Let's suppose that I have an array M of n*m elements, so if I want to print its elements I can do something like:
for i=1 to m
for j=1 to n
print m[i,j]
next j
next i
I know that the print instruction is done in constant time, so in this case I would have an algorithm complexity of:
\sum_{i=1}^{m}\sum_{j=1}^{n}c=m.n.c
so I suppose is in the order of O(n)
But what happens if the array has the same number of rows and columns, I suppose the complexity is:
\sum_{i=1}^{n}\sum_{j=1}^{n}c=n.n.c
so it is of order O(n^{2})
are my assumptions correct?
I'm assuming that m and n are variables and not constants. In that case, the runtime of the algorithm should be O(mn), not O(n), since the runtime is directly proportional to the number of elements in the array. You derived this with a summation, but it might be easier to see by just looking at how much work is done per array element. Given this, you're correct that if m = n, the runtime is quadratic on n.
Hope this helps!
Related
i was wondering what would be the time complexity of this piece of code?
last = 0
ans = 0
array = [1,2,3,3,3,4,5,6]
for number in array:
if number != last then: ans++;
last = number
return ans
im thinking O(n^2) as we look at all the array elements twice, once in executing the for loop and then another time when comparing the two subsequent values, but I am not sure if my guess is correct.
While processing each array element, you just make one comparison, based on which you update ans and last. The complexity of the algorithm stands at O(n), and not O(n^2).
The answer is actually O(1) for this case, and I will explain why after explaining why a similar algorithm would be O(n) and not O(n^2).
Take a look at the following example:
def do_something(array):
for number in array:
if number != last then: ans++;
last = number
return ans
We go through each item in the array once, and do two operations with it.
The rule for time complexity is you take the largest component and remove a factor.
if we actually wanted to calculate the exact number of operaitons, you might try something like:
for number in array:
if number != last then: ans++; # n times
last = number # n times
return ans # 1 time
# total number of instructions = 2 * n + 1
Now, Python is a high level language so some of these operations are actually multiple operations put together, so that instruction count is not accurate. Instead, when discussing complexity we just take the largest contributing term (2 * n) and remove the coefficient to get (n). big-O is used when discussing worst case, so we call this O(n).
I think your confused because the algorithm you provided looks at two numbers at a time. the distinction you need to understand is that your code only "looks at 2 numbers at a time, once for each item in the array". It does not look at every possible pair of numbers in the array. Even if your code looked at half of the number of possible pairs, this would still be O(n^2) because the 1/2 term would be excluded.
Consider this code that does, here is an example of an O(n^2) algorithm.
for n1 in array:
for n2 in array:
print(n1 + n2)
In this example, we are looking at each pair of numbers. How many pairs are there? There are n^2 pairs of numbers. Contrast this with your question, we look at each number individually, and compare with last. How many pairs of number and last are there? At worst, 2 * n, which we call O(n).
I hope this clears up why this would be O(n) and not O(n^2). However, as I said at the beginning of my answer this is actually O(1). This is because the length of the array is specifically 8, and not some arbitrary length n. Every time you execute this code it will take the same amount of time, it doesn't vary with anything and so there is no n. n in my example was the length of the array, but there is no such length term provided in your example.
In this answer,it said that:
An algorithm is said to run in linear time if its time execution is directly proportional to the input size, i.e. time grows linearly as input size increases.
I have input a 3x3 array.So I need to input 9 numbers.It need 9 times to iterate.
I have input a 4x4 array.So I need to input 16 numbers.It need 16 times to iterate.
........
The execution of iteration is directly proportional to the amount of numbers(or the size).
So I think the time complexity should be O(n).
But another answer said that:
O(n^c): Time complexity of nested loops is equal to the number of times the innermost statement is executed. For example the following sample loops have O(n^2) time complexity
for (int i = 1; i <=n; i += c) {
for (int j = 1; j <=n; j += c) {
// some O(1) expressions
}
}
I feel a little confused.
So I think the question can also be:
What is the mean of n in array?(Does it means the size of the array or the dimension of the array?)What's the time complexity of use for loop to iterate 2D array.
Is it O(n) or O(n^2)?
If the time complexity is O(n^2) due to it have two for loops.
I use this to create a 3x3 array:
a[0,1,2] -> b[0,1,2] -> c[0,1,2]
So I use it to iterate this arrays.It will be O(n),So it will faster than using for loop to iterate the arrays.Why?
PS:I use Google translation to see those answer,so maybe I misunderstand it.
What is the mean of n in array? (Does it means the size of the array or the dimension of the array?)What's the time complexity of use for loop to iterate 2D array. Is it O(n) or O(n^2)?
You are exactly correct. This is a matter of convention. It is important what n denotes in a particular problem.
