Neural Network and Temporal Difference Learning - artificial-intelligence

I have a read few papers and lectures on temporal difference learning (some as they pertain to neural nets, such as the Sutton tutorial on TD-Gammon) but I am having a difficult time understanding the equations, which leads me to my questions.
-Where does the prediction value V_t come from? And subsequently, how do we get V_(t+1)?
-What exactly is getting back propagated when TD is used with a neural net? That is, where does the error that gets back propagated come from when using TD?

The backward and forward views can be confusing, but when you are dealing with something simple like a game-playing program, things are actually pretty simple in practice. I'm not looking at the reference you're using, so let me just provide a general overview.
Suppose I have a function approximator like a neural network, and that it has two functions, train and predict for training on a particular output and predicting the outcome of a state. (Or the outcome of taking an action in a given state.)
Suppose I have a trace of play from playing a game, where I used the predict method to tell me what move to make at each point and suppose that I lose at the end of the game (V=0). Suppose my states are s_1, s_2, s_3...s_n.
The monte-carlo approach says that I train my function approximator (e.g. my neural network) on each of the states in the trace using the trace and the final score. So, given this trace, you would do something like call:
train(s_n, 0)
train(s_n-1, 0)
...
train(s_1, 0).
That is, I'm asking every state to predict the final outcome of the trace.
The dynamic programming approach says that I train based on the result of the next state. So my training would be something like
train(s_n, 0)
train(s_n-1, test(s_n))
...
train(s_1, test(s_2)).
That is, I'm asking the function approximator to predict what the next state predicts, where the last state predicts the final outcome from the trace.
TD learning mixes between the two of these, where λ=1 corresponds to the first case (monte carlo) and λ=0 corresponds to the second case (dynamic programming). Suppose that we use λ=0.5. Then our training would be:
train(s_n, 0)
train(s_n-1, 0.5*0 + 0.5*test(s_n))
train(s_n-2, 0.25*0 + 0.25*test(s_n) + 0.5*test(s_n-1)+)
...
Now, what I've written here isn't completely correct, because you don't actually re-test the approximator at each step. Instead you just start with a prediction value (V = 0 in our example) and then you update it for training the next step with the next predicted value. V = λ·V + (1-λ)·test(s_i).
This learns much faster than monte carlo and dynamic programming methods because you aren't asking the algorithm to learn such extreme values. (Ignoring the current prediction or ignoring the final outcome.)

Related

Neural Network Architecture Design

I'm playing around with Neural Networks trying to understand the best practices for designing their architecture based on the kind of problem you need to solve.
I generated a very simple data set composed of a single convex region as you can see below:
Everything works fine when I use an architecture with L = 1, or L = 2 hidden layers (plus the output layer), but as soon as I add a third hidden layer (L = 3) my performance drops down to slightly better than chance.
I know that the more complexity you add to a network (number of weights and parameters to learn) the more you tend to go towards over-fitting your data, but I believe this is not the nature of my problem for two reasons:
my performance on the Training set is also around 60% (whereas over-fitting typically means you have a very low training error and high test error),
and I have a very large amount of data examples (don't look at the figure that's only a toy figure I uplaoded).
Can anybody help me understand why adding an extra hidden layer gives
me this drop in performances on such a simple task?
Here is an image of my performance as a function of the number of layers used:
ADDED PART DUE TO COMMENTS:
I am using a sigmoid functions assuming values between 0 and 1, L(s) = 1 / 1 + exp(-s)
I am using early stopping (after 40000 iterations of backprop) as a criteria to stop the learning. I know it is not the best way to stop but I thought that it would ok for such a simple classification task, if you believe this is the main reason I'm not converging I I might implement some better criteria.
At least on the surface of it, this appears to be a case of the so-called "vanishing gradient" problem.
