Computer Precision in C language - c

I find intriguing some features on C programming and computer precision.
For example, in my computer if I print the DBL_MANT_DIG variable (of limits.h library) that indicates the bit precision of a double, it returns 64. That means 64bits of mantissa. And that means I can store up to 19 digits in the mantissa.
However if I ask the computer to print more digits, say printf("%.40lf",...),it still does print them. What are those digits and where are they stored?
Another thing is that if a print the variable DBL_MAX I get: 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368
This has more than 19 digits. Where are they stored again?
To print this numbers I do:
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <float.h>
int main(void)
{
printf("Double Min/Max: %lf %lf\n", DBL_MIN, DBL_MAX);
printf("Digits mantissa (bit precission) double: %d\n", DBL_MANT_DIG);
return 0;
}

(An IEEE double-precision floating point value has a 52-bit mantissa, not 64-bit.)
You can think of floating-point numbers as being stored in the binary equivalent of scientific notation. Even though the number you posted has "more than 19 digits," it can still be represented using only 52 mantissa bits.
Imagine you have a mantissa that holds 4 decimal digits, and a 3 decimal digit exponent. This is a floating point number, but in decimal, not binary. The maximum representable value here is 9999e999 (= 9999 * 10999), the decimal expansion of which clearly has far more than 4 digits. But it is representable using 4 decimal digits and a 3-digit exponent.

Here is a thought experiment. Consider the fraction 3/7. Print it as a decimal.
0.428571428571428571428571428571428571428571428571...
Where are the digits stored?

Consider the number 1/8. It can be represented with only an exponent and no mantissa. Yet it's decimal representation 0.125 has 3 nonzero digits. The decimal representation is computed during printing. Internally a binary representation with a base 2 exponent is used.

Related

How many digits after the decimal point can a float variable save in c? [duplicate]

