LSB to MSB bit reversal on ARM - arm

I need to reverse an YUV image with each byte in LSB instead of MSB. I have read Best Algorithm for Bit Reversal ( from MSB->LSB to LSB->MSB) in C but I would like to do something that is ARM-optimized.
int8 *image;
for(i = 0; i < size; i++) {
image[i] = reversebit8(image[i]); //Use the lookup mechanism
}
As I control the image format (two-byte YUYV or any permutation), I would be OK to reverse 16 bits:
int16 *image;
for(i = 0; i < size / 2; i++) {
image[i] = reversebit16(image[i]);
}
Image goes from YUYV LSB to UYVY MSB. Or even in 32 bits:
int32 *image;
for(i = 0; i < size / 4; i++) {
image[i] = reversebit32(image[i]);
}
Image goes from YUYV LSB to VYUY MSB.
Question: How can I do that in an optimized way for ARM? Neon is good too.
I think that those instructions http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.kui0100a/armasm_cihjgdid.htm could be useful.

The ARM RBIT instruction does what you want. Write a loop that calls this on every aligned 4-byte value.
A8.6.134 RBIT
Reverse Bits reverses the bit order in a 32-bit register. Encoding T1 ARMv6T2, ARMv7
RBIT<c> <Rd>,<Rm>
if ConditionPassed() then
EncodingSpecificOperations(); bits(32) result;
for i = 0 to 31 do
result<31-i> = R[m]<i>;
R[d] = result;

As I mentioned it in my question, those ARM instructions (http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.kui0100a/armasm_cihjgdid.htm) can do the trick:
int32 *image;
for (i = 0; i < size / 4; h++) {
asm("rbit %1,%0" : "=r" (image[i]) : "r" (image[i]));
asm("rev %1,%0" : "=r" (image[i]) : "r" (image[i]));
}
rbit reverses the 32 bits, bit by bit. rev reverses the 32 bits, byte by byte. In fine, each byte is reversed independently. I'm still wondering if there is a better syntax or a better way to do this.

Related

test byte at position [duplicate]

I run a bench of computations using SIMD intructions. These instructions return a vector of 16 bytes as result, named compare, with each byte being 0x00 or 0xff :
0 1 2 3 4 5 6 7 15 16
compare : 0x00 0x00 0x00 0x00 0xff 0x00 0x00 0x00 ... 0xff 0x00
Bytes set to 0xff mean I need to run the function do_operation(i) with i being the position of the byte.
For instance, the above compare vector mean, I need to run this sequence of operations :
do_operation(4);
do_operation(15);
Here is the fastest solution I came up with until now :
for(...) {
//
// SIMD computations
//
__m128i compare = ... // Result of SIMD computations
// Extract high and low quadwords for compare vector
std::uint64_t cmp_low = (_mm_cvtsi128_si64(compare));
std::uint64_t cmp_high = (_mm_extract_epi64(compare, 1));
// Process low quadword
if (cmp_low) {
const std::uint64_t low_possible_positions = 0x0706050403020100;
const std::uint64_t match_positions = _pext_u64(
low_possible_positions, cmp_low);
const int match_count = _popcnt64(cmp_low) / 8;
const std::uint8_t* match_pos_array =
reinterpret_cast<const std::uint8_t*>(&match_positions);
for (int i = 0; i < match_count; ++i) {
do_operation(i);
}
}
// Process high quadword (similarly)
if (cmp_high) {
const std::uint64_t high_possible_positions = 0x0f0e0d0c0b0a0908;
const std::uint64_t match_positions = _pext_u64(
high_possible_positions, cmp_high);
const int match_count = _popcnt64(cmp_high) / 8;
const std::uint8_t* match_pos_array =
reinterpret_cast<const std::uint8_t*>(&match_positions);
for(int i = 0; i < match_count; ++i) {
do_operation(i);
}
}
}
I start with extracting the first and second 64 bits integers of the 128 bits vector (cmp_low and cmp_high). Then I use popcount to compute the number of bytes set to 0xff (number of bits set to 1 divided by 8). Finally, I use pext to get positions, without zeros, like this :
0x0706050403020100
0x000000ff00ff0000
|
PEXT
|
0x0000000000000402
I would like to find a faster solution to extract the positions of the bytes set to 0xff in the compare vector. More precisely, the are very often only 0, 1 or 2 bytes set to 0xff in the compare vector and I would like to use this information to avoid some branches.
Here's a quick outline of how you could reduce the number of tests:
First use a function to project all the lsb or msb of each byte of your 128bit integer into a 16bit value (for instance, there's a SSE2 assembly instruction for that on X86 cpus: pmovmskb, which is supported on Intel and MS compilers with the _mm_movemask_pi8 intrinsic, and gcc has also an intrinsic: __builtin_ia32_ppmovmskb128, );
Then split that value in 4 nibbles;
define functions to handle each possible values of a nibble (from 0 to 15) and put these in an array;
Finally call the function indexed by each nibble (with extra parameters to indicate which nibble in the 16bits it is).
Since in your case very often only 0, 1 or 2 bytes are set to 0xff in the compare vector, a short
while-loop on the bitmask might be more efficient than a solution based on the pext
instruction. See also my answer on a similar question.
/*
gcc -O3 -Wall -m64 -mavx2 -march=broadwell esbsimd.c
*/
#include <stdio.h>
#include <immintrin.h>
int do_operation(int i){ /* some arbitrary do_operation() */
printf("i = %d\n",i);
return 0;
}
int main(){
__m128i compare = _mm_set_epi8(0xFF,0,0,0, 0,0,0,0, 0,0,0,0xFF, 0,0,0,0); /* Take some randon value for compare */
int k = _mm_movemask_epi8(compare);
while (k){
int i=_tzcnt_u32(k); /* Count the number of trailing zero bits in k. BMI1 instruction set, Haswell or newer. */
do_operation(i);
k=_blsr_u32(k); /* Clear the lowest set bit in k. */
}
return 0;
}
/*
Output:
i = 4
i = 15
*/

Count each bit-position separately over many 64-bit bitmasks, with AVX but not AVX2