Activation functions
Your neurons activate according to the logistic sigmoid function, f(x) = 1 / (1 + e^-x) :
This activation function is used frequently because it has several nice properties. One of these nice properties is that the derivative of f(x) is expressible computationally using the value of the function itself, as f'(x) = f(x)(1 - f(x)). This function has a nonzero value for x near zero, but quickly goes to zero as |x| gets large :
Gradient descent
In a feedforward neural network with logistic activations, the error is typically propagated backwards through the network using the first derivative as a learning signal. The usual update for a weight in your network is proportional to the error attributable to that weight times the current weight value times the derivative of the logistic function.
delta_w(w) ~= w * f'(err(w)) * err(w)
As the product of three potentially very small values, the first derivative in such networks can become small very rapidly if the weights in the network fall outside the "middle" regime of the logistic function's derivative. In addition, this rapidly vanishing derivative becomes exacerbated by adding more layers, because the error in a layer gets "split up" and partitioned out to each unit in the layer. This, in turn, further reduces the gradient in layers below that.
In networks with more than, say, two hidden layers, this can become a serious problem for training the network, since the first-order gradient information will lead you to believe that the weights cannot usefully change.
However, there are some solutions that can help ! The ones I can think of involve changing your learning method to use something more sophisticated than first-order gradient descent, generally incorporating some second-order derivative information.
Momentum
The simplest solution to approximate using some second-order information is to include a momentum term in your network parameter updates. Instead of updating parameters using :
w_new = w_old - learning_rate * delta_w(w_old)
incorporate a momentum term :
w_dir_new = mu * w_dir_old - learning_rate * delta_w(w_old)
w_new = w_old + w_dir_new
Intuitively, you want to use information from past derivatives to help determine whether you want to follow the new derivative entirely (which you can do by setting mu = 0), or to keep going in the direction you were heading on the previous update, tempered by the new gradient information (by setting mu > 0).
You can actually get even better than this by using "Nesterov's Accelerated Gradient" :
w_dir_new = mu * w_dir_old - learning_rate * delta_w(w_old + mu * w_dir_old)
w_new = w_old + w_dir_new
I think the idea here is that instead of computing the derivative at the "old" parameter value w, compute it at what would be the "new" setting for w if you went ahead and moved there according to a standard momentum term. Read more in a neural-networks context here (PDF).
Hessian-Free
The textbook way to incorporate second-order gradient information into your neural network training algorithm is to use Newton's Method to compute the first and second order derivatives of your objective function with respect to the parameters. However, the second order derivative, called the Hessian matrix, is often extremely large and prohibitively expensive to compute.
Instead of computing the entire Hessian, some clever research in the past few years has indicated a way to compute just the values of the Hessian in a particular search direction. You can then use this process to identify a better parameter update than just the first-order gradient.
You can learn more about this by reading through a research paper (PDF) or looking at a sample implementation.
Others
There are many other optimization methods that could be useful for this task -- conjugate gradient (PDF -- definitely worth a read), Levenberg-Marquardt (PDF), L-BFGS -- but from what I've seen in the research literature, momentum and Hessian-free methods seem to be the most common ones.
Because the number of iterations of training required for convergence increases as you add complexity to a neural network, holding the length of training constant while adding layers to a neural network will certainly result in you eventually observing a drop like this. To figure out whether that is the explanation for this particular observation, try increasing the number of iterations of training that you're using and see if it improves. Using a more intelligent stopping criterion is also a good option, but a simple increase in the cut-off will give you answers faster.

How to go about creating a prolog program that can work backwards to determine steps needed to reach a goal

I'm not sure what exactly I'm trying to ask. I want to be able to make some code that can easily take an initial and final state and some rules, and determine paths/choices to get there.
So think, for example, in a game like Starcraft. To build a factory I need to have a barracks and a command center already built. So if I have nothing and I want a factory I might say ->Command Center->Barracks->Factory. Each thing takes time and resources, and that should be noted and considered in the path. If I want my factory at 5 minutes there are less options then if I want it at 10.
