I have to solve a problem where one of the important tasks is to reorder the digits of the input in ascending order and we are not allowed to use arrays and lists. I have no problem with that and my code works, but only if we do not consider leading 0, which we should in this problem. The only way I see how to do is to check digit by digit and then add then ordered by multiplying the number by 10 and adding the next digit. (1*10 = 10, 10+3= 13, we got 1 and 3 ordered) However, if we have a 0 in our number this method will not work because if I want to make 0123 with the * 10 method, I won't be able to have the 0 as the first digit never. Does anyone know how to solve this? My code is below:
int ascendingNumbers (int n) { //This function sorts the number on an ascending order
int number = n;
int sortedN = 0;
for (int i = 0; i <= 9; i++) {
int toSortNumber = number;
for (int x = 0; x <= 4; x++) {
int digit = toSortNumber % 10;
if (digit == i) {
if (digit == 0) {
sortedN==10;
}
sortedN *= 10;
sortedN += digit;
}
toSortNumber /= 10;
}
}
return sortedN;
}
Normally I don't do homework problems, but for especially awful ones I'll make an exception.
(Also I'm making an exception to my general rule not to have anything to do with these absurd "desert island" constraints, where you're stranded after a shipwreck and your C compiler's array functionality got damaged in the storm, or something.)
I assume you're allowed to call functions. In that case:
#include <stdio.h>
/* count the number of digits 'd' in 'n'. */
int countdigits(int n, int d)
{
int ret = 0;
/* do/while so consider "0" as "0", not nothing */
do {
if(n % 10 == d) ret++;
n /= 10;
} while(n > 0);
return ret;
}
int main()
{
int i, n;
printf("enter your number:\n");
scanf("%d", &n);
printf("digits: ");
for(i = 0; i < 10; i++) {
int n2 = countdigits(n, i);
int j;
for(j = 0; j < n2; j++) putchar('0' + i);
}
printf("\n");
}
This solution does not involve a function int ascendingNumbers() as you asked about. If you want to handle leading zeroes, as explained in the comments, you can't do it with a function that returns an int.
Your zero problem is solved, check it...
class Main {
public static void main(String[] args) {
int number = 24035217;
int n = number, count = 0;
int sortedN = 0;
while (n != 0) {
n = n / 10;
++count;
}
for (int i = 9; i >= 0; i--) {
int toSortNumber = number;
for (int x = 1; x <= count; x++) {
int digit = toSortNumber % 10;
// printf("\nBefore i = %d, x = %d, toSortNumber = %d, sortedN = %d, digit = %d",i,x,toSortNumber,sortedN,digit);
if (digit == i) {
sortedN *= 10;
sortedN += digit;
}
// printf("\nAfter i = %d, x = %d, toSortNumber = %d, sortedN = %d, digit = %d",i,x,toSortNumber,sortedN,digit);
toSortNumber /= 10;
}
}
System.out.print(sortedN);
}
}
I can't figure out how to print next ten Perfect numbers.
Here's what I have got so far:
#include <stdio.h>
int main() {
int n, c = 1, d = 2, sum = 1;
printf("Enter any number \n");
scanf("%d", &n);
printf("The perfect numbers are:");
while(c <= 10) {
sum = 1;
d = 2;
while(d <= n / 2) { //perfect no
if(n % d == 0) {
sum = sum + d;
}
d++;
}
if(sum == n) {
printf("%d\n", n);
}
c++;
}
return 0;
}
The output I am currently receiving:
input: 2 (say)
output: 6
What I want:
input: 2
output:
6
28
496
8128
33550336
858986905
137438691328
2305843008139952128
2658455991569831744654692615953842176
191561942608236107294793378084303638130997321548169216
I have just started coding. Any help will be appreciated.
The integer overflow issue mentioned by several folks is significant, but secondary. Even if we fix your broken logic, and adjust it to handle larger, fixed sized integers:
#include <stdio.h>
int main() {
unsigned long long number;
printf("Enter any number \n");
scanf("%llu", &number);
printf("The perfect numbers are:\n");
int total = 0;
while (total < 10) {
unsigned long long sum = 1, divisor = 2;
while (divisor <= number / 2) {
if (number % divisor == 0) {
sum += divisor;
}
divisor++;
}
if (sum == number) {
printf("%llu\n", number);
total++;
}
number += 1;
}
return 0;
}
You still wouldn't get past the first four perfect numbers in any reasonable amount of time:
> ./a.out
Enter any number
2
The perfect numbers are:
6
28
496
8128
The primary issue is you're using a bad algorithm. Read about Mersenne primes, and their relationship to perfect numbers, as well as the Lucas-Lehmer test. This approach takes more thought, but surprisingly, not much more code. And will produce more results faster (though eventually bog down as well.)