(Related: How to quickly count bits into separate bins in a series of ints on Sandy Bridge? is an earlier duplicate of this, with some different answers. Editor's note: the answers here are probably better.
Also, an AVX2 version of a similar problem, with many bins for a whole row of bits much wider than one uint64_t: Improve column population count algorithm)
I am working on a project in C where I need to go through tens of millions of masks (of type ulong (64-bit)) and update an array (called target) of 64 short integers (uint16) based on a simple rule:
// for any given mask, do the following loop
for (i = 0; i < 64; i++) {
if (mask & (1ull << i)) {
target[i]++
}
}
The problem is that I need do the above loops on tens of millions of masks and I need to finish in less than a second. Wonder if there are any way to speed it up, like using some sort special assembly instruction that represents the above loop.
Currently I use gcc 4.8.4 on ubuntu 14.04 (i7-2670QM, supporting AVX, not AVX2) to compile and run the following code and took about 2 seconds. Would love to make it run under 200ms.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/stat.h>
double getTS() {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec + tv.tv_usec / 1000000.0;
}
unsigned int target[64];
int main(int argc, char *argv[]) {
int i, j;
unsigned long x = 123;
unsigned long m = 1;
char *p = malloc(8 * 10000000);
if (!p) {
printf("failed to allocate\n");
exit(0);
}
memset(p, 0xff, 80000000);
printf("p=%p\n", p);
unsigned long *pLong = (unsigned long*)p;
double start = getTS();
for (j = 0; j < 10000000; j++) {
m = 1;
for (i = 0; i < 64; i++) {
if ((pLong[j] & m) == m) {
target[i]++;
}
m = (m << 1);
}
}
printf("took %f secs\n", getTS() - start);
return 0;
}
Thanks in advance!
On my system, a 4 year old MacBook (2.7 GHz intel core i5) with clang-900.0.39.2 -O3, your code runs in 500ms.
Just changing the inner test to if ((pLong[j] & m) != 0) saves 30%, running in 350ms.
Further simplifying the inner part to target[i] += (pLong[j] >> i) & 1; without a test brings it down to 280ms.
Further improvements seem to require more advanced techniques such as unpacking the bits into blocks of 8 ulongs and adding those in parallel, handling 255 ulongs at a time.
Here is an improved version using this method. it runs in 45ms on my system.
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/stat.h>
double getTS() {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec + tv.tv_usec / 1000000.0;
}
int main(int argc, char *argv[]) {
unsigned int target[64] = { 0 };
unsigned long *pLong = malloc(sizeof(*pLong) * 10000000);
int i, j;
if (!pLong) {
printf("failed to allocate\n");
exit(1);
}
memset(pLong, 0xff, sizeof(*pLong) * 10000000);
printf("p=%p\n", (void*)pLong);
double start = getTS();
uint64_t inflate[256];
for (i = 0; i < 256; i++) {
uint64_t x = i;
x = (x | (x << 28));
x = (x | (x << 14));
inflate[i] = (x | (x << 7)) & 0x0101010101010101ULL;
}
for (j = 0; j < 10000000 / 255 * 255; j += 255) {
uint64_t b[8] = { 0 };
for (int k = 0; k < 255; k++) {
uint64_t u = pLong[j + k];
for (int kk = 0; kk < 8; kk++, u >>= 8)
b[kk] += inflate[u & 255];
}
for (i = 0; i < 64; i++)
target[i] += (b[i / 8] >> ((i % 8) * 8)) & 255;
}
for (; j < 10000000; j++) {
uint64_t m = 1;
for (i = 0; i < 64; i++) {
target[i] += (pLong[j] >> i) & 1;
m <<= 1;
}
}
printf("target = {");
for (i = 0; i < 64; i++)
printf(" %d", target[i]);
printf(" }\n");
printf("took %f secs\n", getTS() - start);
return 0;
}
The technique for inflating a byte to a 64-bit long are investigated and explained in the answer: https://stackoverflow.com/a/55059914/4593267 . I made the target array a local variable, as well as the inflate array, and I print the results to ensure the compiler will not optimize the computations away. In a production version you would compute the inflate array separately.
Using SIMD directly might provide further improvements at the expense of portability and readability. This kind of optimisation is often better left to the compiler as it can generate specific code for the target architecture. Unless performance is critical and benchmarking proves this to be a bottleneck, I would always favor a generic solution.
A different solution by njuffa provides similar performance without the need for a precomputed array. Depending on your compiler and hardware specifics, it might be faster.
Related:
an earlier duplicate has some alternate ideas: How to quickly count bits into separate bins in a series of ints on Sandy Bridge?.
Harold's answer on AVX2 column population count algorithm over each bit-column separately.
Matrix transpose and population count has a couple useful answers with AVX2, including benchmarks. It uses 32-bit chunks instead of 64-bit.
Also: https://github.com/mklarqvist/positional-popcount has SSE blend, various AVX2, various AVX512 including Harley-Seal which is great for large arrays, and various other algorithms for positional popcount. Possibly only for uint16_t, but most could be adapted for other word widths. I think the algorithm I propose below is what they call adder_forest.
Your best bet is SIMD, using AVX1 on your Sandybridge CPU. Compilers aren't smart enough to auto-vectorize your loop-over-bits for you, even if you write it branchlessly to give them a better chance.
And unfortunately not smart enough to auto-vectorize the fast version that gradually widens and adds.
See is there an inverse instruction to the movemask instruction in intel avx2? for a summary of bitmap -> vector unpack methods for different sizes. Ext3h's suggestion in another answer is good: Unpack bits to something narrower than the final count array gives you more elements per instruction. Bytes is efficient with SIMD, and then you can do up to 255 vertical paddb without overflow, before unpacking to accumulate into the 32-bit counter array.