In case our array is arr[n][n], iteration takes O(n^2) time. In case our array is arr[k][k] and n=k*k is the size of the array, iteration takes O(n) time. There is no contradiction here since we defined n differently in those cases.
Generally, if you only access an array element once, it is said that you have a linear complexity. No matter how you express this with the O notation.
The complexity for the nested for loop is indeed n^2 and not n. n in array there is the size.
Maybe something to think about to help you: Consider if we needed to iterate over two different arrays in a similar manner and the arrays have different sizes of m and n, e.g.
for (int i = 1; i <=n; i += c) {
for (int j = 1; j <=m; j += c) {
// some O(1) expressions
}
}
This would be O(m*n). The case you're asking about is a specialization of this.
For a 4x4 2D array manipulation if your input was only 4 it would be of exponential complexity. If you're input was all 16 numbers then it's linear. It all comes down to what you're passing in.
In your example if n is your input size then the fact you have a nested iteration makes it O(n^2).
First of all for the question to be answered is "what is n ?".
If you have input a 3x3 array.So you need to input 9 numbers.It need 9 times to iterate.
If you have input a 4x4 array.So you need to input 16 numbers.It need 16 times to iterate
Now if n = 3 & 4 for above two cases respectively then time to iterate is proportional to n square. If n = 9 & 16 for the above cases respectively then it is proportional to n.
Now coming to nested loops.
For an array of size [ROW][COL]
for (int r= 0; r < ROW; r++){ //outer loop
for(int c= 0; c<COL; c++){ // inner loop
//process array[r][c]
}
}
For each iteration of outer loop , we have COL iterations of inner loop. Outer loop iterates for ROW number of times , hence time complexity is of the order ROW multiplied by COL.
Hope this helps.
I have an algorithm for Sequential search of an unsorted array:
SequentialSearch(A[0..n-1],K)
i=0
while i < n and A[i] != K do
i = i+1
if i < n then return i
else return -1
Where we have an input array A[0...n-1] and a search key K
I know that the worst case is n, because we would have to search the entire array, hence n items O(n)
I know that the best case is 1, since that would mean the first item we search is the one we want, or the array has all the same items, either way it's O(1)
But I have no idea on how to calculate the average case. The answer my textbook gives is:
= (p/n)[1+2+...+i+...+n] + n(1-p)
is there a general formula I can follow for when I see an algorithm like this one, to calculate it?
PICTURE BELOW
Textbook example
= (p/n)[1+2+...+i+...+n] + n(1-p)
p here is the probability of an search key found in the array, since we have n elements, we have p/n as the probability of finding the key at the particular index within n . We essentially doing weighted average as in each iteration, we weigh in 1 comparison, 2 comparison, and until n comparison. Because we have to take all inputs into account, the second part n(1-p) tells us the probability of input that doesn't exist in the array 1-p. and it takes n as we search through the entire array.
You'd need to consider the input cases, something like equivalence classes of input, which depends on the context of the algorithm. If none of those things are known, then assuming that the input is an array of random integers, the average case would probably be O(n). This is because, roughly, you have no way of proving to a useful extent how often your query will be found in an array of N integer values in the range of ~-32k to ~32k.
More formally, let X be a discrete random variable denoting the number of elements of the array A that are needed to be scanned. There are n elements and since all positions are equally likely for inputs generated randomly, X ~ Uniform(1,n) where X = 1,..,n, given that search key is found in the array (with probability p), otherwise all the elements need to be scanned, with X=n (with probability 1-p).
Hence, P(X=x)=(1/n).p.I{x<n}+((1/n).p+(1-p)).I{x=n} for x = 1,..,n, where I{x=n} is the indicator function and will have value 1 iff x=n otherwise 0.
Average time complexity of the algorithm is the expected time taken to execute the algorithm when the input is an arbitrary sequence. By definition,
The following figure shows how time taken for searching the array changes with n and p.
Let an algorithm which get unsorted array with the size of n. Let a number k<=n. The algorithm prints the k-smallest numbers from 1 to k (ascending). What is the lower bound for the algorithm (for every k)?
Omega(n)
Omega(k*logn)
Omega(n*logk)
Omega(n*logn)
#1,#2 Are both correct.
Now, from my understanding, if we want to find a lower-bound to an algorithm we need to look at the worst-case. If that the case, then obviously the worst-case is when k=n. We know that sorting an array is bounded by Omega(nlogn) so the right answer is #4.
Unfortunately, I am wrong and the right answer is #5.
Why?
It can be done in O(n + klogk).
Run selection algorithm to find the k smallest element - O(n)
Iterate and return the elements lower/equals k - O(n)
Another iteration might be needed in case of the array allows
duplicates, but it is still done in O(n)
Lastly, you need to sort these elements in O(klogk)
It is easy to see this solution is optimal - cannot get better than O(klogk) factor because otherwise for assigning k=n you could sort any array better, and a linear scan at least is a must to find the required elements to be printed.
