I am new to C and realized that I didn't quite understand the difference between / and %. It would be very helpful if you could explain this to me. Thanks!
depends where these are being used, they mean different things in different contexts
if you are doing arithmetic, then / means divide while % means mod.
/ division is how normal division works
% will give you the remainder of a division, eg 5 % 2 = 1, because 2 goes into 5 twice with a remainder of 1.
also this pretty much universal to all languages (probably a few exceptions that i dont know about)
"/" is used for division and "%" is used to calculate the remainder
e.g
int a = 10;
int b = 3;
int divisionResult = a / b; //it's 3
int reminderResult = a % b; // it's 1 (which is the remainder of the division)
/ is division, %is module, the integer remainder of a division.
/ is used for division and % is used for modulus.
Example:
5 / 2 = 2
5 % 2 = 1
a / b is the quotient.
a % b is the remainder, that is, a mod b.
Related
I am having an issue with the % operator in C. I know that the % operator gives the remainder of a division. However when faced with a question like 1 % 2 or 3 % 2, I get confused. After googling this, I found different solutions.
Some say that as 1 / 2 is 0.5, we round it down to 0. So 1 % 2 is 0.
Others say that as 1 / 2 is 0.5, we instead round it up, like we would in maths, to 1. So 1 % 2 is 1.
And therefore, I am now confused. My question is: What is 1 % 2?
Thank you in advance :):)
% is the remainder operator:
The % operator computes the remainder after dividing its first operand
by its second.
It's what left from the division. For example:
5 % 3 is 2.
5 % 4 is 1.
5 % 2 is 1. (Because 2 can fit 2 times in 5, 1 will be left)
When you do 1 % 2 the result is 1 because 1/2 is 0, and the remainder is.. 1.
Simply put, both are wrong methods. As you said % finds the remainder of division.
Therefore 1/2 is equal to 0 remainder 1.
And the answer is thus 1.
Also, to experiment yourself, you could have used this program:
#include <stdio.h>
main()
{
int remainder;
remainder = 1 % 2;
printf("1 %% 2 is %d", remainder);
return(0);
}
Hope this helps :)
The easy way to think of M % D (if both M and D are positive) is:
While ( M >= D){
M = M-D;
}
return M;
There is no rounding, the decimal part is simply truncated.
So, 1 / 2 is 0 and 1 % 2 is 1.
Here you need the mathematical definition on remainder.
Given two integer numbers m, d, we say that r is the remainder of the division of m and d if r satisfies two conditions:
There exists another integer k such that m == k * d + r , and
0 <= r < d.
In C we have m % d == r and m / d == k, just by following the definition above.
As you can see, there is no trucation at all (I mean: the "truncation" is consequence of the definition).
From the definition, it can be obtainded that 3 % 2 == 1 and 3 / 2 == 1.
Other examples:
4 / 3 == 1 and 5 / 3 == 1, in despite of 5.0/3.0 == 1.6666 (which
would round to 2.0).
4 % 3 == 1 and 5 % 3 == 2.
You can trust also in the formula r = m - k * d, which in C is written as:
m % d == m - (m / d) * d
However, in the standard C, the integer division follows the rule: round to 0.
Thus, with negative operands C offer different results that the mathematical ones.
We would have:
(-4) / 3 == -1, (-4) % 3 == -1 (in C), but in plain maths: (-4) / 3 = -2, (-4) % 3 = 2.
In plain maths, the remainder is always nonnegative, and less than the abs(d).
In standard C, the remainder always has the sign of the first operator.
Remark: This description (in the negative case) is for standard C99/C11 only. You must be carefull with your compiler version, and to do some tests.
In this case, what does the percentage refers to?
int myInt = 27 % 10;
myInt = 7;
What does the % mean in this code?
% means remainder, when 27 is divided by 10 leaves a remainder 7
EDIT:
My 2 cents about all the discussion about difference between modulo & remainder
Take a % b
1. When both +ve, Modulo & Remainder are one and the same
2. When a is -ve, they are not the same
For example;
a = -10, b = 3
Remainder of -10 % 3 = -1
for Modulo, add a greater multiple of 3 to your 'a' and calculate the remainder.
-10 + 12 = 2
2 % 3 = 2 is your answer
the % is modulus operator, not percentage. For percentage, you just do regular math. 50% is to multiply by .5... etc.
