{
long cardNumber = get_long("Please, enter your card number: ");
int sum1 = 0, num = 0, remainder = 0, sum2 = 0;
long temp = cardNumber;
while (temp > 0)
{
num = ((temp / 10) % 10) * 2; // Multiplying every other digit by 2, starting with the number’s second-to-last digit
while (num > 0)
{
remainder = num % 10;
sum1 += remainder; // Adding those products’ digits together
num /= 10;
}
temp /= 100;
}
// So as to restore the initial values of remainder and temp for the use in next loop
remainder = 0;
temp = cardNumber;
while (temp > 0)
{
remainder = temp % 10;
sum2 += remainder; // Sum of the digits that weren’t multiplied by 2
temp /= 100;
}
((sum1 + sum2) % 10) == 0 ? printf("Valid\n") : printf("Invalid\n");
return 0;
}

Wanted to check if a credit card number is valid or not

I wanted to check if a credit card number is valid or not but when i run the code, every number I give as input, the output comes as invalid.
The example given below is what I should i do.
Example with David’s Visa: 4003600000000014.
For the sake of discussion, let’s first underline every other digit, starting with the number’s second-to-last digit:
4003600000000014
Okay, let’s multiply each of the underlined digits by 2:
1•2 + 0•2 + 0•2 + 0•2 + 0•2 + 6•2 + 0•2 + 4•2
That gives us:
2 + 0 + 0 + 0 + 0 + 12 + 0 + 8
Now let’s add those products’ digits (i.e., not the products themselves) together:
2 + 0 + 0 + 0 + 0 + 1 + 2 + 0 + 8 = 13
Now let’s add that sum (13) to the sum of the digits that weren’t multiplied by 2 (starting from the end):
13 + 4 + 0 + 0 + 0 + 0 + 0 + 3 + 0 = 20
, the last digit in that sum (20) is a 0, so David’s card is legit!
#include <stdio.h>
int main()
{
int no;
printf("Visa number: ");`
scanf("%d", &no);
int d_1, d_2, d_3, d_4, d_5, d_6, d_7, d_8, d_9, d_10, d_11, d_12, d_13, d_14, d_15;
d_15 = no%10;
d_14 = ((no%100)/10)*2;
d_13 = (no%1000)/100;
d_12 = ((no%10000)/1000)*2;
d_11 = (no%100000)/10000;
d_10 = ((no%1000000)/100000)*2;
d_9 = (no%10000000)/1000000;
d_8 = ((no%100000000)/10000000)*2;
d_7 = (no%1000000000)/100000000;
d_6 = ((no%10000000000)/1000000000)*2;
d_5 = (no%100000000000)/10000000000;
d_4 = ((no%1000000000000)/100000000000)*2;
d_3 = (no%10000000000000)/1000000000000;
d_2 = ((no%100000000000000)/10000000000000)*2;
d_1 = (no%1000000000000000)/100000000000000;
int d[7] = {d_2, d_4, d_6, d_8, d_10, d_12, d_14};
int n,add;
for (n=1; n<=7; n++)
if(d[n]>10)
{
d[n] = (d[n]%10);
d[(15-n)+1] = ((d[n]%100)/10);
int sum=0;
for (int i=0; i<7; i++)
sum += d[i];
}
else
{
add = d_14 + d_12 + d_10 + d_8 + d_6 + d_4 + d_2;
}
int sum = add + d_15 + d_13 + d_11 + d_9 + d_7 + d_5 + d_3 + d_1;
if ((sum % 10) == 0)
{
printf("%s\n", "The card is valid");
}
else
{
printf("%s\n", "The card is invalid");
}
}
every number I give as input, the output comes as invalid.
Too big
OP's int is likely 32-bit.