It only takes 4x 16-byte __m128i vectors to hold all 64 uint8_t elements, so those accumulators can stay in registers, only adding to memory when widening out to 32-bit counters in an outer loop.
The unpack doesn't have to be in-order: you can always shuffle target[] once at the very end, after accumulating all the results.
The inner loop could be unrolled to start with a 64 or 128-bit vector load, and unpack 4 or 8 different ways using pshufb (_mm_shuffle_epi8).
An even better strategy is to widen gradually
Starting with 2-bit accumulators, then mask/shift to widen those to 4-bit. So in the inner-most loop most of the operations are working with "dense" data, not "diluting" it too much right away. Higher information / entropy density means that each instruction does more useful work.
Using SWAR techniques for 32x 2-bit add inside scalar or SIMD registers is easy / cheap because we need to avoid the possibility of carry out the top of an element anyway. With proper SIMD, we'd lose those counts, with SWAR we'd corrupt the next element.
uint64_t x = *(input++); // load a new bitmask
const uint64_t even_1bits = 0x5555555555555555; // 0b...01010101;
uint64_t lo = x & even_1bits;
uint64_t hi = (x>>1) & even_1bits; // or use ANDN before shifting to avoid a MOV copy
accum2_lo += lo; // can do up to 3 iterations of this without overflow
accum2_hi += hi; // because a 2-bit integer overflows at 4
Then you repeat up to 4 vectors of 4-bit elements, then 8 vectors of 8-bit elements, then you should widen all the way to 32 and accumulate into the array in memory because you'll run out of registers anyway, and this outer outer loop work is infrequent enough that we don't need to bother with going to 16-bit. (Especially if we manually vectorize).
Biggest downside: this doesn't auto-vectorize, unlike #njuffa's version. But with gcc -O3 -march=sandybridge for AVX1 (then running the code on Skylake), this running scalar 64-bit is actually still slightly faster than 128-bit AVX auto-vectorized asm from #njuffa's code.
But that's timing on Skylake, which has 4 scalar ALU ports (and mov-elimination), while Sandybridge lacks mov-elimination and only has 3 ALU ports, so the scalar code will probably hit back-end execution-port bottlenecks. (But SIMD code may be nearly as fast, because there's plenty of AND / ADD mixed with the shifts, and SnB does have SIMD execution units on all 3 of its ports that have any ALUs on them. Haswell just added port 6, for scalar-only including shifts and branches.)
With good manual vectorization, this should be a factor of almost 2 or 4 faster.
But if you have to choose between this scalar or #njuffa's with AVX2 autovectorization, #njuffa's is faster on Skylake with -march=native
If building on a 32-bit target is possible/required, this suffers a lot (without vectorization because of using uint64_t in 32-bit registers), while vectorized code barely suffers at all (because all the work happens in vector regs of the same width).
// TODO: put the target[] re-ordering somewhere
// TODO: cleanup for N not a multiple of 3*4*21 = 252
// TODO: manual vectorize with __m128i, __m256i, and/or __m512i
void sum_gradual_widen (const uint64_t *restrict input, unsigned int *restrict target, size_t length)
{
const uint64_t *endp = input + length - 3*4*21; // 252 masks per outer iteration
while(input <= endp) {
uint64_t accum8[8] = {0}; // 8-bit accumulators
for (int k=0 ; k<21 ; k++) {
uint64_t accum4[4] = {0}; // 4-bit accumulators can hold counts up to 15. We use 4*3=12
for(int j=0 ; j<4 ; j++){
uint64_t accum2_lo=0, accum2_hi=0;
for(int i=0 ; i<3 ; i++) { // the compiler should fully unroll this
uint64_t x = *input++; // load a new bitmask
const uint64_t even_1bits = 0x5555555555555555;
uint64_t lo = x & even_1bits; // 0b...01010101;
uint64_t hi = (x>>1) & even_1bits; // or use ANDN before shifting to avoid a MOV copy
accum2_lo += lo;
accum2_hi += hi; // can do up to 3 iterations of this without overflow
}
const uint64_t even_2bits = 0x3333333333333333;
accum4[0] += accum2_lo & even_2bits; // 0b...001100110011; // same constant 4 times, because we shift *first*
accum4[1] += (accum2_lo >> 2) & even_2bits;
accum4[2] += accum2_hi & even_2bits;
accum4[3] += (accum2_hi >> 2) & even_2bits;
}
for (int i = 0 ; i<4 ; i++) {
accum8[i*2 + 0] += accum4[i] & 0x0f0f0f0f0f0f0f0f;
accum8[i*2 + 1] += (accum4[i] >> 4) & 0x0f0f0f0f0f0f0f0f;
}
}
// char* can safely alias anything.
unsigned char *narrow = (uint8_t*) accum8;
for (int i=0 ; i<64 ; i++){
target[i] += narrow[i];
}
}
/* target[0] = bit 0
* target[1] = bit 8
* ...
* target[8] = bit 1
* target[9] = bit 9
* ...
*/
// TODO: 8x8 transpose
}
We don't care about order, so accum4[0] has 4-bit accumulators for every 4th bit, for example. The final fixup needed (but not yet implemented) at the very end is an 8x8 transpose of the uint32_t target[64] array, which can be done efficiently using unpck and vshufps with only AVX1. (Transpose an 8x8 float using AVX/AVX2). And also a cleanup loop for the last up to 251 masks.
We can use any SIMD element width to implement these shifts; we have to mask anyway for widths lower than 16-bit (SSE/AVX doesn't have byte-granularity shifts, only 16-bit minimum.)
Benchmark results on Arch Linux i7-6700k from #njuffa's test harness, with this added. (Godbolt) N = (10000000 / (3*4*21) * 3*4*21) = 9999864 (i.e. 10000000 rounded down to a multiple of the 252 iteration "unroll" factor, so my simplistic implementation is doing the same amount of work, not counting re-ordering target[] which it doesn't do, so it does print mismatch results.
But the printed counts match another position of the reference array.)
I ran the program 4x in a row (to make sure the CPU was warmed up to max turbo) and took one of the runs that looked good (none of the 3 times abnormally high).
ref: the best bit-loop (next section)
fast: #njuffa's code. (auto-vectorized with 128-bit AVX integer instructions).
