Adaptive Radix Tree - database

Since 1 week, I have found one interrested topic called :
Adaptive Radix Tree,
I found it is very useful techniques used to index memory specially in modern hardware architectures .
Actually I could not understand one point in page 4 , called Node48.
I have attached a picture of what I mean.
http://s30.postimg.org/nff1am2r5/xadaptive_radix.png
also this is the main page of the article : http://www-db.in.tum.de/~leis/papers/ART.pdf
So could anybody who is more smart than me to explain that for me, I would be very happy.
Thanks.

I believe that you understand how NODE_4 and NODE_16 works.
In NODE_4 and NODE_16, they put 4 to 16 8-bit keys in the first part of a node. The cost of searching a key are 32 bits and 128 bits that can fit into a regular register and a SIMD register.
However, if we use same way in NODE_48, the cost of searching is read 384 bits that cannot even fit into 256-bit SIMD register. So, Viktor Leis et al. use a child index instead of keys in the first part of NODE_48. The child index contains 256 8-bit offsets that represent the position of a pointer. Eg. If you want to search 103 (it could be 0 to 255) in a NODE_48, the program would:
jump to the 103rd slot in the child index (start from 0th)
read the value from 103rd slot and assume it is 5
jump to the 5th slot in the child pointer
read the pointer value from 5th slot and go to the next node
It does 2 offset calculations instead of 48 (SIMD) selections.
Addition:
For Accessing the 103th element in NODE_4 (or NODE_16):
read the "key" part of the NODE in which there are 4 keys (or 16 in NODE_16) which present the key of the child pointers.
execute a SIMD instruction to compare 103 with all 4 keys.
if one of the keys (let say 3rd key) is 103, follow the 3rd child pointer
if none of the keys is 103, return not found.

Related

Is there a space efficent way to store and retrieve the order of a dataset?

Here's my problem. I have a set of 20 objects stored in memory as an array. I want to store a second piece of data that defines an order for the objects to be displayed.
The simplest way to store the order is as an array of 20 unsigned integers, each of which is 5 bits (aka 0-31). The position of the object in the output list would be defined by the number stored in this array at the same index as the object in it's array.
But.. I know from statistics that there are only 20! (that's 20 factorial), ways to arrange these objects.
This could be stored in 62 bits, since 2^62 > 20!
I'm currently using 100 bits to store the same information.
So my question is this: Is there a space efficient way to store ORDER as a sequence of bits?
I have some addition constraints as well. This will run on an embedded device, so I can't use any huge arrays or high level math functions. I would need a simple iterative method.
Edit: Some clarification on why this is necessary. Say for example the objects are pictures, and they're stored in ROM (aka they can't be moved around). Now lets say I want to keep track of what order to display the images in, and i'm going to update that order every second. My device has 1k of storage with wear leveling, but each bit in the storage can only be written 1000 times before it becomes unreliable. If I need 1kb to store the order, than my device will only work for 1000 seconds. If I need 0.1kb, it will work for 10k seconds, and so on. Thus the devices longevity will be inversely proportional to the number of bits I need to update every cycle.
You can store the order in a single 64-bit value x:
For the first choice, 20 possibilities, compute the index as x % 20 and update x as x /= 20,
For the next choice, only 19 possibilities, compute x % 19 and update x as x /= 19.
Continue this process 17 more times and you are done.
I think I've found a partial solution to my own question. Assuming I start at the left side of the order array, for every move right there are fewer remaining possibilities for the position value. The number of possibilities is 20,19,18,etc. I can take advantage of this by populating the order array in a relative fashion. The first index will place a value in the order array. There are 20 possibilities so this takes 5 bits. Placing the next value, there are only 19 position available (still 5 bits). Proceeding though the whole array. The bits-required is now 5,5,5,5,4,4,4,4,4,4,4,4,3,3,3,3,2,2,1,0. So that gets me down to 69 bits, much better.
There's still some "wasted" precision in each of the values, since for example the first position can store 32 possible values, even though there are only 20. I'm not sure how to deal with this, but I think will have something to do with carrying a remainder from one calculation to the next..