You have to put the counter after you find a perfect number, so increasing c must happen in the if statement that checks the perfect number, like this:
if(sum==n){
printf("%d",n);
c++;
}
After this you need to increase the number, called n, like this:
n++;
and based on the numbers, #Jonathan Leffler is right, you should use proper variables.
Research, divide and conquer
Perfect numbers are of the form 2p − 1 * (2p − 1).
Code will need extended precision to form 191561942608236107294793378084303638130997321548169216
Increase efficiency
Iterating to <= n / 2 takes far too long. Iterate up to <= n / d
// while(d <= n / 2) {
while(d <= n / d) {
Sample improved code:
bool isprime(unsigned long long x) {
if (x > 3) {
if (x % 2 == 0) {
return false;
}
for (unsigned long t = 3; t <= x / t; t += 2) {
if (x % t == 0) {
return false;
}
}
return true;
}
return x >= 2;
}
Advanced: See Lucas–Lehmer primality test for quick prime test of Mersenne numbers
The below code works for all but the 10th perfect number as code must test for isprime(267 - 1) and I should leave something for OP to do.
static void buff_mul(char *buff, unsigned power_of_2) {
unsigned long long m = 1ull << power_of_2;
size_t len = strlen(buff);
unsigned long long carry = 0;
for (size_t i = len; i > 0;) {
i--;
unsigned long long sum = (buff[i] - '0') * m + carry;
buff[i] = sum % 10 + '0';
carry = sum / 10;
}
while (carry) {
memmove(buff + 1, buff, ++len);
buff[0] = carry % 10 + '0';
carry /= 10;
}
}
void print_perfext(unsigned p) {
// 2**(p-1) * (2**p - 1)
assert(p > 1 && p <= 164);
char buff[200] = "1";
buff_mul(buff, p);
buff[strlen(buff) - 1]--; // Decrement, take advantage that the LSDigit is never 0
buff_mul(buff, p - 1);
puts(buff);
fflush(stdout);
}
//unsigned next_prime(unsigned first_numeber_to_test_if_prime) {
#include <stdio.h>
int main() {
unsigned p = 0;
for (unsigned i = 0; i < 9; i++) {
// If p prime && 2**p − 1 is prime, then 2**(p − 1) * (2**p − 1) is a perfect number.
while (!isprime(p) || !isprime((1uLL << p) - 1))
p++;
printf("%2u ", p);
print_perfext(p);
p++;
}
return 0;
}
Output
2 6
3 28
5 496
7 8128
13 33550336
17 8589869056
19 137438691328
31 2305843008139952128
61 2658455991569831744654692615953842176
From output you wrote I belive that u want to show 10 first perfect numbers
Now u are only showing 6 because u show them from 1 to 10. In this range there is only 6.
I wrote sth like this:
#include <stdio.h>
int isperfect(int input) {
int sum = 0, value = input / 2;
do {
if (input % value == 0) sum += value;
value--;
} while (value);
if (input == sum) return 1;
else return 0;
}
int main() {
int i;
int count;
for (i = 2, count = 0; count < 4; i++) {
if (isperfect(i) == 1) {
count++;
printf("%d\n", i);
}
}
return 0;
}
But I don't recomend counting more than 4 because its gonna take too much time
#include <stdio.h>
#include <math.h>
int prime (long n);
long reverse(long n);
int main(void)
{
long n;
long i, j;
puts("Enter n dight number, and we will help you find symmetrical prime number");
scanf("%ld", &n);
for (i = 11; i < (pow(10, n) - 1); i+= 2)
{
if (prime(i))
{
j = reverse(i);
if (i == j)
{
printf("%ld\n", i);
}
}
}
}
int prime (long n) //estimate whether the number n is primer number
{
int status = 0;
int j;
//1 is prime, 0 is not
if (n % 2 == 0 || n == 3)
{
if (n == 2)
status = 1;
if (n == 3)
status = 1;
else
{
n++;
status = 0;
}
}
else
{
j = 3;
while (j <= sqrt(n))
{
if (n % j == 0)
{
status = 0;
break;
}
else
status = 1;
j+= 2;
}
}
return status;
}
long reverse(long n) //reverse a number
{
int i, j, x;
long k, sum;
int digit = 0;
int ar[1000];
while (n > 0)
{
k = n;
n = n / 10;
x = (k - n*10);
digit++;
ar[digit] = x;
}
for (i = 1,j = digit - 1; i <= digit; i++, j--)
{
sum += ar[i] * pow(10, j)
}
return sum;
}
I build a reverse function in order to reverse numbers, for example, 214, to 412.