Reading text input that would attempt to form an int outside the int range is undefined behavior. Rest of code is irrelevant.
int no;
scanf("%d", &no); // attempt to read "4003600000000014" leads to UB.
Consider reading user input into a string first and then process the characters. #Weather Vane
char buf[100];
if (fgets(buf, sizeof buf, stdin)) {
int i;
sum[2] = { 0, 0 }; // sums of even indexed digits and odd indexed digits.
// Note: only 1 sum really needed, but using 2 sums to mimic OP's approach
for (i = 0; isdigit((unsigned char) buf[i]); i++) {
digit = buf[i] - '0';
if (i%2 == 0) {
digit *= 2;
if (digit >= 10) {
digit = (digit/10 + digit%10);
}
}
sum[i%2] += digit;
}
// reject bad input: too long or missing expected end
if (i > 16 || (buf[i] != '\n' && buf[i] != '\0')) {
puts("Bad input");
} else {
// pseudo code to not give everything away.
// do math on sum[0], sum[1]
// if as expected --> success
}
}
#include <stdio.h>
#include <cs50.h>
long credit;
int getting_the_final_total_number (void);
void checking_which_kind (void);
int main(void)
{
credit = get_long("Number: ");
int i = 0;
long number_count = credit;
//finding how many numbers are there.
while(number_count > 0)
{
number_count /= 10;
i++;
}
//we use and because (using or make once true, the code block will work and always telling INVALID)
if(i != 13 && i != 15 && i != 16)
{
printf("INVALID\n");
return 0;
}
int total = getting_the_final_total_number(); //adding sum_1 and sum_2
if(total % 10 != 0)
{
printf("INVALID\n");
return 0;
}
checking_which_kind();
}
//assigning the credit to another variable for the loop
int getting_the_final_total_number (void)
{
long credit_one = credit;
int mod_1;
int mod_2;
int sum_1 = 0;
int m;
int d;
int sum_2 = 0;
do
{
//cutting the number into two pieces with all the last numbers and all the second-last-numbers
//cutting the last numbers.
mod_1 = credit_one % 10;
credit_one = credit_one / 10;
sum_1 += mod_1;
//cutting the second-last-numbers.
mod_2 = credit_one % 10;
credit_one = credit_one / 10;
//doubling the mod_2 (the second-last-numbers)
mod_2 = mod_2 * 2;
//making them into one number (if there is 16 or 18 in the product then make them 1 and 6 or 1 and 8. After that add them all together ).
m = mod_2 % 10; //This is for only one standing numer like 1 or 2 or 9 etc (but no 12 or 14 or 16)
d = mod_2 / 10; //This is for ten's digit to make sure to become ONE standing digit
sum_2 = sum_2 + m + d;
}
while(credit_one > 0);
return sum_1 + sum_2;
}
//checking the first two number of credit
void checking_which_kind (void)
{
long cc = credit;
do
{
cc = cc / 10;
}
while(cc > 100);
if(cc / 10 == 5 && (cc % 10 > 0 || cc % 10 < 6))
{
printf("MASTERCARD\n");
}
else if(cc / 10 == 3 && (cc % 10 == 4 || cc % 10 == 7))
{
printf("AMERICAN EXPRESS\n");
}
else if(cc / 10 == 4 && cc % 10 >= 0)
{
printf("VISA\n");
}
else
{
printf("ERROR");
}
}