gradual: my version (not auto-vectorized by gcc or clang, at least not in the inner loop.) gcc and clang fully unroll the inner 12 iterations.
gcc8.2 -O3 -march=sandybridge -fpie -no-pie
ref: 0.331373 secs, fast: 0.011387 secs, gradual: 0.009966 secs
gcc8.2 -O3 -march=sandybridge -fno-pie -no-pie
ref: 0.397175 secs, fast: 0.011255 secs, gradual: 0.010018 secs
clang7.0 -O3 -march=sandybridge -fpie -no-pie
ref: 0.352381 secs, fast: 0.011926 secs, gradual: 0.009269 secs (very low counts for port 7 uops, clang used indexed addressing for stores)
clang7.0 -O3 -march=sandybridge -fno-pie -no-pie
ref: 0.293014 secs, fast: 0.011777 secs, gradual: 0.009235 secs
-march=skylake (allowing AVX2 for 256-bit integer vectors) helps both, but #njuffa's most because more of it vectorizes (including its inner-most loop):
gcc8.2 -O3 -march=skylake -fpie -no-pie
ref: 0.328725 secs, fast: 0.007621 secs, gradual: 0.010054 secs (gcc shows no gain for "gradual", only "fast")
gcc8.2 -O3 -march=skylake -fno-pie -no-pie
ref: 0.333922 secs, fast: 0.007620 secs, gradual: 0.009866 secs
clang7.0 -O3 -march=skylake -fpie -no-pie
ref: 0.260616 secs, fast: 0.007521 secs, gradual: 0.008535 secs (IDK why gradual is faster than -march=sandybridge; it's not using BMI1 andn. I guess because it's using 256-bit AVX2 for the k=0..20 outer loop with vpaddq)
clang7.0 -O3 -march=skylake -fno-pie -no-pie
ref: 0.259159 secs, fast: 0.007496 secs, gradual: 0.008671 secs
Without AVX, just SSE4.2: (-march=nehalem), bizarrely clang's gradual is faster than with AVX / tune=sandybridge. "fast" is only barely slower than with AVX.
gcc8.2 -O3 -march=skylake -fno-pie -no-pie
ref: 0.337178 secs, fast: 0.011983 secs, gradual: 0.010587 secs
clang7.0 -O3 -march=skylake -fno-pie -no-pie
ref: 0.293555 secs, fast: 0.012549 secs, gradual: 0.008697 secs
-fprofile-generate / -fprofile-use help some for GCC, especially for the "ref" version where it doesn't unroll at all by default.
I highlighted the best, but often they're within measurement noise margin of each other. It's unsurprising the -fno-pie -no-pie was sometimes faster: indexing static arrays with [disp32 + reg] is not an indexed addressing mode, just base + disp32, so it doesn't ever unlaminate on Sandybridge-family CPUs.
But with gcc sometimes -fpie was faster; I didn't check but I assume gcc just shot itself in the foot somehow when 32-bit absolute addressing was possible. Or just innocent-looking differences in code-gen happened to cause alignment or uop-cache problems; I didn't check in detail.
For SIMD, we can simply do 2 or 4x uint64_t in parallel, only accumulating horizontally in the final step where we widen bytes to 32-bit elements. (Perhaps by shuffling in-lane and then using pmaddubsw with a multiplier of _mm256_set1_epi8(1) to add horizontal byte pairs into 16-bit elements.)
TODO: manually-vectorized __m128i and __m256i (and __m512i) versions of this. Should be close to 2x, 4x, or even 8x faster than the "gradual" times above. Probably HW prefetch can still keep up with it, except maybe an AVX512 version with data coming from DRAM, especially if there's contention from other threads. We do a significant amount of work per qword we read.
Obsolete code: improvements to the bit-loop
Your portable scalar version can be improved, too, speeding it up from ~1.92 seconds (with a 34% branch mispredict rate overall, with the fast loops commented out!) to ~0.35sec (clang7.0 -O3 -march=sandybridge) with a properly random input on 3.9GHz Skylake. Or 1.83 sec for the branchy version with != 0 instead of == m, because compilers fail to prove that m always has exactly 1 bit set and/or optimize accordingly.
(vs. 0.01 sec for #njuffa's or my fast version above, so this is pretty useless in an absolute sense, but it's worth mentioning as a general optimization example of when to use branchless code.)
If you expect a random mix of zeros and ones, you want something branchless that won't mispredict. Doing += 0 for elements that were zero avoids that, and also means that the C abstract machine definitely touches that memory regardless of the data.
Compilers aren't allowed to invent writes, so if they wanted to auto-vectorize your if() target[i]++ version, they'd have to use a masked store like x86 vmaskmovps to avoid a non-atomic read / rewrite of unmodified elements of target. So some hypothetical future compiler that can auto-vectorize the plain scalar code would have an easier time with this.
Anyway, one way to write this is target[i] += (pLong[j] & m != 0);, using bool->int conversion to get a 0 / 1 integer.
But we get better asm for x86 (and probably for most other architectures) if we just shift the data and isolate the low bit with &1. Compilers are kinda dumb and don't seem to spot this optimization. They do nicely optimize away the extra loop counter, and turn m <<= 1 into add same,same to efficiently left shift, but they still use xor-zero / test / setne to create a 0 / 1 integer.
An inner loop like this compiles slightly more efficiently (but still much much worse than we can do with SSE2 or AVX, or even scalar using #chrqlie's lookup table which will stay hot in L1d when used repeatedly like this, allowing SWAR in uint64_t):
for (int j = 0; j < 10000000; j++) {
#if 1 // extract low bit directly
unsigned long long tmp = pLong[j];
for (int i=0 ; i<64 ; i++) { // while(tmp) could mispredict, but good for sparse data
target[i] += tmp&1;
tmp >>= 1;
}
#else // bool -> int shifting a mask
unsigned long m = 1;
for (i = 0; i < 64; i++) {
target[i]+= (pLong[j] & m) != 0;
m = (m << 1);
}
#endif
Note that unsigned long is not guaranteed to be a 64-bit type, and isn't in x86-64 System V x32 (ILP32 in 64-bit mode), and Windows x64. Or in 32-bit ABIs like i386 System V.
Compiled on the Godbolt compiler explorer by gcc, clang, and ICC, it's 1 fewer uops in the loop with gcc. But all of them are just plain scalar, with clang and ICC unrolling by 2.