This function works fine in individual number, for instance, I type reverse(214), it return 412, which is good. But when I combine reverse() function with for loop, this function can not work... it produces some strange number...
so How can I fix this problem?
The reverse function is extremely complicated. The better way to go about it would be:
long reverse (long n)
{
long result = 0;
while (n != 0)
{
result *= 10;
result += n % 10;
n /= 10;
}
return result;
}
I think the problem in your code is that in the following segment
digit++;
ar[digit] = x;
you first increment the position then assign to it, thus leaving ar[0] unintialized.
How can I fix this problem?
You need to initialize sum
long k, sum = 0;
^
See the code from #Armen Tsirunyan for a simpler approach.
I would like to know how I can find the length of an integer in C.
For instance:
1 => 1
25 => 2
12512 => 5
0 => 1
and so on.
How can I do this in C?
C:
You could take the base-10 log of the absolute value of the number, round it down, and add one. This works for positive and negative numbers that aren't 0, and avoids having to use any string conversion functions.
The log10, abs, and floor functions are provided by math.h. For example:
int nDigits = floor(log10(abs(the_integer))) + 1;
You should wrap this in a clause ensuring that the_integer != 0, since log10(0) returns -HUGE_VAL according to man 3 log.
Additionally, you may want to add one to the final result if the input is negative, if you're interested in the length of the number including its negative sign.
Java:
int nDigits = Math.floor(Math.log10(Math.abs(the_integer))) + 1;
N.B. The floating-point nature of the calculations involved in this method may cause it to be slower than a more direct approach. See the comments for Kangkan's answer for some discussion of efficiency.
If you're interested in a fast and very simple solution, the following might be quickest (this depends on the probability distribution of the numbers in question):
int lenHelper(unsigned x) {
if (x >= 1000000000) return 10;
if (x >= 100000000) return 9;
if (x >= 10000000) return 8;
if (x >= 1000000) return 7;
if (x >= 100000) return 6;
if (x >= 10000) return 5;
if (x >= 1000) return 4;
if (x >= 100) return 3;
if (x >= 10) return 2;
return 1;
}
int printLen(int x) {
return x < 0 ? lenHelper(-x) + 1 : lenHelper(x);
}
While it might not win prizes for the most ingenious solution, it's trivial to understand and also trivial to execute - so it's fast.
On a Q6600 using MSC I benchmarked this with the following loop:
int res = 0;
for(int i = -2000000000; i < 2000000000; i += 200) res += printLen(i);
This solution takes 0.062s, the second-fastest solution by Pete Kirkham using a smart-logarithm approach takes 0.115s - almost twice as long. However, for numbers around 10000 and below, the smart-log is faster.
At the expense of some clarity, you can more reliably beat smart-log (at least, on a Q6600):
int lenHelper(unsigned x) {
// this is either a fun exercise in optimization
// or it's extremely premature optimization.
if(x >= 100000) {
if(x >= 10000000) {
if(x >= 1000000000) return 10;
if(x >= 100000000) return 9;
return 8;
}
if(x >= 1000000) return 7;
return 6;
} else {
if(x >= 1000) {
if(x >= 10000) return 5;
return 4;
} else {
if(x >= 100) return 3;
if(x >= 10) return 2;
return 1;
}
}
}
This solution is still 0.062s on large numbers, and degrades to around 0.09s for smaller numbers - faster in both cases than the smart-log approach. (gcc makes faster code; 0.052 for this solution and 0.09s for the smart-log approach).