Generally we say that a float has precision of 6 digits after the decimal point. But if we store a large number of the order of 10^30 we won't get 6 digits after the decimal point. So is it correct to say that floats have a precision of 6 digits after the decimal point?
"6 digits after the decimal point" is nonesnse, and your example is a good demonstration of this.
This is an exact specification of the float data type.
The precision of the float is 24 bits. There are 23 bits denoting the fraction after the binary point, plus there's also an "implicit leading bit", according to the online source. This gives 24 significant bits in total.
Hence in decimal digits this is approximately:
24 * log(2) / log(10) = 7.22
It sounds like you're asking about precision to decimal places (digits after the decimal point), whereas significant figures (total number of digits excluding leading and traling zeroes) is a better way to describe accuracy of numbers.
You're correct in that the number of digits after the decimal point will change when the number is larger - but if we're talking precision, the number of significant figures will not change when the number is larger. However, the answer isn't simple for decimal numbers:
Most systems these days use IEE floating point format to represent numbers in C. However, if you're on something unusual, it's worth checking. Single precision IEE float numbers are made up of three parts:
The sign bit (is this number positive or negative)
The (generally also signed) exponent
The fraction (the number before the exponent is applied)
As we'd expect, this is all stored in binary.
How many significant figures?
If you are using IEE-754 numbers, "how many significant figures" probably isn't an easy way to think about it, because the precision is measured in binary significant figures rather than decimal. floats have only 23 bits of accuracy for the fraction part, but because there's an implicit leading bit (unless the fraction part is all zeroes, which indicates a final value of 1), there are 24 effective bits of precision.
This means there are 24 significant binary digits, which does not translate to an exact number of decimal significant figures. You can use the formula 24 * log(2) / log(10) to determine that there are 7.225 digits of decimal precision, which isn't a very good answer to your question, since there are numbers of 24 significant binary digits which only have 6 significant decimal digits.
So, single precision floating point numbers have 6-9 significant decimal digits of precision, depending on the number.
Interestingly, you can also use this precision to work out the largest consecutive integer (counting from zero) that you can successfully represent in a single precision float. It is 2^24, or 16,777,216. You can exactly store larger integers, but only if they can be represented in 24 significant binary digits.
Further trivia: The limited size of the fraction component is the same thing that causes this in Javascript:
> console.log(9999999999999999);
10000000000000000
Javascript numbers are always represented as double precision floats, which have 53 bits of precision. This means between 2^53 and 2^54, only even numbers can be represented, because the final bit of any odd number is lost.
The precision of floating point numbers should be measured in binary digits, not decimal digits. This is because computers operate on binary numbers, and a binary fraction can only approximate a decimal fraction.
Language lawyers will say that the exact width of a float is unspecified by the C standard and therefore implementation-dependent, but on any platform you are likely to encounter a C float means an IEEE754 single-precision number.
IEEE754 specifies that a floating point number is in scientific notation: (-1)s×2e×m
where s is one bit wide, e is eight bits wide, and m is twenty three bits wide. Mathematically, m is 24 bits wide because it's always assumed that the top bit is 1.
So, the maximum number of decimal digits that can be approximated with this representation is: log10(224) = 7.22 .
That approximates seven significant decimal digits, and an exponent ranging from 2-126 to 2127.
Notice that the exponent is measured separately. This is exactly like if you were using ordinary scientific notation, like "A person weighs 72.3 kilograms = 7.23×104 grams". Notice that there are three significant digits here, representing that the number is only accurate to within 100 grams. But there is also an exponent which is a different number entirely. You can have a very big exponent with very few significant digits, like "the sun weighs 1.99×1033 grams." Big number, few digits.
In a nutshell, a float can store about 7-8 significant decimal digits. Let me illustrate this with an example:
1234567001.00
^
+---------------- this information is lost
.01234567001
^
+-------------- this information is lost
Basically, the float stores two values: 1234567 and the position of the decimal point.
Now, this is a simplified example. Floats store binary values instead of decimal values. A 32-bit IEEE 754 float has space for 23 "significant bits" (plus the first one which is always assumed to be 1), which corresponds to roughly 7-8 decimal digits.
1234567001.00 (dec) =
1001001100101011111111101011001.00 (bin) gets rounded to
1001001100101011111111110000000.00 =
| 23 bits |
1234567040.00 (dec)
And this is exactly what C produces:
void main() {
float a = 1234567001;
printf("%f", a); // outputs 1234567040
}

what's the largest number float type can hold?

I'm new to programming and have recently come up with this simple question .
float type has 32 bits in which 8 bits are for the whole number part (the mantissa).
so my question is can float type hold numbers bigger than 255.9999 ?
and I would also appreciate if someone told me why this code is behaving unexpectedly. Is it a related issue?
int main(){
float a=123456789.1;
printf("%lf",a);
return 0;
}
for which the output is :
123456792.000000
<float.h> -- Numeric limits of floating point types has your answers, specifically...
FLT_MAX
DBL_MAX
LDBL_MAX
maximum finite value of float, double and long double respectively
...and...
FLT_DIG
DBL_DIG
LDBL_DIG
number of decimal digits that are guaranteed to be preserved in text -> float/double/long double -> text roundtrip without change due to rounding or overflow
That last part is meant to say that a float value longer (i.e. more significant digits) than FLT_DIG is no longer guaranteed to be precisely representable.
The most common 32-bit floating-point format, IEEE-754 binary32, does not have eight bits for the whole number part. It has one bit for a sign, eight bits for an exponent field, and 23 bits for a significand field (a fraction part).
The sign bit determines whether the number is positive (0) or negative (1).
The exponent field, e, has several uses. If it is 11111111 (in binary), and the significand field, f, is zero, the floating-point value represents infinity. If e is 11111111, and the significand field is not zero, it represents a special Not-a-Number “value”.
If the exponent is not 11111111 and is not zero, floating-point value represents 2e−127•(1+f/223), with the sign added. Note that the fraction portion is formed by adding 1 to the contents of the significand field. That is often called an implicit 1, so the mathematical significand is 24 bits—1 bit from the leading 1, 23 bits from the significand field.
If the exponent is zero, floating-point value represents 21−127•(0+f/223) or the negative of that if the sign bit is 1. Note that the leading bit is 0. These are called subnormal numbers. They are included in the format to make some mathematical properties work in floating-point arithmetic.
The largest finite value represented is when the exponent is 11111110 (254) and the significand field is all ones (f is 223−1), so the number represented is 2254−127•(1+ (223−1)/223) = 2127•(2−2−23) = 2128−2104 = 340282346638528859811704183484516925440.
In float a=123456789.1;, the float type does not have enough precision to represent 123456789.1. (In fact, a decimal fraction .1 can never be represented with a binary floating-point format.) When we have only 24 bits for the significand, the closest numbers to 123456789.1 that we can represent are 123456792 and 123456800.
what's the largest number [the] float type can hold?
The C Standard defines:
FLT_MAX
Include <float.h> to have it be #defined.