# clang7.0 -O3 -march=sandybridge
.LBB1_2: # =>This Loop Header: Depth=1
# outer loop loads a uint64 from the src
mov rdx, qword ptr [r14 + 8*rbx]
mov rsi, -256
.LBB1_3: # Parent Loop BB1_2 Depth=1
# do {
mov edi, edx
and edi, 1 # isolate the low bit
add dword ptr [rsi + target+256], edi # and += into target
mov edi, edx
shr edi
and edi, 1 # isolate the 2nd bit
add dword ptr [rsi + target+260], edi
shr rdx, 2 # tmp >>= 2;
add rsi, 8
jne .LBB1_3 # } while(offset += 8 != 0);
This is slightly better than we get from test / setnz. Without unrolling, bt / setc might have been equal, but compilers are bad at using bt to implement bool (x & (1ULL << n)), or bts to implement x |= 1ULL << n.
If many words have their highest set bit far below bit 63, looping on while(tmp) could be a win. Branch mispredicts make it not worth it if it only saves ~0 to 4 iterations most of the time, but if it often saves 32 iterations, that could really be worth it. Maybe unroll in the source so the loop only tests tmp every 2 iterations (because compilers won't do that transformation for you), but then the loop branch can be shr rdx, 2 / jnz.
On Sandybridge-family, this is 11 fused-domain uops for the front end per 2 bits of input. (add [mem], reg with a non-indexed addressing mode micro-fuses the load+ALU, and the store-address+store-data, everything else is single-uop. add/jcc macro-fuses. See Agner Fog's guide, and https://stackoverflow.com/tags/x86/info). So it should run at something like 3 cycles per 2 bits = one uint64_t per 96 cycles. (Sandybridge doesn't "unroll" internally in its loop buffer, so non-multiple-of-4 uop counts basically round up, unlike on Haswell and later).
vs. gcc's not-unrolled version being 7 uops per 1 bit = 2 cycles per bit. If you compiled with gcc -O3 -march=native -fprofile-generate / test-run / gcc -O3 -march=native -fprofile-use, profile-guided optimization would enable loop unrolling.
This is probably slower than a branchy version on perfectly predictable data like you get from memset with any repeating byte pattern. I'd suggest filling your array with randomly-generated data from a fast PRNG like an SSE2 xorshift+, or if you're just timing the count loop then use anything you want, like rand().
One way of speeding this up significantly, even without AVX, is to split the data into blocks of up to 255 elements, and accumulate the bit counts byte-wise in ordinary uint64_t variables. Since the source data has 64 bits, we need an array of 8 byte-wise accumulators. The first accumulator counts bits in positions 0, 8, 16, ... 56, second accumulator counts bits in positions 1, 9, 17, ... 57; and so on. After we are finished processing a block of data, we transfers the counts form the byte-wise accumulator into the target counts. A function to update the target counts for a block of up to 255 numbers can be coded in a straightforward fashion according to the description above, where BITS is the number of bits in the source data:
/* update the counts of 1-bits in each bit position for up to 255 numbers */
void sum_block (const uint64_t *pLong, unsigned int *target, int lo, int hi)
{
int jj, k, kk;
uint64_t byte_wise_sum [BITS/8] = {0};
for (jj = lo; jj < hi; jj++) {
uint64_t t = pLong[jj];
for (k = 0; k < BITS/8; k++) {
byte_wise_sum[k] += t & 0x0101010101010101;
t >>= 1;
}
}
/* accumulate byte sums into target */
for (k = 0; k < BITS/8; k++) {
for (kk = 0; kk < BITS; kk += 8) {
target[kk + k] += (byte_wise_sum[k] >> kk) & 0xff;
}
}
}
The entire ISO-C99 program, which should be able to run on at least Windows and Linux platforms is shown below. It initializes the source data with a PRNG, performs a correctness check against the asker's reference implementation, and benchmarks both the reference code and the accelerated version. On my machine (Intel Xeon E3-1270 v2 # 3.50 GHz), when compiled with MSVS 2010 at full optimization (/Ox), the output of the program is:
p=0000000000550040
ref took 2.020282 secs, fast took 0.027099 secs
where ref refers to the asker's original solution. The speed-up here is about a factor 74x. Different speed-ups will be observed with other (and especially newer) compilers.
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#if defined(_WIN32)
#if !defined(WIN32_LEAN_AND_MEAN)
#define WIN32_LEAN_AND_MEAN
#endif
#include <windows.h>
double second (void)
{
LARGE_INTEGER t;
static double oofreq;
static int checkedForHighResTimer;
static BOOL hasHighResTimer;
if (!checkedForHighResTimer) {
hasHighResTimer = QueryPerformanceFrequency (&t);
oofreq = 1.0 / (double)t.QuadPart;
checkedForHighResTimer = 1;
}
if (hasHighResTimer) {
QueryPerformanceCounter (&t);
return (double)t.QuadPart * oofreq;
} else {
return (double)GetTickCount() * 1.0e-3;
}
}
#elif defined(__linux__) || defined(__APPLE__)
#include <stddef.h>
#include <sys/time.h>
double second (void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return (double)tv.tv_sec + (double)tv.tv_usec * 1.0e-6;
}
#else
#error unsupported platform
#endif
/*
From: geo <gmars...#gmail.com>
Newsgroups: sci.math,comp.lang.c,comp.lang.fortran
Subject: 64-bit KISS RNGs
Date: Sat, 28 Feb 2009 04:30:48 -0800 (PST)
This 64-bit KISS RNG has three components, each nearly
good enough to serve alone. The components are:
Multiply-With-Carry (MWC), period (2^121+2^63-1)
Xorshift (XSH), period 2^64-1
Congruential (CNG), period 2^64
*/
static uint64_t kiss64_x = 1234567890987654321ULL;
static uint64_t kiss64_c = 123456123456123456ULL;
static uint64_t kiss64_y = 362436362436362436ULL;
static uint64_t kiss64_z = 1066149217761810ULL;
static uint64_t kiss64_t;
#define MWC64 (kiss64_t = (kiss64_x << 58) + kiss64_c, \
kiss64_c = (kiss64_x >> 6), kiss64_x += kiss64_t, \
kiss64_c += (kiss64_x < kiss64_t), kiss64_x)
#define XSH64 (kiss64_y ^= (kiss64_y << 13), kiss64_y ^= (kiss64_y >> 17), \