For future reference, the objective c mathematical operations are documented many places, including here.
Note the % is called "Modulo" operator.
% is a operator to find the remainder of a division.
The "%" in this code is called the modulus operator. This causes the processor to perform a division operation, and it returns the remainder of the division.
For example:
8 % 10 = 8
5 % 4 = 1
I am stuck in a program while finding modulus of division.
Say for example I have:
((a*b*c)/(d*e)) % n
Now, I cannot simply calculate the expression and then modulo it to n as the multiplication and division are going in a loop and the value is large enough to not fit even in long long.
As clarified in comments, n can be considered prime.
I found that, for multiplication, I can easily calculate it as:
((a%n*b%n)%n*c%n)%n
but couldn't understand how to calculate the division part then.
The problem I am facing is say for a simple example:
((7*3*5)/(5*3)) % 11
The value of above expression would be 7
but if I calculate the multiplication, modulo, it would be like:
((7%11)*(3%11))%11 = 10
((10%11)*(5%11))%11 = 6
now I am left with 6/15 and I have no way to generate correct answer.
Could someone help me. Please make me understand the logic by above example.
Since 11 is prime, Z11 is a field. Since 15 % 11 is 4, 1/15 equals 3 (since 3 * 4 % 11 is 1). Therefore, 6/15 is 6 * 3 which is 7 mod 11.
In your comments below the question, you clarify that the modulus will always be a prime.
To efficiently generate a table of multiplicative inverses, you can raise 2 to successive powers to see which values it generates. Note that in a field Zp, where p is an odd prime, 2p-1 = 1. So, for Z11:
2^1 = 2
2^2 = 4
2^3 = 8
2^4 = 5
2^5 = 10
2^6 = 9
2^7 = 7
2^8 = 3
2^9 = 6
So the multiplicative inverse of 5 (which is 24) is 26 (which is 9).
So, you can generate the above table like this:
power_of_2[0] = 1;
for (int i = 1; i < n; ++i) {
power_of_2[i] = (2*power_of_2[i-1]) % n;
}
And the multiplicative inverse table can be computed like this:
mult_inverse[1] = 1;
for (int i = 1; i < n; ++i) {
mult_inverse[power_of_2[i]] = power_of_2[n-1-i];
}
In your example, since 15 = 4 mod 11, you actually end up with having to evaluate (6/4) mod 11.
In order to find an exact solution to this, rearrange it as 6 = ( (x * 4) mod 11), which makes clearer how the modulo division works.
If nothing else, if the modulus is always small, you can iterate from 0 to modulus-1 to get the solution.
Note that when the modulus is not prime, there may be multiple solutions to the reduced problem. For instance, there are two solutions to 4 = ( ( x * 2) mod 8): 2 and 6. This will happen for a reduced problem of form:
a = ( (x * b) mod c)
whenever b and c are NOT relatively prime (ie whenever they DO share a common divisor).
Similarly, when b and c are NOT relatively prime, there may be no solution to the reduced problem. For instance, 3 = ( (x * 2) mod 8) has no solution. This happens whenever the largest common divisor of b and c does not also divide a.
These latter two circumstances are consequences of the integers from 0 to n-1 not forming a group under multiplication (or equivalently, a field under + and *) when n is not prime, but rather forming simply the less useful structure of a ring.
I think the way the question is asked, it should be assumed that the numerator is divisible by the denominator. In that case the finite field solution for prime n and speculations about possible extensions and caveats for non-prime n is basically overkill. If you have all the numerator terms and denominator terms stored in arrays, you can iteratively test pairs of (numerator term, denominator term) and quickly find the greatest common divisor (gcd), and then divide the numerator term and denominator term by the gcd. (Finding the gcd is a classical problem and you can easily find a simple solution online.) In the worst case you will have to iterate over all possible pairs but at some point, if the denominator indeed divides the numerator, then you'll eventually be left with reduced numerator terms and all denominator terms will be 1. Then you're ready to apply multiplication (avoiding overflow) the way you described.