max floating point value [duplicate]

I am wondering if the max float represented in IEEE 754 is:
(1.11111111111111111111111)_b*2^[(11111111)_b-127]
Here _b means binary representation. But that value is 3.403201383*10^38, which is different from 3.402823669*10^38, which is (1.0)_b*2^[(11111111)_b-127] and given by for example c++ <limits>. Isn't
(1.11111111111111111111111)_b*2^[(11111111)_b-127] representable and larger in the framework?
Does anybody know why?
Thank you.
The exponent 11111111b is reserved for infinities and NaNs, so your number cannot be represented.
The greatest value that can be represented in single precision, approximately 3.4028235×1038, is actually 1.11111111111111111111111b×211111110b-127.
See also http://en.wikipedia.org/wiki/Single-precision_floating-point_format
Being the "m" the mantisa and the "e" the exponent, the answer is:
In your case, if the number of bits on IEEE 754 are:
16 Bits you have 1 for the sign, 5 for the exponent and 10 for the mantissa. The largest number represented is 4,293,918,720.
32 Bits you have 1 for the sign, 8 for the exponent and 23 for the mantissa. The largest number represented is 3.402823466E38
64 Bits you have 1 for the sign, 11 for the exponent and 52 for the mantissa. The largest number represented is 2^1024 - 2^971

Why aren't the rightmost digits zeros (C/Linux)?