Find the minimum number of steps to decrease N to zero

I'm facing some difficulties in the last few days while trying to finish the following task, I hope you guys can assist :
I'm given a single number N, and I'm allowed to perform any of the two operations on N in each move :
One - If we take 2 integers where N = x * y , then we can change the value of N to the maximum between x and y.
Two - Decrease the value of N by 1.
I want to find the minimum number of steps to reduce N to zero.
This is what I have so far, I'm not sure what is the best way to implement the function to find the divisor (someFindDevisorFunction), and if this 'f' function would actually produce the required output.
int f(int n)
{
int div,firstWay,secondWay;
if(n == 0)
return 0;
div = SomefindDivisorFunction(n);
firstWay = 1 + f(n-1);
if(div != 1)
{
secondWay = 1 + f(div);
if (firstWay < secondWay)
return firstWay;
return secondWay;
}
return firstWay;
}
For example, if I enter the number 150 , the output would be :
75 - 25 - 5 - 4 - 2 - 1 - 0
I see this a recursive or iterative problem.
OP's approach hints at recursive.
A recursive solution follows:
At each step, code counts the steps of the various alternatives:
steps(n) = min(
steps(factor1_of_n) + 1,
steps(factor2_of_n) + 1,
steps(factor3_of_n) + 1,
...
steps(n-1) + 1)
The coded solution below is inefficient, but it does explore all possibilities and gets to the answer.
int solve_helper(int n, bool print) {
int best_quot = 0;
int best_quot_score = INT_MAX;
int quot;
for (int p = 2; p <= (quot = n / p); p++) {
int rem = n % p;
if (rem == 0 && quot > 1) {
int score = solve_helper(quot, false) + 1;
if (score < best_quot_score) {
best_quot_score = score;
best_quot = quot;
}
}
}
int dec_score = n > 0 ? solve_helper(n - 1, false) + 1 : 0;
if (best_quot_score < dec_score) {
if (print) {
printf("/ %d ", best_quot);
solve_helper(best_quot, true);
}
return best_quot_score;
}
if (print && n > 0) {
printf("- %d ", n - 1);
solve_helper(n - 1, true);
}
return dec_score;
}
int main() {
int n = 75;
printf("%d ", n);
solve(n, true);
printf("\n");
}
Output
75 / 25 / 5 - 4 / 2 - 1 - 0
Iterative
TBD
If you start looking for a divisor with 2, and work your way up, then the last pair of divisors you find will include the largest divisor. Alternatively you can start searching with divisor = N/2 and work down, when the first divisor found will have be largest divisor of N.
int minmoves(int n){
if(n<=3){
return n;
}
int[] dp=new int[n+1];
Arrays.fill(dp,-1);
dp[0]=0;
dp[1]=1;
dp[2]=2;
dp[3]=3;
int sqr;
for(int i=4;i<=n;i++){
sqr=(int)Math.sqrt(i);
int best=Integer.MAX_VALUE;
while(sqr >1){
if(i%sqr==0){
int fact=i/sqr;
best=Math.min(best,1+dp[fact]);
}
sqr--;
}
best=Math.min(best,1+dp[i-1]);
dp[i]=best;
}
return dp[n];
}

Turn the flag on when the digits shows twice in a number - C

Without using an array.. How can I manage to turn a flag from 1 to 0 if there is the same digit twice or more in a number?
take it as if they are all integers, the temp & temp2 are the same number which is a 4 digit number
for(i = 0; i < 4; i++) //if a digits shows twice
{
n = temp % 10;
for(k = 0; k <= 6; k++)
{
if(n == temp2 % 10)
{
counter++;
}
temp2 /= 10;
}
temp /= 10;
if(counter > 1)
{
flag = 0;
}
counter = 0;
}
The result is that just it doesn't work.. something is not working
You take the least significant digit and check if it is present in the rest of the number. If it is found, you're done. If it is not found, you divide the number by 10 and repeat the process. Example:
n = 123456789;
step 1: Is 9 present in 12345678
step 2: Is 8 present in 1234567
step 3: Is 7 present in 123456
.. and so on ..
So first you write a function that can tell whether a number contains a specific digit. The function could look like:
int contains_digit(int number, int digit)
{
while(number)
{
if ((number % 10) == digit) return 0; // Return zero when found
number /= 10;
}
return 1; // Return one if not found
}
Then you call that function for all digits in the original number and tests the digit to the number divided by 10. For instance if the number is 1234, you call the function like:
contains_digit(123, 4)
contains_digit(12, 3)
contains_digit(1, 2)
That can be something like:
int main( void )
{
int n = 12434;
int flag = 1;
while(n && flag)
{
flag = contains_digit(n/10, n % 10);
n /= 10;
}
printf("flag is %d\n", flag);
return 0;
}

Finding a brute force algorithm for the following cryptarithm / alphametic puzzle