int get_int_len (int value){
int l=1;
while(value>9){ l++; value/=10; }
return l;
}
and second one will work for negative numbers too:
int get_int_len_with_negative_too (int value){
int l=!value;
while(value){ l++; value/=10; }
return l;
}
You can write a function like this:
unsigned numDigits(const unsigned n) {
if (n < 10) return 1;
return 1 + numDigits(n / 10);
}
length of n:
length = ( i==0 ) ? 1 : (int)log10(n)+1;
The number of digits of an integer x is equal to 1 + log10(x). So you can do this:
#include <math.h>
#include <stdio.h>
int main()
{
int x;
scanf("%d", &x);
printf("x has %d digits\n", 1 + (int)log10(x));
}
Or you can run a loop to count the digits yourself: do integer division by 10 until the number is 0:
int numDigits = 0;
do
{
++numDigits;
x = x / 10;
} while ( x );
You have to be a bit careful to return 1 if the integer is 0 in the first solution and you might also want to treat negative integers (work with -x if x < 0).
A correct snprintf implementation:
int count = snprintf(NULL, 0, "%i", x);
The most efficient way could possibly be to use a fast logarithm based approach, similar to those used to determine the highest bit set in an integer.
size_t printed_length ( int32_t x )
{
size_t count = x < 0 ? 2 : 1;
if ( x < 0 ) x = -x;
if ( x >= 100000000 ) {
count += 8;
x /= 100000000;
}
if ( x >= 10000 ) {
count += 4;
x /= 10000;
}
if ( x >= 100 ) {
count += 2;
x /= 100;
}
if ( x >= 10 )
++count;
return count;
}
This (possibly premature) optimisation takes 0.65s for 20 million calls on my netbook; iterative division like zed_0xff has takes 1.6s, recursive division like Kangkan takes 1.8s, and using floating point functions (Jordan Lewis' code) takes a whopping 6.6s. Using snprintf takes 11.5s, but will give you the size that snprintf requires for any format, not just integers. Jordan reports that the ordering of the timings are not maintained on his processor, which does floating point faster than mine.
The easiest is probably to ask snprintf for the printed length:
#include <stdio.h>
size_t printed_length ( int x )
{
return snprintf ( NULL, 0, "%d", x );
}
int main ()
{
int x[] = { 1, 25, 12512, 0, -15 };
for ( int i = 0; i < sizeof ( x ) / sizeof ( x[0] ); ++i )
printf ( "%d -> %d\n", x[i], printed_length ( x[i] ) );
return 0;
}
Yes, using sprintf.
int num;
scanf("%d",&num);
char testing[100];
sprintf(testing,"%d",num);
int length = strlen(testing);
Alternatively, you can do this mathematically using the log10 function.
int num;
scanf("%d",&num);
int length;
if (num == 0) {
length = 1;
} else {
length = log10(fabs(num)) + 1;
if (num < 0) length++;
}
int digits=1;
while (x>=10){
x/=10;
digits++;
}
return digits;
sprintf(s, "%d", n);
length_of_int = strlen(s);
You may use this -
(data_type)log10(variable_name)+1
ex:
len = (int)log10(number)+1;
In this problem , i've used some arithmetic solution . Thanks :)
int main(void)
{
int n, x = 10, i = 1;
scanf("%d", &n);
while(n / x > 0)
{
x*=10;
i++;
}
printf("the number contains %d digits\n", i);
return 0;
}
Quite simple
int main() {
int num = 123;
char buf[50];
// convert 123 to string [buf]
itoa(num, buf, 10);
// print our string
printf("%s\n", strlen (buf));
return 0;
}
keep dividing by ten until you get zero, then just output the number of divisions.
int intLen(int x)
{
if(!x) return 1;
int i;
for(i=0; x!=0; ++i)
{
x /= 10;
}
return i;
}
This goes for both negative and positive intigers
int get_len(int n)
{
if(n == 0)
return 1;
if(n < 0)
{
n = n * (-1); // if negative
}
return log10(n) + 1;
}
Same logic goes for loop
int get_len(int n)
{
if(n == 0)
return 1;
int len = 0;
if(n < 0)
n = n * (-1);
while(n > 1)
{
n /= 10;
len++;
}
return len;
}
Why don't you cast your integer to String and get length like this :
int data = 123;
int data_len = String(data).length();
For simple programs...
int num = 456, length=0 // or read value from the user to num
while(num>0){
num=num/10;
length++;
}
Use another variable to retain the initial num value.