Compressing a sparse bit array

I have arrays of 1024 bytes (8192 bits) which are mostly zero.
Between 0.01% and 10% of bits will be set (random, no pattern).
How could these be compressed, given the lack of structure and the relatively small size?
(My first thought was to store the distances between set bits. I need 13 bits for each distance, but at worst case 10% occupancy this needs 13 * 816 / 8 = 1326 bytes, which is not an improvement.)
This is for ultra-low bandwidth comms, so every byte matters.
I've dealt deeply with a similar problem, but my sets are much bigger (30 million possible values with between 1 and 30 million elements in each set), so they both gain much more from compression and the compression metadata is insignificant compared to the size of the data. I have never gone down to squeezing things into units smaller than uint16_t, so the things I write below might not apply if you start chopping up 13 bit values into pieces. It feels like it should work, but caveat emptor.
What I've found works is to employ several strategies that depend on the particular data we have. The good news is that the count of elements in each set is a very good indicator of which compression strategy will work best for a particular set. So all the metadata you need is a count of elements in the set. In my data format the first and only metadata value (I'll be unspecific and just call it "value", you can squeeze things in bytes, 16 bit values or 13 bit values however you feel) is the count of elements in the set, the rest is just the encoding of the set elements.
The strategies are:
If very few elements are in the set, you can't do better than an array that says "1, 4711, 8140", so in this case the data is encoded as: [3, 1, 4711, 8140]
If almost all elements are in the set, you can just keep track of elements that aren't. For example [8190, 17, 42].
If around half of the elements are in the set you pretty much can't do much better than a bitmap, so you get [4000, {bitmap}], this is the only case where your data ends up being longer than strictly uncompressed.
If more than "a few" but many fewer than "around half" elements are set, I found another strategy. Divide the bits of your possible values in the set in half. Let's say we have 2^16 (it's easier to describe, it should probably work for 2^13) possible values. The values are divided into 256 ranges with each range with 256 possible values. We then have an array with 256 bytes, each of these bytes describes how many values are in each range (so byte 0 tells us how many elements are [0,255], byte 1 gives us [256,511], etc.) immediately after follow arrays with the values in each range mod 256. The trick here is that while every element in the set encoded as an array (strategy 1) would be 2 bytes, in this scheme each element is only 1 bytes + 256 static bytes for the counts of elements. This means that as soon as we have more than 256 elements in the set this saves us space by switching from strategy 1 to 4.
Strategy 4 can be refined (probably meaningless if your data is random as you mention, but my data had more patterns sometimes, so it worked for me). Since we still need 8 bits for each element in the previous encoding, as soon as a sub-array of elements goes over 32 elements (256 bytes), we can store it as a bitmap instead. This is also a good breakpoint for switching strategies between 4/5 to 3. If all the arrays in this strategy are just bitmaps, then we should just use strategy 3 (it's more complicated than that, but the breakpoint between strategies can be precomputed quite accurately that you'll end up picking the most likely efficient strategy each time).
I have only vaguely tried saving deltas between numbers in the set. Quick experiments showed that they weren't really much more efficient than the strategies I mentioned above, had unpredictable degenerate cases, but most importantly, the application I work with really likes to not have to deserialise its data, just use it raw straight from disk (mmap).