I'm trying to write a program in C that will solve the following cryptarithm:
one + one = two
seven is prime
nine is a perfect square
Namely, I need to find the numerical values for the words one, two, seven and nine where each letter (o, n, e, t, w, s, v, i) is assigned a numerical value and the complete number also meets all of the above conditions.
I was thinking along the lines of creating an int array for each of the words and then 1) checking if each word meets the condition (e.g is a prime for "seven") and then 2) checking if each integer in the array is consistant with the value of the other words, where the other words also are found to meet their respective conditions.
I can't really see this working though as I would have to continuously convert the int array to a single int throughout every iteration and then I'm not sure how I can simultaneously match each element in the array with the other words.
Perhaps knowing the MIN and MAX numerical range that must be true for each of the words would be useful?
Any ideas?
For a brute-force (ish) method, I'd start with the prime seven, and use the Sieve of Eratosthenes to get all the prime numbers up to 99999. You could discard all answers where the 2nd and 4th digit aren't the same. After that you could move on to the square nine, because three of the digits are determined by the prime seven. That should narrow down the possibilities nicely, and then you can just use the answer of #pmg to finish it off :-).
Update: The following C# program seems to do it
bool[] poss_for_seven = new bool[100000]; // this will hold the possibilities for `seven`
for (int seven = 0; seven < poss_for_seven.Length; seven++)
poss_for_seven[seven] = (seven > 9999); // `seven` must have 5 digits
// Sieve of Eratosthenes to make `seven` prime
for (int seven = 2; seven < poss_for_seven.Length; seven++) {
for (int j = 2 * seven; j < poss_for_seven.Length; j += seven) {
poss_for_seven[j] = false;
}
}
// look through the array poss_for_seven[], considering each possibility in turn
for (int seven = 10000; seven < poss_for_seven.Length; seven++) {
if (poss_for_seven[seven]) {
int second_digit = ((seven / 10) % 10);
int fourth_digit = ((seven / 1000) % 10);
if (second_digit == fourth_digit) {
int e = second_digit;
int n = (seven % 10); // NB: `n` can't be zero because otherwise `seven` wouldn't be prime
for (int i = 0; i < 10; i++) {
int nine = n * 1000 + i * 100 + n * 10 + e;
int poss_sqrt = (int)Math.Floor(Math.Sqrt(nine) + 0.1); // 0.1 in case of of rounding error
if (poss_sqrt * poss_sqrt == nine) {
int o = ((2 * e) % 10); // since 2 * `one` = `two`, we now know `o`
int one = o * 100 + n * 10 + e;
int two = 2 * one;
int t = ((two / 100) % 10);
int w = ((two / 10) % 10);
// turns out that `one`=236, `two`=472, `nine` = 3136.
// look for solutions where `s` != `v` with `s` and `v' different from `o`, `n`, `e`,`t`, `w` and `i`
int s = ((seven / 10000) % 10);
int v = ((seven / 100) % 10);
if (s != v && s != o && s != n && s != e && s != t && s != w && s != i && v != o && v != n && v != e && v != t && v != w && v != i) {
System.Diagnostics.Trace.WriteLine(seven + "," + nine + "," + one + "," + two);
}
}
}
}
}
}
It seems that nine is always equal to 3136, so that one = 236 and two = 472. However, there are 21 possibiliites for seven. If one adds the constraint that no two digits can take the same value (which is what the C# code above does), then it reduces to just one possibility (although a bug in my code meant this answer originally had 3 possibilities):
seven,nine,one,two
56963,3136,236,472
I just found the time to build a c program to solve your cryptarithm.
I think that tackling the problem mathematicaly, prior to starting the brute force programming, will heavily increase the speed of the output.
Some math (number theory):
Since ONE + ONE = TWO, O cant be larget than 4, because ONE + ONE would result 4 digits. Also O cant be 0. TWO end with O and is an even number, because it is 2 * ONE.
Applying these 3 filters to O, the possible values remain O= {2,4}
Hence E can be {1,2,6,7} because (E+E) modulus 10 must be = O. More specificaly, O=2 implicates E={1,6} and O=4 implicates E={2,7}
Now lets filter N. Given that SEVEN is prime, N must be an odd number. Also N cant be 5, because all that ends with 5 is divisible by 5. Hence N={1,3,7,9}