kiss64_y ^= (kiss64_y << 43))
#define CNG64 (kiss64_z = 6906969069ULL * kiss64_z + 1234567ULL)
#define KISS64 (MWC64 + XSH64 + CNG64)
#define N (10000000)
#define BITS (64)
#define BLOCK_SIZE (255)
/* cupdate the count of 1-bits in each bit position for up to 255 numbers */
void sum_block (const uint64_t *pLong, unsigned int *target, int lo, int hi)
{
int jj, k, kk;
uint64_t byte_wise_sum [BITS/8] = {0};
for (jj = lo; jj < hi; jj++) {
uint64_t t = pLong[jj];
for (k = 0; k < BITS/8; k++) {
byte_wise_sum[k] += t & 0x0101010101010101;
t >>= 1;
}
}
/* accumulate byte sums into target */
for (k = 0; k < BITS/8; k++) {
for (kk = 0; kk < BITS; kk += 8) {
target[kk + k] += (byte_wise_sum[k] >> kk) & 0xff;
}
}
}
int main (void)
{
double start_ref, stop_ref, start, stop;
uint64_t *pLong;
unsigned int target_ref [BITS] = {0};
unsigned int target [BITS] = {0};
int i, j;
pLong = malloc (sizeof(pLong[0]) * N);
if (!pLong) {
printf("failed to allocate\n");
return EXIT_FAILURE;
}
printf("p=%p\n", pLong);
/* init data */
for (j = 0; j < N; j++) {
pLong[j] = KISS64;
}
/* count bits slowly */
start_ref = second();
for (j = 0; j < N; j++) {
uint64_t m = 1;
for (i = 0; i < BITS; i++) {
if ((pLong[j] & m) == m) {
target_ref[i]++;
}
m = (m << 1);
}
}
stop_ref = second();
/* count bits fast */
start = second();
for (j = 0; j < N / BLOCK_SIZE; j++) {
sum_block (pLong, target, j * BLOCK_SIZE, (j+1) * BLOCK_SIZE);
}
sum_block (pLong, target, j * BLOCK_SIZE, N);
stop = second();
/* check whether result is correct */
for (i = 0; i < BITS; i++) {
if (target[i] != target_ref[i]) {
printf ("error # %d: res=%u ref=%u\n", i, target[i], target_ref[i]);
}
}
/* print benchmark results */
printf("ref took %f secs, fast took %f secs\n", stop_ref - start_ref, stop - start);
return EXIT_SUCCESS;
}
For starters, the problem of unpacking the bits, because seriously, you do not want to test each bit individually.
So just follow the following strategy for unpacking the bits into bytes of a vector: https://stackoverflow.com/a/24242696/2879325
Now that you have padded each bit to 8 bits, you can just do this for blocks of up to 255 bitmasks at a time, and accumulate them all into a single vector register. After that, you would have to expect potential overflows, so you need to transfer.
After each block of 255, unpack again to 32bit, and add into the array. (You don't have to do exactly 255, just some convenient number less than 256 to avoid overflow of byte accumulators).
At 8 instructions per bitmask (4 per each lower and higher 32-bit with AVX2) - or half that if you have AVX512 available - you should be able to achieve a throughput of about half a billion bitmasks per second and core on an recent CPU.
typedef uint64_t T;
const size_t bytes = 8;
const size_t bits = bytes * 8;
const size_t block_size = 128;
static inline __m256i expand_bits_to_bytes(uint32_t x)
{
__m256i xbcast = _mm256_set1_epi32(x); // we only use the low 32bits of each lane, but this is fine with AVX2
// Each byte gets the source byte containing the corresponding bit
const __m256i shufmask = _mm256_set_epi64x(
0x0303030303030303, 0x0202020202020202,
0x0101010101010101, 0x0000000000000000);
__m256i shuf = _mm256_shuffle_epi8(xbcast, shufmask);
const __m256i andmask = _mm256_set1_epi64x(0x8040201008040201); // every 8 bits -> 8 bytes, pattern repeats.
__m256i isolated_inverted = _mm256_andnot_si256(shuf, andmask);
// this is the extra step: byte == 0 ? 0 : -1
return _mm256_cmpeq_epi8(isolated_inverted, _mm256_setzero_si256());
}
void bitcount_vectorized(const T *data, uint32_t accumulator[bits], const size_t count)
{
for (size_t outer = 0; outer < count - (count % block_size); outer += block_size)
{
__m256i temp_accumulator[bits / 32] = { _mm256_setzero_si256() };
for (size_t inner = 0; inner < block_size; ++inner) {
for (size_t j = 0; j < bits / 32; j++)
{
const auto unpacked = expand_bits_to_bytes(static_cast<uint32_t>(data[outer + inner] >> (j * 32)));
temp_accumulator[j] = _mm256_sub_epi8(temp_accumulator[j], unpacked);
}
}
for (size_t j = 0; j < bits; j++)
{
accumulator[j] += ((uint8_t*)(&temp_accumulator))[j];
}
}
for (size_t outer = count - (count % block_size); outer < count; outer++)
{
for (size_t j = 0; j < bits; j++)
{
if (data[outer] & (T(1) << j))
{
accumulator[j]++;
}
}
}
}
void bitcount_naive(const T *data, uint32_t accumulator[bits], const size_t count)
{
for (size_t outer = 0; outer < count; outer++)
{
for (size_t j = 0; j < bits; j++)
{
if (data[outer] & (T(1) << j))
{
accumulator[j]++;
}
}
}
}
Depending on the chose compiler, the vectorized form achieved roughly a factor 25 speedup over the naive one.
On a Ryzen 5 1600X, the vectorized form roughly achieved the predicted throughput of ~600,000,000 elements per second.
Surprisingly, this is actually still 50% slower than the solution proposed by #njuffa.
See
Efficient Computation of Positional Population Counts Using SIMD Instructions by Marcus D. R. Klarqvist, Wojciech Muła, Daniel Lemire (7 Nov 2019)
Faster Population Counts using AVX2 Instructions by Wojciech Muła, Nathan Kurz, Daniel Lemire (23 Nov 2016).
Basically, each full adder compresses 3 inputs to 2 outputs. So one can eliminate an entire 256-bit word for the price of 5 logic instructions. The full adder operation could be repeated until registers become exhausted. Then results in the registers are accumulated (as seen in most of the other answers).
Positional popcnt for 16-bit subwords is implemented here:
https://github.com/mklarqvist/positional-popcount
// Carry-Save Full Adder (3:2 compressor)
b ^= a;
a ^= c;
c ^= b; // xor sum
b |= a;
b ^= c; // carry
Note: the accumulate step for positional-popcnt is more expensive than for normal simd popcnt. Which I believe makes it feasible to add a couple of half-adders to the end of the CSU, it might pay to go all the way up to 256 words before accumulating.