If you print a float with more precision than is stored in memory, aren't the extra places supposed to have zeros in them? I have code that is something like this:
double z[2*N]="0";
...
for( n=1; n<=2*N; n++) {
fprintf( u1, "%.25g", z[n-1]);
fputc( n<2*N ? ',' : '\n', u1);
}
Which is creating output like this:
0,0.7071067811865474617150085,....
A float should have only 17 decimal places (right? Doesn't 53 bits comes out to 17 decimal places). If that's so, then the 18th, 19th... 25th places should have zeros. Notice in the above output that they have digits other than 0 in them.
Am I misunderstanding something? If so, what?
No, 53 bits means that the 17 decimal places are what you can trust, but because base-10 notation that we use is in a different base from which the double is stored (binary), the later digits are just because 1/2^53 is not exactly 1/10^n, i.e.,
1/2^53 = .0000000000000001110223024625156540423631668090820312500000000
The string printed by your implementation shows the exact value of the double in your example, and this is permitted by the C standard, as I show below.
First, we should understand what the floating-point object represents. The C standard does a poor job of this, but, presuming your implementation uses the IEEE 754 floating-point standard, a normal floating-point object represents exactly (-1)s•2e•(1+f) for some sign bit s (0 or 1), exponent e (in range for the specific type, -1022 to 1023 for double), and fraction f (also in range, 52 bits after a radix point for double). Many people use the object to approximate nearby values, but, according to the standard, the object only represents the one value it is defined to be.
The value you show, 0.7071067811865474617150085, is exactly representable as a double (sign bit 0, exponent -1, and fraction bits [in hexadecimal] .6a09e667f3bcc16). It is important to understand the double with this value represents exactly that value; it does not represent nearby values, such as 0.707106781186547461715.
Now that we know the value being passed to fprintf, we can consider what the C standard says about this. First, the C standard defines a constant named DECIMAL_DIG. C 2011 5.2.4.2.2 11 defines this to be the number of decimal digits such that any floating-point number in the widest supported type can be rounded to that many decimal digits and back again without change to the value. The precision you passed to fprintf, 25, is likely greater than the value of DECIMAL_DIG on your system.
In C 2011 7.21.6.1 13, the standard says “If the number of significant decimal digits is more than DECIMAL_DIG but the source value is exactly representable with DECIMAL_DIG digits, then the result should be an exact representation with trailing zeros. Otherwise, the source value is bounded by two adjacent decimal strings L < U , both having DECIMAL_DIG significant digits; the value of the resultant decimal string D should satisfy L ≤ D ≤ U, with the extra stipulation that the error should have a correct sign for the current rounding direction.”
This wording allows the compiler some wiggle room. The intent is that the result must be accurate enough that it can be converted back to the original double with no error. It may be more accurate, and some C implementations will produce the exactly correct value, which is permitted since it satisfies the paragraph above.
Incidentally, the value you show is not the double closest to sqrt(2)/2. That value is +0x1.6A09E667F3BCDp-1 = 0.70710678118654757273731092936941422522068023681640625.
There is enough precision to represent 0.7071067811865474617150085 in double precision floating point. The 64 bit output is actually 3FE6A09E667F3BCC
The formula used to evaluate the number is an exponentiation, so you cannot say that 53 bits will take 17 decimal places.
EDIT:
Look at the example below in the wiki article for another instance:
0.333333333333333314829616256247390992939472198486328125
=2^(−54) × 15 5555 5555 5555 base16
=2^(−2) × (15 5555 5555 5555 base16 × 2^(−52) )
You are asking for float, but in your code appears double.
Anyway, neither float or double have always the same number of decimals. Float have assigned 32 bits (4 bytes) for a floating point representation according to IEEE 754.
From Wikipedia:
The IEEE 754 standard specifies a binary32 as having:
Sign bit: 1 bit
Exponent width: 8 bits
Significand precision: 24 (23 explicitly stored)
This gives from 6 to 9 significant decimal digits precision (if a
decimal string with at most 6 significant decimal is converted to IEEE
754 single precision and then converted back to the same number of
significant decimal, then the final string should match the original;
and if an IEEE 754 single precision is converted to a decimal string
with at least 9 significant decimal and then converted back to single,
then the final number must match the original).
In the case of double, from Wikipedia again:
Double-precision binary floating-point is a commonly used format on
PCs, due to its wider range over single-precision floating point, in
spite of its performance and bandwidth cost. As with single-precision
floating-point format, it lacks precision on integer numbers when
compared with an integer format of the same size. It is commonly known
simply as double. The IEEE 754 standard specifies a binary64 as
having:
Sign bit: 1 bit
Exponent width: 11 bits
Significand precision: 53 bits (52 explicitly stored)
This gives from 15 - 17 significant
decimal digits precision. If a decimal string with at most 15
significant decimal is converted to IEEE 754 double precision and then
converted back to the same number of significant decimal, then the
final string should match the original; and if an IEEE 754 double
precision is converted to a decimal string with at least 17
significant decimal and then converted back to double, then the final
number must match the original.
On the other hand, you can't expect that if you have a float and print it out with more precision that the really stored, the rest of digits will fill with 0s. The compiler can't imagine the tricks you are trying to do.