Now that we have reduced the possibilites for the most ocurring characters (O,E,N), we are ready to hit this cryptarith with all of our brutality, having iterations drastically reduced.
Heres the C code:
#include <stdio.h>
#include <math.h>
#define O 0
#define N 1
#define E 2
#define T 3
#define W 4
#define S 5
#define V 6
#define I 7
bool isPerfectSquare(int number);
bool isPrime(int number);
void printSolutions(int countSolutions);
int filterNoRepeat(int unfilteredCount);
int solutions[1000][8]; // solution holder
int possibilitiesO[2] = {2,4};
int possibilitiesN[4] = {1,3,7,9};
int possibilitiesE[4] = {1,6,2,7};
void main() {
int countSolutions = 0;
int numberOne;
// iterate to fill up the solutions array by: one + one = two
for(int o=0;o<2;o++) {
for(int n=0;n<4;n++) {
for(int e=2*o;e<2*o+2;e++) { // following code is iterated 2*4*2 = 16 times
numberOne = 100*possibilitiesO[o] + 10*possibilitiesN[n] + possibilitiesE[e];
int w = ((2*numberOne)/10)%10;
int t = ((2*numberOne)/100)%10;
// check if NINE is a perfect square
for(int i=0;i<=9;i++) { // i can be anything ----- 10 iterations
int numberNine = 1000*possibilitiesN[n] + 100*i + 10*possibilitiesN[n] + possibilitiesE[e];
if(isPerfectSquare(numberNine)) {
// check if SEVEN is prime
for(int s=1;s<=9;s++) { // s cant be 0 ------ 9 iterations
for(int v=0;v<=9;v++) { // v can be anything other than s ------- 10 iterations
if(v==s) continue;
int numberSeven = 10000*s + 1000*possibilitiesE[e] + 100*v + 10*possibilitiesE[e] + possibilitiesN[n];
if(isPrime(numberSeven)) { // store solution
solutions[countSolutions][O] = possibilitiesO[o];
solutions[countSolutions][N] = possibilitiesN[n];
solutions[countSolutions][E] = possibilitiesE[e];
solutions[countSolutions][T] = t;
solutions[countSolutions][W] = w;
solutions[countSolutions][S] = s;
solutions[countSolutions][V] = v;
solutions[countSolutions][I] = i;
countSolutions++;
}
}
}
}
}
}
}
}
// 16 * 9 * 10 * 10 = 14400 iterations in the WORST scenario, conditions introduced reduce MOST of these iterations to 1 if() line
// iterations consumed by isPrime() function are not taken in count in the aproximation above.
// filter solutions so that no two letter have the same digit
countSolutions = filterNoRepeat(countSolutions);
printSolutions(countSolutions); // voila!
}
bool isPerfectSquare(int number) { // check if given number is a perfect square
double root = sqrt((double)number);
if(root==floor(root)) return true;
else return false;
}
bool isPrime(int number) { // simple algoritm to determine if given number is prime, check interval from sqrt(number) to number/2 with a step of +2
int startValue = sqrt((double)number);
if(startValue%2==0) startValue--; // make it odd
for(int k=startValue;k<number/2;k+=2) {
if(number%k==0) return false;
}
return true;
}
void printSolutions(int countSolutions) {
for(int k=0;k<countSolutions;k++) {
int one = 100*solutions[k][O] + 10*solutions[k][N] + solutions[k][E];
int two = 100*solutions[k][T] + 10*solutions[k][W] + solutions[k][O];
int seven = 10000*solutions[k][S] + 1000*solutions[k][E] + 100*solutions[k][V] + 10*solutions[k][E] + solutions[k][N];
int nine = 1000*solutions[k][N] + 100*solutions[k][I] + 10*solutions[k][N] + solutions[k][E];
printf("ONE: %d, TWO: %d, SEVEN: %d, NINE %d\n",one,two,seven,nine);
}
}
int filterNoRepeat(int unfilteredCount) {
int nrSol = 0;
for(int k=0;k<unfilteredCount;k++) {
bool isValid = true;
for(int i=0;i<7;i++) { // if two letters match, solution is not valid
for(int j=i+1;j<8;j++) {
if(solutions[k][i]==solutions[k][j]) {
isValid = false;
break;
}
}
if(!isValid) break;
}
if(isValid) { // store solution
for(int i=0;i<8;i++) {
solutions[nrSol][i] = solutions[k][i];
}
nrSol++;
}
}
return nrSol;
}
You can try the code yourself if you are still interested in this :P. The result is one single solution: ONE: 236, TWO: 472, SEVEN: 56963, NINE: 3136
This solution is the same as Stochastically's solutions, confirming the correctness of both algorithms i think :).
Thanks for providing this nice cryptarithm and have a nice day!
Brute force FTW!
#define ONE ((o*100) + (n*10) + e)
#define TWO ((t*100) + (w*10) + o)
#define SEVEN ((s*10000) + (e*1010) + (v*100) + n)
#define NINE ((n*1010) + (i*100) + e)
for (o = 1; o < 10; o++) { /* 1st digit cannot be zero (one) */
for (n = 1; n < 10; n++) { /* 1st digit cannot be zero (nine) */
if (n == o) continue;
for (e = 0; n < 10; n++) {
if (e == n) continue;
if (e == o) continue;
/* ... */
if (ONE + ONE == TWO) /* whatever */;
/* ... */
}
}
}

Resources