As n is prime, dividing an integer b is simply multiplying b's inverse. That is:
(a / b) mod n = (a * inv(b)) mod n
where
inv(b) = (b ^ (n - 2)) mod n
Calculating inv(b) can be done in O(log(n)) time using the Exponentiation by squaring algorithm. Here is the code:
int inv(int b, int n)
{
int r = 1, m = n - 2;
while (m)
{
if (m & 1) r = (long long)r * b % n;
b = (long long)b * b % n;
m >>= 1;
}
return r;
}
Why it works? According to Fermat's little theorem, if n is prime, b ^ (n - 1) mod n = 1 for any positive integer b. Therefore we have inv(b) * b mod n = 1.
Another solution for finding inv(b) is the Extended Euclidean algorithm, which needs a bit more code to implement.
I think you can distribute the division like
z = d*e/3
(a/z)*(b/z)*(c/z) % n
Remains only the integer division problem.
I think the problem you had was that you picked a problem that was too simple for an example. In that case the answer was 7 , but what if a*b*c was not evenly divisible by c*d ? You should probably look up how to do division with modulo first, it should be clear to you :)
Instead of dividing, think in terms of multiplicative inverses. For each number in a mod-n system, there ought to be an inverse, if certain conditions are met. For d and e, find those inverses, and then it's all just multiplying. Finding the inverses is not done by dividing! There's plenty of info out there...
Let's say I have a number like 21 and I want to split it up so that I get the numbers 2 and 1.
To get 1, I could do 1 mod 10. So basically, the last digit can be found out by using mod 10.
To get 2, I could do (21 - (1 mod 10))/10.
The above techniques will work with any 2-digit number.
However, let me add a further constraint, that mod can only be used with powers of 2. Then the above method can't be used.
What can be done then?
2 == 23 / 10
3 == 23 - (23 / 10) * 10
To get 2 you can just do
int x = 23 / 10;
remember that integer division drops the fractional portion (as it can't be represented in an integer).
Modulus division (and regular division) can be used for any power, not just powers of two. Also a power of two is not the same thing as a two digit number.
To split up a three digit number
int first = 234/100;
int second = (234/10)-first*10;
int third = (234/1)-first*100-second*10;
with a little work, it could also look like
int processed = 0;
int first = 234/100-processed;
processed = processed + first;
processed = processed * 10;
int second = 234/10-processed;
processed = processed + second;
processed = processed * 10;
... and so on ...
If you put a little more into it, you can write it up as a loop quite easily.
what about
x%10 for the second digit and
x/10 for the first?
srand(time(null));
printf("%d", rand());
Gives a high-range random number (0-32000ish), but I only need about 0-63 or 0-127, though I'm not sure how to go about it. Any help?
rand() % (max_number + 1 - minimum_number) + minimum_number
So, for 0-65:
rand() % (65 + 1 - 0) + 0
(obviously you can leave the 0 off, but it's there for completeness).
Note that this will bias the randomness slightly, but probably not anything to be concerned about if you're not doing something particularly sensitive.
You can use this:
int random(int min, int max){
return min + rand() / (RAND_MAX / (max - min + 1) + 1);
}
From the:
comp.lang.c FAQ list · Question 13.16
Q: How can I get random integers in a certain range?
A: The obvious way,
rand() % N /* POOR */
(which tries to return numbers from 0 to N-1) is poor, because the
low-order bits of many random number generators are distressingly
non-random. (See question 13.18.) A better method is something like
(int)((double)rand() / ((double)RAND_MAX + 1) * N)
If you'd rather not use floating point, another method is
rand() / (RAND_MAX / N + 1)
If you just need to do something with probability 1/N, you could use
if(rand() < (RAND_MAX+1u) / N)
All these methods obviously require knowing RAND_MAX (which ANSI #defines in <stdlib.h>), and assume that N is much less than RAND_MAX. When N is close to RAND_MAX, and if the range of the random number
generator is not a multiple of N (i.e. if (RAND_MAX+1) % N != 0), all
of these methods break down: some outputs occur more often than
others. (Using floating point does not help; the problem is that rand
returns RAND_MAX+1 distinct values, which cannot always be evenly
divvied up into N buckets.) If this is a problem, about the only thing
you can do is to call rand multiple times, discarding certain values:
unsigned int x = (RAND_MAX + 1u) / N;
unsigned int y = x * N;
unsigned int r;
do {
r = rand();
} while(r >= y);
return r / x;
For any of these techniques, it's straightforward to shift the range,
if necessary; numbers in the range [M, N] could be generated with
something like
M + rand() / (RAND_MAX / (N - M + 1) + 1)
(Note, by the way, that RAND_MAX is a constant telling you what the
fixed range of the C library rand function is. You cannot set RAND_MAX
to some other value, and there is no way of requesting that rand
return numbers in some other range.)