Lets try with Linear time:
In order to find the k'th smallest element, we have to use "Randomized-Select" which has the average running time of O(n). And use that element as pivot for the quick sort.
Use Quick sort method to split the array[i] <= k and array[i]>k. This would take O(n) time
Take the unsorted left array[i]<=k (which has k elements) and do counting sort, which will obviously take O(k+K)
Finally the print operation will take O(k)
Total time = O(n)+O(k+K)+O(k) = O(n+k+K)
Here, k is the number of elements which are smaller or equal to K
I know this can be done by sorting the array and taking the larger numbers until the required condition is met. That would take at least nlog(n) sorting time.
Is there any improvement over nlog(n).
We can assume all numbers are positive.
Here is an algorithm that is O(n + size(smallest subset) * log(n)). If the smallest subset is much smaller than the array, this will be O(n).
Read http://en.wikipedia.org/wiki/Heap_%28data_structure%29 if my description of the algorithm is unclear (it is light on details, but the details are all there).
Turn the array into a heap arranged such that the biggest element is available in time O(n).
Repeatedly extract the biggest element from the heap until their sum is large enough. This takes O(size(smallest subset) * log(n)).
This is almost certainly the answer they were hoping for, though not getting it shouldn't be a deal breaker.
Edit: Here is another variant that is often faster, but can be slower.
Walk through elements, until the sum of the first few exceeds S. Store current_sum.
Copy those elements into an array.
Heapify that array such that the minimum is easy to find, remember the minimum.
For each remaining element in the main array:
if min(in our heap) < element:
insert element into heap
increase current_sum by element
while S + min(in our heap) < current_sum:
current_sum -= min(in our heap)
remove min from heap
If we get to reject most of the array without manipulating our heap, this can be up to twice as fast as the previous solution. But it is also possible to be slower, such as when the last element in the array happens to be bigger than S.
Assuming the numbers are integers, you can improve upon the usual n lg(n) complexity of sorting because in this case we have the extra information that the values are between 0 and S (for our purposes, integers larger than S are the same as S).
Because the range of values is finite, you can use a non-comparative sorting algorithm such as Pigeonhole Sort or Radix Sort to go below n lg(n).
Note that these methods are dependent on some function of S, so if S gets large enough (and n stays small enough) you may be better off reverting to a comparative sort.
Here is an O(n) expected time solution to the problem. It's somewhat like Moron's idea but we don't throw out the work that our selection algorithm did in each step, and we start trying from an item potentially in the middle rather than using the repeated doubling approach.
Alternatively, It's really just quickselect with a little additional book keeping for the remaining sum.
First, it's clear that if you had the elements in sorted order, you could just pick the largest items first until you exceed the desired sum. Our solution is going to be like that, except we'll try as hard as we can to not to discover ordering information, because sorting is slow.
You want to be able to determine if a given value is the cut off. If we include that value and everything greater than it, we meet or exceed S, but when we remove it, then we are below S, then we are golden.
Here is the psuedo code, I didn't test it for edge cases, but this gets the idea across.
def Solve(arr, s):
# We could get rid of worse case O(n^2) behavior that basically never happens
# by selecting the median here deterministically, but in practice, the constant
# factor on the algorithm will be much worse.
p = random_element(arr)
left_arr, right_arr = partition(arr, p)
# assume p is in neither left_arr nor right_arr
right_sum = sum(right_arr)
if right_sum + p >= s:
if right_sum < s:
# solved it, p forms the cut off
return len(right_arr) + 1
# took too much, at least we eliminated left_arr and p
return Solve(right_arr, s)
else:
# didn't take enough yet, include all elements from and eliminate right_arr and p
return len(right_arr) + 1 + Solve(left_arr, s - right_sum - p)
One improvement (asymptotically) over Theta(nlogn) you can do is to get an O(n log K) time algorithm, where K is the required minimum number of elements.
Thus if K is constant, or say log n, this is better (asymptotically) than sorting. Of course if K is n^epsilon, then this is not better than Theta(n logn).
The way to do this is to use selection algorithms, which can tell you the ith largest element in O(n) time.
Now do a binary search for K, starting with i=1 (the largest) and doubling i etc at each turn.
You find the ith largest, and find the sum of the i largest elements and check if it is greater than S or not.
This way, you would run O(log K) runs of the selection algorithm (which is O(n)) for a total running time of O(n log K).
eliminate numbers < S, if you find some number ==S, then solved
pigeon-hole sort the numbers < S
Sum elements highest to lowest in the sorted order till you exceed S.