Precision in C floats

Generally we say that a float has precision of 6 digits after the decimal point. But if we store a large number of the order of 10^30 we won't get 6 digits after the decimal point. So is it correct to say that floats have a precision of 6 digits after the decimal point?
"6 digits after the decimal point" is nonesnse, and your example is a good demonstration of this.
This is an exact specification of the float data type.
The precision of the float is 24 bits. There are 23 bits denoting the fraction after the binary point, plus there's also an "implicit leading bit", according to the online source. This gives 24 significant bits in total.
Hence in decimal digits this is approximately:
24 * log(2) / log(10) = 7.22
It sounds like you're asking about precision to decimal places (digits after the decimal point), whereas significant figures (total number of digits excluding leading and traling zeroes) is a better way to describe accuracy of numbers.
You're correct in that the number of digits after the decimal point will change when the number is larger - but if we're talking precision, the number of significant figures will not change when the number is larger. However, the answer isn't simple for decimal numbers:
Most systems these days use IEE floating point format to represent numbers in C. However, if you're on something unusual, it's worth checking. Single precision IEE float numbers are made up of three parts:
The sign bit (is this number positive or negative)
The (generally also signed) exponent
The fraction (the number before the exponent is applied)
As we'd expect, this is all stored in binary.
How many significant figures?
If you are using IEE-754 numbers, "how many significant figures" probably isn't an easy way to think about it, because the precision is measured in binary significant figures rather than decimal. floats have only 23 bits of accuracy for the fraction part, but because there's an implicit leading bit (unless the fraction part is all zeroes, which indicates a final value of 1), there are 24 effective bits of precision.
This means there are 24 significant binary digits, which does not translate to an exact number of decimal significant figures. You can use the formula 24 * log(2) / log(10) to determine that there are 7.225 digits of decimal precision, which isn't a very good answer to your question, since there are numbers of 24 significant binary digits which only have 6 significant decimal digits.
So, single precision floating point numbers have 6-9 significant decimal digits of precision, depending on the number.
Interestingly, you can also use this precision to work out the largest consecutive integer (counting from zero) that you can successfully represent in a single precision float. It is 2^24, or 16,777,216. You can exactly store larger integers, but only if they can be represented in 24 significant binary digits.
Further trivia: The limited size of the fraction component is the same thing that causes this in Javascript:
> console.log(9999999999999999);
10000000000000000
Javascript numbers are always represented as double precision floats, which have 53 bits of precision. This means between 2^53 and 2^54, only even numbers can be represented, because the final bit of any odd number is lost.
The precision of floating point numbers should be measured in binary digits, not decimal digits. This is because computers operate on binary numbers, and a binary fraction can only approximate a decimal fraction.
Language lawyers will say that the exact width of a float is unspecified by the C standard and therefore implementation-dependent, but on any platform you are likely to encounter a C float means an IEEE754 single-precision number.
IEEE754 specifies that a floating point number is in scientific notation: (-1)s×2e×m
where s is one bit wide, e is eight bits wide, and m is twenty three bits wide. Mathematically, m is 24 bits wide because it's always assumed that the top bit is 1.
So, the maximum number of decimal digits that can be approximated with this representation is: log10(224) = 7.22 .
That approximates seven significant decimal digits, and an exponent ranging from 2-126 to 2127.
Notice that the exponent is measured separately. This is exactly like if you were using ordinary scientific notation, like "A person weighs 72.3 kilograms = 7.23×104 grams". Notice that there are three significant digits here, representing that the number is only accurate to within 100 grams. But there is also an exponent which is a different number entirely. You can have a very big exponent with very few significant digits, like "the sun weighs 1.99×1033 grams." Big number, few digits.
In a nutshell, a float can store about 7-8 significant decimal digits. Let me illustrate this with an example:
1234567001.00
^
+---------------- this information is lost
.01234567001
^
+-------------- this information is lost
Basically, the float stores two values: 1234567 and the position of the decimal point.
Now, this is a simplified example. Floats store binary values instead of decimal values. A 32-bit IEEE 754 float has space for 23 "significant bits" (plus the first one which is always assumed to be 1), which corresponds to roughly 7-8 decimal digits.
1234567001.00 (dec) =
1001001100101011111111101011001.00 (bin) gets rounded to
1001001100101011111111110000000.00 =
| 23 bits |
1234567040.00 (dec)
And this is exactly what C produces:
void main() {
float a = 1234567001;
printf("%f", a); // outputs 1234567040
}

Resources