If you're starting with a random number generator which returns
floating-point values between 0 and 1 (such as the last version of
PMrand alluded to in question 13.15, or drand48 in question
13.21), all you have to do to get integers from 0 to N-1 is
multiply the output of that generator by N:
(int)(drand48() * N)
Additional links
References: K&R2 Sec. 7.8.7 p. 168
PCS Sec. 11 p. 172
Quote from: http://c-faq.com/lib/randrange.html
check here
http://c-faq.com/lib/randrange.html
For any of these techniques, it's straightforward to shift the range, if necessary; numbers in the range [M, N] could be generated with something like
M + rand() / (RAND_MAX / (N - M + 1) + 1)
Taking the modulo of the result, as the other posters have asserted will give you something that's nearly random, but not perfectly so.
Consider this extreme example, suppose you wanted to simulate a coin toss, returning either 0 or 1. You might do this:
isHeads = ( rand() % 2 ) == 1;
Looks harmless enough, right? Suppose that RAND_MAX is only 3. It's much higher of course, but the point here is that there's a bias when you use a modulus that doesn't evenly divide RAND_MAX. If you want high quality random numbers, you're going to have a problem.
Consider my example. The possible outcomes are:
rand()
freq.
rand() % 2
0
1/3
0
1
1/3
1
2
1/3
0
Hence, "tails" will happen twice as often as "heads"!
Mr. Atwood discusses this matter in this Coding Horror Article
The naive way to do it is:
int myRand = rand() % 66; // for 0-65
This will likely be a very slightly non-uniform distribution (depending on your maximum value), but it's pretty close.
To explain why it's not quite uniform, consider this very simplified example:
Suppose RAND_MAX is 4 and you want a number from 0-2. The possible values you can get are shown in this table:
rand() | rand() % 3
---------+------------
0 | 0
1 | 1
2 | 2
3 | 0
See the problem? If your maximum value is not an even divisor of RAND_MAX, you'll be more likely to choose small values. However, since RAND_MAX is generally 32767, the bias is likely to be small enough to get away with for most purposes.
There are various ways to get around this problem; see here for an explanation of how Java's Random handles it.
rand() will return numbers between 0 and RAND_MAX, which is at least 32767.
If you want to get a number within a range, you can just use modulo.
int value = rand() % 66; // 0-65
For more accuracy, check out this article. It discusses why modulo is not necessarily good (bad distributions, particularly on the high end), and provides various options.
As others have noted, simply using a modulus will skew the probabilities for individual numbers so that smaller numbers are preferred.
A very ingenious and good solution to that problem is used in Java's java.util.Random class:
public int nextInt(int n) {
if (n <= 0)
throw new IllegalArgumentException("n must be positive");
if ((n & -n) == n) // i.e., n is a power of 2
return (int)((n * (long)next(31)) >> 31);
int bits, val;
do {
bits = next(31);
val = bits % n;
} while (bits - val + (n-1) < 0);
return val;
}
It took me a while to understand why it works and I leave that as an exercise for the reader but it's a pretty concise solution which will ensure that numbers have equal probabilities.
The important part in that piece of code is the condition for the while loop, which rejects numbers that fall in the range of numbers which otherwise would result in an uneven distribution.
double scale = 1.0 / ((double) RAND_MAX + 1.0);
int min, max;
...
rval = (int)(rand() * scale * (max - min + 1) + min);
Updated to not use a #define
double RAND(double min, double max)
{
return (double)rand()/(double)RAND_MAX * (max - min) + min;
}
If you don't overly care about the 'randomness' of the low-order bits, just rand() % HI_VAL.
Also:
(double)rand() / (double)RAND_MAX; // lazy way to get [0.0, 1.0)
This answer does not focus on the randomness but on the arithmetic order.