understanding uart registers indexing

The function below prints out the contents of a UART register. This is the register map.
uart registers
Could somebody explain why, the for loop goes up in +=4?
Thank you
#define UART0_BASE 0x21000
void print_uart(unsigned int base) {
int i;
int val;
unsigned int adr;
for (i=0; i< 0x18; i+=4) {
adr = base + i;
printf("Uart %s [0x%x] -> 0x%x\n",uart_reg[i>>2],adr,val);
}
}
Most likely to fit the start address of each register. Since the for loop runs up to 0x18(24) that makes it 6 registers. It might look like that the registers are only 16 bits but often there's also some padding.

How to check the number of set bits in an 8-bit unsigned char?

So I have to find the set bits (on 1) of an unsigned char variable in C?
A similar question is How to count the number of set bits in a 32-bit integer? But it uses an algorithm that's not easily adaptable to 8-bit unsigned chars (or its not apparent).
The algorithm suggested in the question How to count the number of set bits in a 32-bit integer? is trivially adapted to 8 bit:
int NumberOfSetBits( uint8_t b )
{
b = b - ((b >> 1) & 0x55);
b = (b & 0x33) + ((b >> 2) & 0x33);
return (((b + (b >> 4)) & 0x0F) * 0x01);
}
It is simply a case of shortening the constants the the least significant eight bits, and removing the final 24 bit right-shift. Equally it could be adapted for 16bit using an 8 bit shift. Note that in the case for 8 bit, the mechanical adaptation of the 32 bit algorithm results in a redundant * 0x01 which could be omitted.
The fastest approach for an 8-bit variable is using a lookup table.
Build an array of 256 values, one per 8-bit combination. Each value should contain the count of bits in its corresponding index:
int bit_count[] = {
// 00 01 02 03 04 05 06 07 08 09 0a, ... FE FF
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, ..., 7, 8
};
Getting a count of a combination is the same as looking up a value from the bit_count array. The advantage of this approach is that it is very fast.
You can generate the array using a simple program that counts bits one by one in a slow way:
for (int i = 0 ; i != 256 ; i++) {
int count = 0;
for (int p = 0 ; p != 8 ; p++) {
if (i & (1 << p)) {
count++;
}
}
printf("%d, ", count);
}
(demo that generates the table).
If you would like to trade some CPU cycles for memory, you can use a 16-byte lookup table for two 4-bit lookups:
static const char split_lookup[] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
};
int bit_count(unsigned char n) {
return split_lookup[n&0xF] + split_lookup[n>>4];
}
Demo.
I think you are looking for Hamming Weight algorithm for 8bits?
If it is true, here is the code:
unsigned char in = 22; //This is your input number
unsigned char out = 0;
in = in - ((in>>1) & 0x55);
in = (in & 0x33) + ((in>>2) & 0x33);
out = ((in + (in>>4) & 0x0F) * 0x01) ;
Counting the number of digits different than 0 is also known as a Hamming Weight. In this case, you are counting the number of 1's.
Dasblinkenlight provided you with a table driven implementation, and Olaf provided you with a software based solution. I think you have two other potential solutions. The first is to use a compiler extension, the second is to use an ASM specific instruction with inline assembly from C.
For the first alternative, see GCC's __builtin_popcount(). (Thanks to Artless Noise).
For the second alternative, you did not specify the embedded processor, but I'm going to offer this in case its ARM based.
Some ARM processors have the VCNT instruction, which performs the count for you. So you could do it from C with inline assembly:
inline
unsigned int hamming_weight(unsigned char value) {
__asm__ __volatile__ (
"VCNT.8"
: "=value"
: "value"
);
return value;
}
Also see Fastest way to count number of 1s in a register, ARM assembly.
For completeness, here is Kernighan's bit counting algorithm:
int count_bits(int n) {
int count = 0;
while(n != 0) {
n &= (n-1);
count++;
}
return count;
}
Also see Please explain the logic behind Kernighan's bit counting algorithm.
I made an optimized version. With a 32-bit processor, utilizing multiplication, bit shifting and masking can make smaller code for the same task, especially when the input domain is small (8-bit unsigned integer).
The following two code snippets are equivalent:
unsigned int bit_count_uint8(uint8_t x)
{
uint32_t n;
n = (uint32_t)(x * 0x08040201UL);
n = (uint32_t)(((n >> 3) & 0x11111111UL) * 0x11111111UL);
/* The "& 0x0F" will be optimized out but I add it for clarity. */
return (n >> 28) & 0x0F;
}
/*
unsigned int bit_count_uint8_traditional(uint8_t x)
{
x = x - ((x >> 1) & 0x55);
x = (x & 0x33) + ((x >> 2) & 0x33);
x = ((x + (x >> 4)) & 0x0F);
return x;
}
*/
This produces smallest binary code for IA-32, x86-64 and AArch32 (without NEON instruction set) as far as I can find.
For x86-64, this doesn't use the fewest number of instructions, but the bit shifts and downcasting avoid the use of 64-bit instructions and therefore save a few bytes in the compiled binary.
Interestingly, in IA-32 and x86-64, a variant of the above algorithm using a modulo ((((uint32_t)(x * 0x08040201U) >> 3) & 0x11111111U) % 0x0F) actually generates larger code, due to a requirement to move the remainder register for return value (mov eax,edx) after the div instruction. (I tested all of these in Compiler Explorer)
Explanation
I denote the eight bits of the byte x, from MSB to LSB, as a, b, c, d, e, f, g and h.
abcdefgh
* 00001000 00000100 00000010 00000001 (make 4 copies of x
--------------------------------------- with appropriate
abc defgh0ab cdefgh0a bcdefgh0 abcdefgh bit spacing)
>> 3
---------------------------------------
000defgh 0abcdefg h0abcdef gh0abcde
& 00010001 00010001 00010001 00010001
---------------------------------------
000d000h 000c000g 000b000f 000a000e
* 00010001 00010001 00010001 00010001
---------------------------------------
000d000h 000c000g 000b000f 000a000e
... 000h000c 000g000b 000f000a 000e
... 000c000g 000b000f 000a000e
... 000g000b 000f000a 000e
... 000b000f 000a000e
... 000f000a 000e
... 000a000e
... 000e
^^^^ (Bits 31-28 will contain the sum of the bits
a, b, c, d, e, f, g and h. Extract these
bits and we are done.)
Maybe not the fastest, but straightforward:
int count = 0;
for (int i = 0; i < 8; ++i) {
unsigned char c = 1 << i;
if (yourVar & c) {
//bit n°i is set
//first bit is bit n°0
count++;
}
}
For 8/16 bit MCUs, a loop will very likely be faster than the parallel-addition approach, as these MCUs cannot shift by more than one bit per instruction, so:
size_t popcount(uint8_t val)
{
size_t cnt = 0;
do {
cnt += val & 1U; // or: if ( val & 1 ) cnt++;
} while ( val >>= 1 ) ;
return cnt;
}
For the incrementation of cnt, you might profile. If still too slow, an assember implementation might be worth a try using carry flag (if available). While I am in against using assembler optimizations in general, such algorithms are one of the few good exceptions (still just after the C version fails).
If you can omit the Flash, a lookup table as proposed by #dasblinkenlight is likey the fastest approach.
Just a hint: For some architectures (notably ARM and x86/64), gcc has a builtin: __builtin_popcount(), you also might want to try if available (although it takes int at least). This might use a single CPU instruction - you cannot get faster and more compact.
Allow me to post a second answer. This one is the smallest possible for ARM processors with Advanced SIMD extension (NEON). It's even smaller than __builtin_popcount() (since __builtin_popcount() is optimized for unsigned int input, not uint8_t).
#ifdef __ARM_NEON
/* ARM C Language Extensions (ACLE) recommends us to check __ARM_NEON before
including <arm_neon.h> */
#include <arm_neon.h>
unsigned int bit_count_uint8(uint8_t x)
{
/* Set all lanes at once so that the compiler won't emit instruction to
zero-initialize other lanes. */
uint8x8_t v = vdup_n_u8(x);
/* Count the number of set bits for each lane (8-bit) in the vector. */
v = vcnt_u8(v);
/* Get lane 0 and discard other lanes. */
return vget_lane_u8(v, 0);
}
#endif

Is there a more efficient way of splitting a number into its digits?