Also, the engine should be able to calculate available resources and utilize them effectively. Those three buildings might cost 600 total minerals but the engine should plan the Command Center when it would have 200 (or w/e it costs).
This would ultimately have requirements similar to 10 marines # 5 minutes, infantry weapons upgrade at 6:30, 30 marines at 10 minutes, Factory # 11, etc...
So, how do I go about doing something like this? My first thought was to use some procedural language and make all the decisions from the ground up. I could simulate the system and branching and making different choices. Ultimately, some choices are going quickly make it impossible to reach goals later (If I build 20 Supply Depots I'm prob not going to make that factory on time.)
So then I thought weren't functional languages designed for this? I tried to write some prolog but I've been having trouble with stuff like time and distance calculations. And I'm not sure the best way to return the "plan".
I was thinking I could write:
depends_on(factory, barracks)
depends_on(barracks, command_center)
builds_from(marine, barracks)
build_time(command_center, 60)
build_time(barracks, 45)
build_time(factory, 30)
minerals(command_center, 400)
...
build(X) :-
depends_on(X, Y),
build_time(X, T),
minerals(X, M),
...
Here's where I get confused. I'm not sure how to construct this function and a query to get anything even close to what I want. I would have to somehow account for rate at which minerals are gathered during the time spent building and other possible paths with extra gold. If I only want 1 marine in 10 minutes I would want the engine to generate lots of plans because there are lots of ways to end with 1 marine at 10 minutes (maybe cut it off after so many, not sure how you do that in prolog).
I'm looking for advice on how to continue down this path or advice about other options. I haven't been able to find anything more useful than towers of hanoi and ancestry examples for AI so even some good articles explaining how to use prolog to DO REAL THINGS would be amazing. And if I somehow can get these rules set up in a useful way how to I get the "plans" prolog came up with (ways to solve the query) other than writing to stdout like all the towers of hanoi examples do? Or is that the preferred way?
My other question is, my main code is in ruby (and potentially other languages) and the options to communicate with prolog are calling my prolog program from within ruby, accessing a virtual file system from within prolog, or some kind of database structure (unlikely). I'm using SWI-Prolog atm, would I be better off doing this procedurally in Ruby or would constructing this in a functional language like prolog or haskall be worth the extra effort integrating?
I'm sorry if this is unclear, I appreciate any attempt to help, and I'll re-word things that are unclear.
Your question is typical and very common for users of procedural languages who first try Prolog. It is very easy to solve: You need to think in terms of relations between successive states of your world. A state of your world consists for example of the time elapsed, the minerals available, the things you already built etc. Such a state can be easily represented with a Prolog term, and could look for example like time_minerals_buildings(10, 10000, [barracks,factory])). Given such a state, you need to describe what the state's possible successor states look like. For example:
state_successor(State0, State) :-
State0 = time_minerals_buildings(Time0, Minerals0, Buildings0),
Time is Time0 + 1,
can_build_new_building(Buildings0, Building),
building_minerals(Building, MB),
Minerals is Minerals0 - MB,
Minerals >= 0,
State = time_minerals_buildings(Time, Minerals, Building).
I am using the explicit naming convention (State0 -> State) to make clear that we are talking about successive states. You can of course also pull the unifications into the clause head. The example code is purely hypothetical and could look rather different in your final application. In this case, I am describing that the new state's elapsed time is the old state's time + 1, that the new amount of minerals decreases by the amount required to build Building, and that I have a predicate can_build_new_building(Bs, B), which is true when a new building B can be built assuming that the buildings given in Bs are already built. I assume it is a non-deterministic predicate in general, and will yield all possible answers (= new buildings that can be built) on backtracking, and I leave it as an exercise for you to define such a predicate.
Given such a predicate state_successor/2, which relates a state of the world to its direct possible successors, you can easily define a path of states that lead to a desired final state. In its simplest form, it will look similar to the following DCG that describes a list of successive states:
states(State0) -->
( { final_state(State0) } -> []
; [State0],
{ state_successor(State0, State1) },
states(State1)
).