Generate unique identifier for chess board

I'm looking for something like a checksum for a chess board with pieces in specific places. I'm looking to see if a dynamic programming or memoized solution is viable for an AI chess player. The unique identifier would be used to easily check if two boards are equal or to use as indices in the arrays. Thanks for the help.
An extensively used checksum for board positions is the Zobrist signature.
It's an almost unique index number for any chess position, with the requirement that two similar positions generate entirely different indices. These index numbers are used for faster and space efficient transposition tables / opening books.
You need a set of randomly generated bitstrings:
one for each piece at each square;
one to indicate the side to move;
four for castling rights;
eight for the file of a valid en-passant square (if any).
If you want to get the Zobrist hash code of a certain position, you have to xor all random numbers linked to the given feature (details: here and Correctly Implementing Zobrist Hashing).
E.g the starting position:
[Hash for White Rook on a1] xor [White Knight on b1] xor ... ( all pieces )
... xor [White castling long] xor ... ( all castling rights )
XOR allows a fast incremental update of the hash key during make / unmake of moves.
Usually 64bit are used as a standard size in modern chess programs (see The Effect of Hash Signature Collisions in a Chess Program).
You can expect to encounter a collision in a 32 bit hash when you have evaluated √ 232 == 216. With a 64 bit hash, you can expect a collision after about 232 or 4 billion positions (birthday paradox).
If you're looking for a checksum, the usual solution is Zobrist Hashing.
If you're looking for a true unique-identifier, the usual human-readable solution is Forsyth notation.
For a non-human-readable unique-identifier, you can store the type/color of the piece on each square using four-bits. Throw in another 3-bits for en-passant square, 4-bits for which castlings are still allowed, and one-bit for whose turn it is, and you end up with exactly 33 bytes for each board-setup.
You can use a checksum like md5, sha, just pass your chessboard cells as text, like:
TKBQKBHT
........
........
........
tkbqkbht
And get the checksum for generated text.
The checksum between one to other board will be different without any related value, at this point may be create a unique string (or array of bits) is the best way:
TKBQKBHT........................tkbqkbht
Because it will be unique too and is easily compare with others.
If two games achieve the same configuration through different moves or move orders, they should still be "equal". e.g. You shouldn't have to distinguish between which pawn is in a particular location, as long as the location is the same. You don't seem to really want to hash, but to uniquely and correctly distinguish between these board states.
One method is to use a 64x12 square-by-piecetype membership matrix. You can store this as a bit vector and then compare vectors for the check. e.g. the first 64 addresses in the vector might show which locations on the board contain pawns. The next 64 show locations which contain knights. You could let the first 6 sections show membership of white pieces and the final 6 show membership of black pieces.
Binary membership matrix pseudocode:
bool[] memberships = zeros(64*12);
move(pawn,a3,a2);
def move(piece,location,oldlocation):
memberships(pawn,location) = 1;
memberships(pawn,oldlocation) = 0;
This is cumbersome because you have to be careful how you implement it. e.g. make sure there is only one king maximum for each player. The advantage is that it only takes 768 bits to store a state.
Another way is a length-64 integer vector representing vectorized addresses for the board locations. In this case, the first 8 addresses might represent the state of the first row of the board.
Non-binary membership matrix pseudocode:
half[] memberships = zeros(64);
memberships[8] = 1; // white pawn at location a2
memberships[0] = 2; // white rook at location a1
...
memberships[63] = 11; // black knight at location g8
memberships[64] = 12; // black rook at location h8
The nice thing about the non-binary vector is you don't have as much freedom to accidently assign multiple pieces to one location. The downside is that it is now larger to store each state. Larger representations will be slower to do equality comparisons on. (in my example, assume each vector location stores a 16-bit half-word, we get 64*16=1014 bits to store one state compared to the 768 bits for the binary vector)
Either way, you'd probably want to enumerate each piece and board location.
enumerate piece {
empty = 0;
white_pawn = 1;
white_rook = 2;
...
black_knight = 11;
black_rook = 12;
}
enumerate location {
a1 = 0;
...
}
And testing for equality is just comparing two vectors together.
There are 64 squares. There are twelve different figures in chess that can occupy a square plus the possibility of no figure occupying it. Makes 13. You need 4 bits to represent those 13 (2^4 = 16). So you end up with 32 bytes to unambiguously store a chess board.
If you want to ease handling you can store 64 bytes instead, one byte per square, as bytes are easier to read and write.
EDIT: I've read some more on chess and have come to the following conclusion: Two boards are only the same, if all previous boards since last capture or pawn move are also the same. This is because of the threefold repetition rule. If for the third time the board looks exactly the same in a game, a draw can be claimed. So in spite of seeing the same board in two matches, it may be considered unfortunate in one match to make a certain move, so as to avoid a draw, whereas in the other match there is no such danger.
It is up to you, how you want to go about it. You would need a unique identifyer of variable length due to the variable number of previous boards to store. Well, maybe you take it easy, turn a blind eye to this and just store the last five moves to detect directly repetetive moves that could lead to a third repetion of positions, this being the most often occuring reason.
If you want to store moves with the board: There are 64x63=4032 thinkable moves (12 bits necessary), but many of them illegal of course. If I count correctly there are 1728 legal moves (A1->A2 = legal, A1->D2 illegal for instance), which would fit in 11 bits. I would still go for the 12 bits, however, as to make interpretion as easy as possible by storing 0/1 for A1->A2 and 62/63 for H7->H8.
Then there is the 50 moves rule. You don't have to store moves here. Only the number of moves since last capture or pawn move from 0 to 50 (that's enough; it doesn't matter whether it's 50, 51 or more). So another six bits for this.
At last: Black's or white's move? Enpassantable pawn? Castlingable rook? Some additional bits for this (or extension of the 13 occupancies to save some bits).
EDIT again: So if you want to use the board to compare with other matches, then "two boards are only the same, if all previous boards since last capture or pawn move are also the same" applies. If you only want to detect repetion of positions in the same game, however, then you should be fine by just using the 15 occupancies x 64 squares plus one bit for who's move it is.