I have to split a number into its digits in order to display it on an LCD. Right now I use the following method:
pos = 7;
do
{
LCD_Display(pos, val % 10);
val /= 10;
pos--;
} while (pos >= 0 && val);
The problem with this method is that division and modulo operations are extremely slow on an MSP430 microcontroller. Is there any alternative to this method, something that either does not involve division or that reduces the number of operations?
A note: I can't use any library functions, such as itoa. The libraries are big and the functions themselves are rather resource hungry (both in terms of number of cycles, and RAM usage).
You could do subtractions in a loop with predefined base 10 values.
My C is a bit rusty, but something like this:
int num[] = { 10000000,1000000,100000,10000,1000,100,10,1 };
for (pos = 0; pos < 8; pos++) {
int cnt = 0;
while (val >= num[pos]) {
cnt++;
val -= num[pos];
}
LCD_Display(pos, cnt);
}
Yes, there's another way, originally invented (at least AFAIK) by Terje Mathiesen. Instead of dividing by 10, you (sort of) multiply by the reciprocal. The trick, of course, is that in integers you can't represent the reciprocal directly. To make up for that, you work with scaled integers. If we had floating point, we could extract digits with something like:
input = 123
first digit = integer(10 * (fraction(input * .1))
second digit = integer(100 * (fraction(input * .01))
...and so on for as many digits as needed. To do this with integers, we basically just scale those by 232 (and round each up, since we'll use truncating math). In C, the algorithm looks like this:
#include <stdio.h>
// here are our scaled factors
static const unsigned long long factors[] = {
3435973837, // ceil((0.1 * 2**32)<<3)
2748779070, // ceil((0.01 * 2**32)<<6)
2199023256, // etc.
3518437209,
2814749768,
2251799814,
3602879702,
2882303762,
2305843010
};
static const char shifts[] = {
3, // the shift value used for each factor above
6,
9,
13,
16,
19,
23,
26,
29
};
int main() {
unsigned input = 13754;
for (int i=8; i!=-1; i--) {
unsigned long long inter = input * factors[i];
inter >>= shifts[i];
inter &= (unsigned)-1;
inter *= 10;
inter >>= 32;
printf("%u", inter);
}
return 0;
}
The operations in the loop will map directly to instructions on most 32-bit processors. Your typical multiply instruction will take 2 32-bit inputs, and produce a 64-bit result, which is exactly what we need here. It'll typically be quite a bit faster than a division instruction as well. In a typical case, some of the operations will (or at least with some care, can) disappear in assembly language. For example, where I've done the inter &= (unsigned)-1;, in assembly language you'll normally be able to just use the lower 32-bit register where the result was stored, and just ignore whatever holds the upper 32 bits. Likewise, the inter >>= 32; just means we use the value in the upper 32-bit register, and ignore the lower 32-bit register.
For example, in x86 assembly language, this comes out something like:
mov ebx, 9 ; maximum digits we can deal with.
mov esi, offset output_buffer
next_digit:
mov eax, input
mul factors[ebx*4]
mov cl, shifts[ebx]
shrd eax, edx, cl
mov edx, 10 ; overwrite edx => inter &= (unsigned)-1
mul edx
add dl, '0'
mov [esi], dl ; effectively shift right 32 bits by ignoring 32 LSBs in eax
inc esi
dec ebx
jnz next_digit
mov [esi], bl ; zero terminate the string
For the moment, I've cheated a tiny bit, and written the code assuming an extra item at the beginning of each table (factors and shifts). This isn't strictly necessary, but simplifies the code at the cost of wasting 8 bytes of data. It's pretty easy to do away with that too, but I haven't bothered for the moment.
In any case, doing away with the division makes this a fair amount faster on quite a few low- to mid-range processors that lack dedicated division hardware.
Another way is using double dabble. This is a way to convert binary to BCD with only additions and bit shifts so it's very appropriate for microcontrollers. After splitting to BCDs you can easily print out each number
I would use a temporary string, like:
char buffer[8];
itoa(yourValue, buffer, 10);
int pos;
for(pos=0; pos<8; ++pos)
LCD_Display(pos, buffer[pos]); /* maybe you'll need a cast here */
edit: since you can't use library's itoa, then I think your solution is already the best, providing you compile with max optimization turned on.
You may take a look at this: Most optimized way to calculate modulus in C
This is my attempt at a complete solution. Credit should go to Guffa for providing the general idea. This should work for 32bit integers, signed or otherwise and 0.
#include <stdlib.h>
#include <stdio.h>
#define MAX_WIDTH (10)
static unsigned int uiPosition[] = {
1u,
10u,
100u,
1000u,
10000u,
100000u,
1000000u,
10000000u,
100000000u,
1000000000u,
};
void uitostr(unsigned int uiSource, char* cTarget)
{
int i, c=0;
for( i=0; i!=MAX_WIDTH; ++i )
{
cTarget[i] = 0;
}
if( uiSource == 0 )
{
cTarget[0] = '0';
cTarget[1] = '\0';
return;
}
for( i=MAX_WIDTH -1; i>=0; --i )
{
while( uiSource >= uiPosition[i] )
{
cTarget[c] += 1;
uiSource -= uiPosition[i];
}
if( c != 0 || cTarget[c] != 0 )
{
cTarget[c] += 0x30;
c++;
}
}
cTarget[c] = '\0';
}
void itostr(int iSource, char* cTarget)
{
if( iSource < 0 )
{
cTarget[0] = '-';
uitostr((unsigned int)(iSource * -1), cTarget + 1);
}
else
{
uitostr((unsigned int)iSource, cTarget);
}
}
int main()
{
char szStr[MAX_WIDTH +1] = { 0 };
// signed integer
printf("Signed integer\n");
printf("int: %d\n", 100);
itostr(100, szStr);
printf("str: %s\n", szStr);
printf("int: %d\n", -1);
itostr(-1, szStr);
printf("str: %s\n", szStr);
printf("int: %d\n", 1000000000);
itostr(1000000000, szStr);
printf("str: %s\n", szStr);
printf("int: %d\n", 0);
itostr(0, szStr);
printf("str: %s\n", szStr);
return 0;
}

Resources