You can then use for example iterative deepening to search for solutions:
?- initial_state(S0), length(Path, _), phrase(states(S0), Path).
Also, you can keep track of states you already considered and avoid re-exploring them etc.
The reason you get confused with the example code you posted is essentially that build/1 does not have enough arguments to describe what you want. You need at least two arguments: One is the current state of the world, and the other is a possible successor to this given state. Given such a relation, everything else you need can be described easily. I hope this answers your question.
Caveat: my Prolog is rusty and shallow, so this may be off base
Perhaps a 'difference engine' approach would be appropriate:
given a goal like 'build factory',
backwards-chaining relations would check for has-barracks and tell you first to build-barracks,
which would check for has-command-center and tell you to build-command-center,
and so on,
accumulating a plan (and costs) along the way
If this is practical, it may be more flexible than a state-based approach... or it may be the same thing wearing a different t-shirt!

Crossover function for genetic

I am writing a Time table generator in java, using AI approaches to satisfy the hard constraints and help find an optimal solution. So far I have implemented and Iterative construction (a most-constrained first heuristic) and Simulated Annealing, and I'm in the process of implementing a genetic algorithm.
Some info on the problem, and how I represent it then :
I have a set of events, rooms , features (that events require and rooms satisfy), students and slots
The problem consists in assigning to each event a slot and a room, such that no student is required to attend two events in one slot, all the rooms assigned fulfill the necessary requirements.
I have a grading function that for each set if assignments grades the soft constraint violations, thus the point is to minimize this.
The way I am implementing the GA is I start with a population generated by the iterative construction (which can leave events unassigned) and then do the normal steps: evaluate, select, cross, mutate and keep the best. Rinse and repeat.
My problem is that my solution appears to improve too little. No matter what I do, the populations tends to a random fitness and is stuck there. Note that this fitness always differ, but nevertheless a lower limit will appear.
I suspect that the problem is in my crossover function, and here is the logic behind it:
Two assignments are randomly chosen to be crossed. Lets call them assignments A and B. For all of B's events do the following procedure (the order B's events are selected is random):
Get the corresponding event in A and compare the assignment. 3 different situations might happen.
If only one of them is unassigned and if it is possible to replicate
the other assignment on the child, this assignment is chosen.
If both of them are assigned, but only one of them creates no
conflicts when assigning to the child, that one is chosen.
If both of them are assigned and none create conflict, on of
them is randomly chosen.
In any other case, the event is left unassigned.
This creates a child with some of the parent's assignments, some of the mother's, so it seems to me it is a valid function. Moreover, it does not break any hard constraints.
As for mutation, I am using the neighboring function of my SA to give me another assignment based on on of the children, and then replacing that child.
So again. With this setup, initial population of 100, the GA runs and always tends to stabilize at some random (high) fitness value. Can someone give me a pointer as to what could I possibly be doing wrong?
Thanks
Edit: Formatting and clear some things
I think GA only makes sense if part of the solution (part of the vector) has a significance as a stand alone part of the solution, so that the crossover function integrates valid parts of a solution between two solution vectors. Much like a certain part of a DNA sequence controls or affects a specific aspect of the individual - eye color is one gene for example. In this problem however the different parts of the solution vector affect each other making the crossover almost meaningless. This results (my guess) in the algorithm converging on a single solution rather quickly with the different crossovers and mutations having only a negative affect on the fitness.
I dont believe GA is the right tool for this problem.
If you could please provide the original problem statement, I will be able to give you a better solution. Here is my answer for the present moment.
A genetic algorithm is not the best tool to satisfy hard constraints. This is an assigment problem that can be solved using integer program, a special case of a linear program.