fast poker hand ranking

I am working on a simulation of poker and now I have to rank hands effectively:
Every hand is a combination of 5 cards and is represented as an uint64_t.
Every bit from 0 (Ace of Spades), 1 (Ace of Hearts) to 51 (Two of Clubs) indicates if the corresponding card is part (bit == 1) or isn't part (bit == 0) of the hand. The bits from 52 to 63 are always set to zero and don't hold any information.
I already know how I theoretically could generate a table, so that every valid hand can be mapped to rang (represented as uint16_t) between 1 (2,3,4,5,7 - not in the same color) and 7462 (Royal Flush) and all the others to the rang zero.
So a naive lookup table (with the integer value of the card as index) would have an enormous size of
2 bytes * 2^52 >= 9.007 PB.
Most of this memory would be filled with zeros, because almost all uint64_t's from 0 to 2^52-1 are invalid hands and therefor have a rang equal to zero.
The valuable data occupies only
2 bytes * 52!/(47!*5!) = 5.198 MB.
What method can I use for the mapping so that I only have to save the ranks from the valid cards and some overhead (max. 100 MB's) and still don't have to do some expensive search...
It should be as fast as possible!
If you have any other ideas, you're welcome! ;)
You need only a table of 13^5*2, with the extra level of information dictating if all the cards are of the same suit. If for some reason 'heart' outranks 'diamond', you need still at most a table with size of 13^6, as the last piece of information encodes as '0 = no pattern, 1 = all spades, 2 = all hearts, etc.'.
A hash table is probably also a good and fast approach -- Creating a table from nCk(52,5) combinations doesn't take much time (compared to all possible hands). One would, however, need to store 65 bits of information for each entry to store both the key (52 bits) and the rank (13 bits).
Speeding out evaluation of the hand, one first rules out illegal combinations from the mask:
if (popcount(mask) != 5); afterwards once can use enough bits from e.g. crc32(mask), which has instruction level support in i7-architecture at least.
If I understand your scheme correctly, you only need to know that the hamming weight of a particular hand is exactly 5 for it to be a valid hand. See Calculating Hamming Weight in O(1) for information on how to calculate the hamming weight.
From there, it seems you could probably work out the rest on your own. Personally, I'd want to store the result in some persistent memory (if it's available on your platform of choice) so that subsequent runs are quicker since they don't need to generate the index table.
This is a good source
Cactus Kev's
For a hand you can take advantage of at most 4 of any suit
4 bits for the rank (0-12) and 2 bits for the suit
6 bits * 5 cards is just 30 bit
Call it 4 bytes
There are only 2598960 hands
Total size a little under 10 mb
A simple implementation that comes to mind would be to change your scheme to a 5-digit number in base 52. The resulting table to hold all of these values would still be larger than necessary, but very simple to implement and it would easily fit into RAM on modern computers.
edit: You could also cut down even more by only storing the rank of each card and an additional flag (e.g., lowest bit) to specify if all cards are of the same suit (i.e., flush is possible). This would then be in base 13 + one bit for the ranking representation. You would presumably then need to store the specific suits of the cards separately to reconstruct the exact hand for display and such.
I would represent your hand in a different way:
There are only 4 suits = 2bits and only 13 cards = 4 bits for a total of 6 bits * 5 = 30 - so we fit into a 32bit int - we can also force this to always be sorted as per your ordering
[suit 0][suit 1][suit 2][suit 3][suit 4][value 0][value 1][value 2][value 3][value 4]
Then I would use a separate hash for:
consectutive values (very small) [mask off the suits]
1 or more multiples (pair, 2 pair, full house) [mask off the suits]
suits that are all the same (very small) [mask off the values]
Then use the 3 hashes to calculate your rankings
At 5MB you will likely have enough caching issues that will make a bit of math and three small lookups faster