To get a number within a range, usually we can do it like this:
// the range is between [aMin, aMax]
double f = (double)rand() / RAND_MAX;
double result = aMin + f * (aMax - aMin);
However, there is a possibility that (aMax - aMin) overflows. E.g. aMax = 1, aMin = -DBL_MAX. A safer way is to write like this:
// the range is between [aMin, aMax]
double f = (double)rand() / RAND_MAX;
double result = aMin - f * aMin + f * aMax;
Based on this concept, something like this may cause a problem.
rand() % (max_number + 1 - minimum_number) + minimum_number
// 1. max_number + 1 might overflow
// 2. max_number + 1 - min_number might overflow
if you care about the quality of your random numbers don't use rand()
use some other prng like http://en.wikipedia.org/wiki/Mersenne_twister or one of the other high quality prng's out there
then just go with the modulus.
Just to add some extra detail to the existing answers.
The mod % operation will always perform a complete division and therefore yield a remainder less than the divisor.
x % y = x - (y * floor((x/y)))
An example of a random range finding function with comments:
uint32_t rand_range(uint32_t n, uint32_t m) {
// size of range, inclusive
const uint32_t length_of_range = m - n + 1;
// add n so that we don't return a number below our range
return (uint32_t)(rand() % length_of_range + n);
}
Another interesting property as per the above:
x % y = x, if x < y
const uint32_t value = rand_range(1, RAND_MAX); // results in rand() % RAND_MAX + 1
// TRUE for all x = RAND_MAX, where x is the result of rand()
assert(value == RAND_MAX);
result of rand()
2 cents (ok 4 cents):
n = rand()
x = result
l = limit
n/RAND_MAX = x/l
Refactor:
(l/1)*(n/RAND_MAX) = (x/l)*(l/1)
Gives:
x = l*n/RAND_MAX
int randn(int limit)
{
return limit*rand()/RAND_MAX;
}
int i;
for (i = 0; i < 100; i++) {
printf("%d ", randn(10));
if (!(i % 16)) printf("\n");
}
> test
0
5 1 8 5 4 3 8 8 7 1 8 7 5 3 0 0
3 1 1 9 4 1 0 0 3 5 5 6 6 1 6 4
3 0 6 7 8 5 3 8 7 9 9 5 1 4 2 8
2 7 8 9 9 6 3 2 2 8 0 3 0 6 0 0
9 2 2 5 6 8 7 4 2 7 4 4 9 7 1 5
3 7 6 5 3 1 2 4 8 5 9 7 3 1 6 4
0 6 5
Just using rand() will give you same random numbers when running program multiple times. i.e. when you run your program first time it would produce random number x,y and z. If you run the program again then it will produce same x,y and z numbers as observed by me.
The solution I found to keep it unique every time is using srand()
Here is the additional code,
#include<stdlib.h>
#include<time.h>
time_t t;
srand((unsigned) time(&t));
int rand_number = rand() % (65 + 1 - 0) + 0 //i.e Random numbers in range 0-65.
To set range you can use formula : rand() % (max_number + 1 - minimum_number) + minimum_number
Hope it helps!
You can change it by adding a % in front of the rand function in order to change to code
For example:
rand() % 50
will give you a random number in a range of 50. For you, replace 50 with 63 or 127
I think the following does it semi right. It's been awhile since I've touched C. The idea is to use division since modulus doesn't always give random results. I added 1 to RAND_MAX since there are that many possible values coming from rand including 0. And since the range is also 0 inclusive, I added 1 there too. I think the math is arranged correctly avoid integer math problems.
#define MK_DIVISOR(max) ((int)((unsigned int)RAND_MAX+1/(max+1)))
num = rand()/MK_DIVISOR(65);
Simpler alternative to #Joey's answer. If you decide to go with the % method, you need to do a reroll to get the correct distribution. However, you can skip rerolls most of the time because you only need to avoid numbers that fall in the last bucket:
int rand_less_than(int max) {
int last_bucket_min = RAND_MAX - RAND_MAX % max;
int value;
do {
value = rand();
} while (last_bucket_min <= value);
return value % max;
}
See #JarosrawPawlak's article for explanation with diagrams: Random number generator using modulo
In case of RAND_MAX < max, you need to expand the generator: Expand a random range from 1–5 to 1–7
#include <stdio.h>
#include <stdlib.h>
#include <time.h> // this line is necessary
int main() {
srand(time(NULL)); // this line is necessary
int random_number = rand() % 65; // [0-64]
return 0;
}
Foy any range between min_num and max_num:
int random_number = rand() % (max_num + 1 - min_num) + min_num;