Linear programs allow users to minimize or maximize some goal modeled by an objective function (grading function). The objective function is defined by the sum of individual decisions (or decision variables) and the value or contribution to the objective function. Linear programs allow for your decision variables to be decimal values, but integer programs force the decision variables to be integer values.
So, what are your decisions? Your decisions are to assign students to slots. And these slots have features which events require and rooms satisfy.
In your case, you want to maximize the number of students that are assigned to a slot.
You also have constraints. In your case, a student may only attend at most one event.
The website below provides a good tutorial on how to model integer programs.
http://people.brunel.ac.uk/~mastjjb/jeb/or/moreip.html
For a java specific implementation, use the link below.
http://javailp.sourceforge.net/
SolverFactory factory = new SolverFactoryLpSolve(); // use lp_solve
factory.setParameter(Solver.VERBOSE, 0);
factory.setParameter(Solver.TIMEOUT, 100); // set timeout to 100 seconds
/**
* Constructing a Problem:
* Maximize: 143x+60y
* Subject to:
* 120x+210y <= 15000
* 110x+30y <= 4000
* x+y <= 75
*
* With x,y being integers
*
*/
Problem problem = new Problem();
Linear linear = new Linear();
linear.add(143, "x");
linear.add(60, "y");
problem.setObjective(linear, OptType.MAX);
linear = new Linear();
linear.add(120, "x");
linear.add(210, "y");
problem.add(linear, "<=", 15000);
linear = new Linear();
linear.add(110, "x");
linear.add(30, "y");
problem.add(linear, "<=", 4000);
linear = new Linear();
linear.add(1, "x");
linear.add(1, "y");
problem.add(linear, "<=", 75);
problem.setVarType("x", Integer.class);
problem.setVarType("y", Integer.class);
Solver solver = factory.get(); // you should use this solver only once for one problem
Result result = solver.solve(problem);
System.out.println(result);
/**
* Extend the problem with x <= 16 and solve it again
*/
problem.setVarUpperBound("x", 16);
solver = factory.get();
result = solver.solve(problem);
System.out.println(result);
// Results in the following output:
// Objective: 6266.0 {y=52, x=22}
// Objective: 5828.0 {y=59, x=16}
I would start by measuring what's going on directly. For example, what fraction of the assignments are falling under your "any other case" catch-all and therefore doing nothing?
Also, while we can't really tell from the information given, it doesn't seem any of your moves can do a "swap", which may be a problem. If a schedule is tightly constrained, then once you find something feasible, it's likely that you won't be able to just move a class from room A to room B, as room B will be in use. You'd need to consider ways of moving a class from A to B along with moving a class from B to A.
You can also sometimes improve things by allowing constraints to be violated. Instead of forbidding crossover from ever violating a constraint, you can allow it, but penalize the fitness in proportion to the "badness" of the violation.
Finally, it's possible that your other operators are the problem as well. If your selection and replacement operators are too aggressive, you can converge very quickly to something that's only slightly better than where you started. Once you converge, it's very difficult for mutations alone to kick you back out into a productive search.
I think there is nothing wrong with GA for this problem, some people just hate Genetic Algorithms no matter what.
Here is what I would check:
First you mention that your GA stabilizes at a random "High" fitness value, but isn't this a good thing? Does "high" fitness correspond to good or bad in your case? It is possible you are favoring "High" fitness in one part of your code and "Low" fitness in another thus causing the seemingly random result.
I think you want to be a bit more careful about the logic behind your crossover operation. Basically there are many situations for all 3 cases where making any of those choices would not cause an increase in fitness at all of the crossed-over individual, but you are still using a "resource" (an assignment that could potentially be used for another class/student/etc.) I realize that a GA traditionally will make assignments via crossover that cause worse behavior, but you are already performing a bit of computation in the crossover phase anyway, why not choose one that actually will improve fitness or maybe don't cross at all?