hash function for src dest ip + port

So, I am looking at different hash functions to use for hashing a 4 tuple ip and port to identify flows.
One I came across was
((size_t)(key.src.s_addr) * 59) ^
((size_t)(key.dst.s_addr)) ^
((size_t)(key.sport) << 16) ^
((size_t)(key.dport)) ^
((size_t)(key.proto));
Now for the life of me, I cannot explain the prime used (59). why not 31, and then why go mess it up by multiplying the sport by a power of 2.
Is there a better hash function to be used for ip addresses ?
The prime number is used because when one value is multiplied by a prime number it tends to have a higher probability of remaining unique when other similar operations are accumulated on top of it. The specific value 59 may have been choosen arbitrarily or it may be intentional. It is hard to tell. It is possible that 59 tended to generate a better distribution of values based on the most likely inputs.
The shift by 16 may be because ports are limited to the range 2^16. The function appears to be moving the source port into the higher part of the bitfield while leaving the destination port in the lower part. I think this can be explained further in my next paragraph.
Another reason why the multiplication takes place (and this is true of the shift operation as well) is because it breaks down the associative nature of the hash function. Remember, XOR is associative so the IPs src=192.168.1.1 and dst=192.168.1.254 would hash to the same value as src=192.168.1.254 and dst=192.168.1.1 (swapped) if the multiplication were not there.
Personally I think you'd be better off reading the four IP bytes as an unsigned long which would give you a number roughly in the range 0 - 2^32-1. Then you figure out how many flows you want to have active at any one time and that would be your index table size.
Take 2000 for example. That means you want to map 2^32 numbers onto roughly 2^11 indeces (to flow information). That won't work because hashing almost never works if filled to 100% and even 90% can be difficult. Using a index table that you only fill to 50% (4000 indeces) or even 25% (8000) is no big deal with todays memories.
The exact size of the index table should be an uneven number of locations and preferably a prime number. This is because you'll most likely need to have some overflow handling to handle collisions (two or more ip numbers which after the hashing point to the same location in the index table) - which you'll get. The overflow handling should be another prime number less than the index table size. All these prime numbers! What's with them anyway?
I'll illustrate with an example (in C):
idxsiz = prime(2000 * 2); // 50% loading
ovfjmp = prime(idxsiz/3);
...
initially fill the table of idxjmp positions with an UNUSED marking (-1). Have a DELETED marking ready (-2).
Your ip number enters the system and you look for its flow record (may or may not exist):
stoppos = ip % idxsiz; /* modulo (division) just this once */
i = stoppos;
do
{
if (index[i] == UNUSED) return NULL;
if (index[i] != DELETED)
{
flowrecptr = &flow_record[index[i]];
if (!flowrecptr->in_use) {/* hash table is broken */}
if (flowrecptr->ip == ip) return flowrecptr;
}
i += ovfjmp;
if (i >= idxsiz) i -= idxsiz;
}
while (i != stoppos);
return NULL;
The UNUSED serves as a marker that this index has never been used and that searching should stop. The DELETED serves as a marker that this index has been used but no longer. That means that searching must continue.
This was when you were attempting to do a get. You got a NULL back from get so you need to do a put which you begin by finding the first index position containing UNUSED or DELETED. Replace this value with an index to the first/next free row on the flow_record table. Mark the row as in_use. Put the original ip number into the ip member of the flow_record row.
This is a very simple - but very effective - way to construct a hashing mechanism. Practically every optimization in the form of special functions to be used after this or that function has failed will enhance the effectiveness of the hashing.
The use of prime numbers will ensure that - in the worst case where all index locations are occupied - the mechanism will test every single location. To illustrate this: suppose idxsiz is evenly divisible by ovfjmp: you won't have much overflow handling to speak of. 35 and 7 will result in locations 0,7,14,21 and 28 being tested before the index jumps to 0 where the while test will cause the search to stop.
----------------------OOPS!
I missed that you wanted the port number as well. Assuming ip V4 that means 6 bytes of address. Read this as an unsigned 64-bit integer and clear the top 16 bits/2 bytes. Then you do the modulo calculation.
Examine the output of the function for uniform distribution. If you don't like it, plug in some different primes until you get a distribution you like. Hashing can be a very dark art with no 'right' answer.
Brian Gideon pretty much sums it up; the multiplication and the shift are intended as a symmetry breaker. So this catches the hypothetical case of machine A telnetting to machine B and vice versa and they happen to chose the same ephemeral portnum. Not very common, but not impossible. Much of the 5-tuple is pretty constant: protocol comes from a very small domain, and so does one half of {address,portnum}.
Assuming a prime-sized hashtable, the magic constant 59 could be replaced by any prime, IMO. The (port << 16) could also be replaced by another shift, as long as no bits fall off or even by a (port * some_other_prime) term.
For a power-of-two sized hashtable, all(minus one) members of the 5-tuple should be multiplied by a (different) prime. (in the old days, when division was expensive that would have been an option)

Resources