In my opinion the shortest and easiest solution would be:
int length , n;
printf("Enter a number: ");
scanf("%d", &n);
length = 0;
while (n > 0) {
n = n / 10;
length++;
}
printf("Length of the number: %d", length);
My way:
Divide as long as number is no more divisible by 10:
u8 NumberOfDigits(u32 number)
{
u8 i = 1;
while (number /= 10) i++;
return i;
}
I don't know how fast is it in compared with other propositions..
int intlen(int integer){
int a;
for(a = 1; integer /= 10; a++);
return a;
}
A more verbose way would be to use this function.
int length(int n)
{
bool stop;
int nDigits = 0;
int dividend = 1;
do
{
stop = false;
if (n > dividend)
{
nDigits = nDigits + 1;
dividend = dividend * 10;
}
else {
stop = true;
}
}
while (stop == false);
return nDigits;
}
int returnIntLength(int value){
int counter = 0;
if(value < 0)
{
counter++;
value = -value;
}
else if(value == 0)
return 1;
while(value > 0){
value /= 10;
counter++;
}
return counter;
}
I think this method is well suited for this task:
value and answers:
-50 -> 3 //it will count - as one character as well if you dont want to count
minus then remove counter++ from 5th line.
566666 -> 6
0 -> 1
505 -> 3
Solution
Use the limit where the integer length changes, in the case of the decimal it is a power of 10, and thus use a counter for each verification that the specified integer has not exceeded the limit.
With the math.h dependency:
#include <math.h>
int count_digits_of_integer(unsigned int integer) {
int count = 1;
while(1) {
int limit = pow(10, count);
if(integer < limit) break;
count++;
}
return count;
}
Without dependency:
int int_pow(int base, int exponent) {
int potency = base;
for(int i = 1; i < exponent; i++) potency *= base;
return potency;
}
int count_digits_of_integer(unsigned int integer) {
int count = 1;
while(1) {
int limit = int_pow(10, count);
if(integer < limit) break;
count++;
}
return count;
}
Implementation
#include <stdio.h>
// Copy and paste the solution code here
int main() {
printf("%i -> (%i digits)\n", 0, count_digits_of_integer(0));
printf("%i -> (%i digits)\n", 12, count_digits_of_integer(12));
printf("%i -> (%i digits)\n", 34569, count_digits_of_integer(34569));
printf("%i -> (%i digits)\n", 1234, count_digits_of_integer(1234));
printf("%i -> (%i digits)\n", 3980000, count_digits_of_integer(3980000));
printf("%i -> (%i digits)\n", 100, count_digits_of_integer(100));
printf("%i -> (%i digits)\n", 9, count_digits_of_integer(9));
printf("%i -> (%i digits)\n", 385784, count_digits_of_integer(385784));
return 0;
}
Output:
0 -> (1 digits)
12 -> (2 digits)
34569 -> (5 digits)
1234 -> (4 digits)
3980000 -> (7 digits)
100 -> (3 digits)
9 -> (1 digits)
385784 -> (6 digits)
Hmm, maybe like this...?
#define _LEN(x) (sizeof(#x)/sizeof(char)-1)
You can also use this function to find the length of an integer:
int countlength(int number)
{
static int count = 0;
if (number > 0)
{
count++;
number /= 10;
countlength(number);
}
return count;
}
I think I got the most efficient way to find the length of an integer
its a very simple and elegant way
here it is:
int PEMath::LengthOfNum(int Num)
{
int count = 1; //count starts at one because its the minumum amount of digits posible
if (Num < 0)
{
Num *= (-1);
}
for(int i = 10; i <= Num; i*=10)
{
count++;
}
return count;
// this loop will loop until the number "i" is bigger then "Num"
// if "i" is less then "Num" multiply "i" by 10 and increase count
// when the loop ends the number of count is the length of "Num".
}
int main(void){
unsigned int n, size=0;
printf("get the int:");
scanf("%u",&n);
/*the magic*/
for(int i = 1; n >= i; i*=10){
size++;
}
printf("the value is: %u \n", n);
printf("the size is: %u \n", size);
return 0;
}
#include <stdio.h>
int main(void){
int c = 12388884;
printf("length of integer is: %d",printf("%d",c));
return 0;
}