Optional Comment to Consider : Although your iterative construction approach is quite interesting, this may cause you to have an overly complex Gene representation that could be causing problems with your crossover. Is it possible to model a single individual solution as an array (or 2D array) of bits or integers? Even if the array turns out to be very long, it may be worth it use a more simple crossover procedure. I recommend Googling "ga gene representation time tabling" you may find an approach that you like more and can more easily scale to many individuals (100 is a rather small population size for a GA, but I understand you are still testing, also how many generations?).
One final note, I am not sure what language you are working in but if it is Java and you don't NEED to code the GA by hand I would recommend taking a look at ECJ. Maybe even if you have to code by hand, it could help you develop your representation or breeding pipeline.
Newcomers to GA can make any of a number of standard mistakes:
In general, when doing crossover, make sure that the child has some chance of inheriting that which made the parent or parents winner(s) in the first place. In other words, choose a genome representation where the "gene" fragments of the genome have meaningful mappings to the problem statement. A common mistake is to encode everything as a bitvector and then, in crossover, to split the bitvector at random places, splitting up the good thing the bitvector represented and thereby destroying the thing that made the individual float to the top as a good candidate. A vector of (limited) integers is likely to be a better choice, where integers can be replaced by mutation but not by crossover. Not preserving something (doesn't have to be 100%, but it has to be some aspect) of what made parents winners means you are essentially doing random search, which will perform no better than linear search.
In general, use much less mutation than you might think. Mutation is there mainly to keep some diversity in the population. If your initial population doesn't contain anything with a fractional advantage, then your population is too small for the problem at hand and a high mutation rate will, in general, not help.
In this specific case, your crossover function is too complicated. Do not ever put constraints aimed at keeping all solutions valid into the crossover. Instead the crossover function should be free to generate invalid solutions and it is the job of the goal function to somewhat (not totally) penalize the invalid solutions. If your GA works, then the final answers will not contain any invalid assignments, provided 100% valid assignments are at all possible. Insisting on validity in the crossover prevents valid solutions from taking shortcuts through invalid solutions to other and better valid solutions.
I would recommend anyone who thinks they have written a poorly performing GA to conduct the following test: Run the GA a few times, and note the number of generations it took to reach an acceptable result. Then replace the winner selection step and goal function (whatever you use - tournament, ranking, etc) with a random choice, and run it again. If you still converge roughly at the same speed as with the real evaluator/goal function then you didn't actually have a functioning GA. Many people who say GAs don't work have made some mistake in their code which means the GA converges as slowly as random search which is enough to turn anyone off from the technique.

TD(λ) in Delphi/Pascal (Temporal Difference Learning)

I have an artificial neural network which plays Tic-Tac-Toe - but it is not complete yet.
What I have yet:
the reward array "R[t]" with integer values for every timestep or move "t" (1=player A wins, 0=draw, -1=player B wins)
The input values are correctly propagated through the network.
the formula for adjusting the weights:
What is missing:
the TD learning: I still need a procedure which "backpropagates" the network's errors using the TD(λ) algorithm.
But I don't really understand this algorithm.
My approach so far ...
The trace decay parameter λ should be "0.1" as distal states should not get that much of the reward.
The learning rate is "0.5" in both layers (input and hidden).
It's a case of delayed reward: The reward remains "0" until the game ends. Then the reward becomes "1" for the first player's win, "-1" for the second player's win or "0" in case of a draw.
My questions:
How and when do you calculate the net's error (TD error)?
How can you implement the "backpropagation" of the error?
How are the weights adjusted using TD(λ)?
Thank you so much in advance :)
If you're serious about making this work, then understanding TD-lambda would be very helpful. Sutton and Barto's book, "Reinforcement Learning" is available for free in HTML format and covers this algorithm in detail. Basically, what TD-lambda does is create a mapping between a game state and the expected reward at the game's end. As games are played, states that are more likely to lead to winning states tend to get higher expected reward values.
For a simple game like tic-tac-toe, you're better off starting with a tabular mapping (just track an expected reward value for every possible game state). Then once you've got that working, you can try using a NN for the mapping instead. But I would suggest trying a separate, simpler NN project first...
I have been confused about this too, but I believe this is the way it works:
Starting from the end node, you check R, (output received) and E, (output expected). If E = R, it's fine, and you have no changes to make.
If E != R, you see how far off it was, based on thresholds and whatnot, and then shift the weights or threshold up or down a bit. Then, based on the new weights, you go back in, and guess whether or not it was too high, or too low, and repeat, with a weaker effect.
I've never really tried this algorithm, but that's basically the version of the idea as I understand it.
As far as I remember you do the training with a known result set - so you calculate the output for a known input and subtract your known output value from that - that is the error.
Then you use the error to correct the net - for a single layer NN adjusted with the delta rule I know that an epsilon of 0.5 is too high - something like 0.1 is better - slower but better. With backpropagation it is a bit more advanced - but as far as I remember the math equation description of a NN is complex and hard to understand - it is not that complicated.
take a look at
http://www.codeproject.com/KB/recipes/BP.aspx
or google for "backpropagation c" - it is probably easier to understand in code.

How to program a neural network for chess?

I want to program a chess engine which learns to make good moves and win against other players. I've already coded a representation of the chess board and a function which outputs all possible moves. So I only need an evaluation function which says how good a given situation of the board is. Therefore, I would like to use an artificial neural network which should then evaluate a given position. The output should be a numerical value. The higher the value is, the better is the position for the white player.
My approach is to build a network of 385 neurons: There are six unique chess pieces and 64 fields on the board. So for every field we take 6 neurons (1 for every piece). If there is a white piece, the input value is 1. If there is a black piece, the value is -1. And if there is no piece of that sort on that field, the value is 0. In addition to that there should be 1 neuron for the player to move. If it is White's turn, the input value is 1 and if it's Black's turn, the value is -1.
I think that configuration of the neural network is quite good. But the main part is missing: How can I implement this neural network into a coding language (e.g. Delphi)? I think the weights for each neuron should be the same in the beginning. Depending on the result of a match, the weights should then be adjusted. But how? I think I should let 2 computer players (both using my engine) play against each other. If White wins, Black gets the feedback that its weights aren't good.
So it would be great if you could help me implementing the neural network into a coding language (best would be Delphi, otherwise pseudo-code). Thanks in advance!
In case somebody randomly finds this page. Given what we know now, what the OP proposes is almost certainly possible. In fact we managed to do it for a game with much larger state space - Go ( https://deepmind.com/research/case-studies/alphago-the-story-so-far ).
I don't see why you can't have a neural net for a static evaluator if you also do some classic mini-max lookahead with alpha-beta pruning. Lots of Chess engines use minimax with a braindead static evaluator that just adds up the pieces or something; it doesn't matter so much if you have enough levels of minimax. I don't know how much of an improvement the net would make but there's little to lose. Training it would be tricky though. I'd suggest using an engine that looks ahead many moves (and takes loads of CPU etc) to train the evaluator for an engine that looks ahead fewer moves. That way you end up with an engine that doesn't take as much CPU (hopefully).
Edit: I wrote the above in 2010, and now in 2020 Stockfish NNUE has done it. "The network is optimized and trained on the [classical Stockfish] evaluations of millions of positions at moderate search depth" and then used as a static evaluator, and in their initial tests they got an 80-elo improvement when using this static evaluator instead of their previous one (or, equivalently, the same elo with a little less CPU time). So yes it does work, and you don't even have to train the network at high search depth as I originally suggested: moderate search depth is enough, but the key is to use many millions of positions.
Been there, done that. Since there is no continuity in your problem (the value of a position is not closely related to an other position with only 1 change in the value of one input), there is very little chance a NN would work. And it never did in my experiments.
I would rather see a simulated annealing system with an ad-hoc heuristic (of which there are plenty out there) to evaluate the value of the position...
However, if you are set on using a NN, is is relatively easy to represent. A general NN is simply a graph, with each node being a neuron. Each neuron has a current activation value, and a transition formula to compute the next activation value, based on input values, i.e. activation values of all the nodes that have a link to it.
A more classical NN, that is with an input layer, an output layer, identical neurons for each layer, and no time-dependency, can thus be represented by an array of input nodes, an array of output nodes, and a linked graph of nodes connecting those. Each node possesses a current activation value, and a list of nodes it forwards to. Computing the output value is simply setting the activations of the input neurons to the input values, and iterating through each subsequent layer in turn, computing the activation values from the previous layer using the transition formula. When you have reached the last (output) layer, you have your result.
It is possible, but not trivial by any means.
https://erikbern.com/2014/11/29/deep-learning-for-chess/
To train his evaluation function, he utilized a lot of computing power to do so.
To summarize generally, you could go about it as follows. Your evaluation function is a feedforward NN. Let the matrix computations lead to a scalar output valuing how good the move is. The input vector for the network is the board state represented by all the pieces on the board so say white pawn is 1, white knight is 2... and empty space is 0. An example board state input vector is simply a sequence of 0-12's. This evaluation can be trained using grandmaster games (available at a fics database for example) for many games, minimizing loss between what the current parameters say is the highest valuation and what move the grandmasters made (which should have the highest valuation). This of course assumes that the grandmaster moves are correct and optimal.
What you need to train a ANN is either something like backpropagation learning or some form of a genetic algorithm. But chess is such an complex game that it is unlikly that a simple ANN will learn to play it - even more if the learning process is unsupervised.
Further, your question does not say anything about the number of layers. You want to use 385 input neurons to encode the current situation. But how do you want to decide what to do? On neuron per field? Highest excitation wins? But there is often more than one possible move.
Further you will need several hidden layers - the functions that can be represented with an input and an output layer without hidden layer are really limited.
So I do not want to prevent you from trying it, but chances for a successful implemenation and training within say one year or so a practically zero.
I tried to build and train an ANN to play Tic-tac-toe when I was 16 years or so ... and I failed. I would suggest to try such an simple game first.
The main problem I see here is one of training. You say you want your ANN to take the current board position and evaluate how good it is for a player. (I assume you will take every possible move for a player, apply it to the current board state, evaluate via the ANN and then take the one with the highest output - ie: hill climbing)
Your options as I see them are:
Develop some heuristic function to evaluate the board state and train the network off that. But that begs the question of why use an ANN at all, when you could just use your heuristic.
Use some statistical measure such as "How many games were won by white or black from this board configuration?", which would give you a fitness value between white or black. The difficulty with that is the amount of training data required for the size of your problem space.
With the second option you could always feed it board sequences from grandmaster games and hope there is enough coverage for the ANN to develop a solution.
Due to the complexity of the problem I'd want to throw the largest network (ie: lots of internal nodes) at it as I could without slowing down the training too much.
Your input algorithm is sound - all positions, all pieces, and both players are accounted for. You may need an input layer for every past state of the gameboard, so that past events are used as input again.
The output layer should (in some form) give the piece to move, and the location to move to.
Write a genetic algorithm using a connectome which contains all neuron weights and synapse strengths, and begin multiple separated gene pools with a large number of connectomes in each.
Make them play one another, keep the best handful, crossover and mutate the best connectomes to repopulate the pool.
Read blondie24 : http://www.amazon.co.uk/Blondie24-Playing-Kaufmann-Artificial-Intelligence/dp/1558607838.
It deals with checkers instead of chess but the principles are the same.
Came here to say what Silas said. Using a minimax algorithm, you can expect to be able to look ahead N moves. Using Alpha-beta pruning, you can expand that to theoretically 2*N moves, but more realistically 3*N/4 moves. Neural networks are really appropriate here.
Perhaps though a genetic algorithm could be used.

Resources