The code produces nan - c

I have already posted a similar code, but now it produces nan=( May be I declare angles in wrong way. This is an integrator:
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#include "rk4.h"
#define M_PI 3.141592653589793
void integrator(vector_function f, int n, double* y,
double t, double dt, double* yn)
{
double k1[n],k2[n],k3[n],k4[n],ytmp[n];
double deriv[n]; // note that dynamic arrays are
// a C99 feature -- check your compiler flags
f(y,t,deriv);
for(int i=0;i<n;++i)
{
k1[i]=deriv[i]*dt;
ytmp[i]=y[i]+0.5*dt*deriv[i];
}
f(ytmp,t+0.5*dt,deriv);
for(int i=0;i<n;++i)
{
k2[i]=dt*deriv[i];
ytmp[i]=y[i]+0.5*dt*deriv[i];
}
f(ytmp,t+0.5*dt,deriv);
for(int i=0;i<n;++i)
{
k3[i]=dt*deriv[i];
ytmp[i]=y[i]+dt*deriv[i];
}
f(ytmp,t+dt,deriv);
for(int i=0;i<n;++i) k4[i]=dt*deriv[i];
for(int i=0;i<n;++i)
{
yn[i]=y[i]+(k1[i]+2*k2[i]+2*k3[i]+k4[i])/6;
}
}
This is a function:
#include<stdio.h>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include "rk4.h"
//initial conditions
#define M_PI 3.141592653589793
#define ms 1.9891e30
#define me 5.9736e24
#define a 149598261e3
#define e 0.0167112303531389
#define G 6.67428e-11
#define Tday 86164.1
#define Tyear 31552844.28
#define I1 8.008e37
#define I3 8.034e37
#define Theta0 24.45*2*M_PI/360.0
void F(double* y, double t, double* f);
int main(int argc, char ** argv)
{
double tf;
int m;
printf("Please input the number of years\n");
scanf("%lf",&tf);
tf = tf*Tyear;
printf("please input the number of steps \n");
scanf("%d",&m);
double yn[18];
double t=0;
double dt=(tf-t) / m;
double re0 = a*(1+e)*ms/(me+ms);
double KE = G*ms*me*(1.0/(1+e)-0.5)/a;
double ve0 = sqrt(2*KE/(me*(1+me/ms)));
double rs0 = -me*re0/ms;
double vs0 = -me*ve0/ms;
//angles
double vpsy0 = (2.0*M_PI)/Tday;
double y[18]= {re0, 0, 0, 0, ve0, 0, rs0, 0, 0, 0, vs0, 0, 0, Theta0, 0, 0, 0, vpsy0};
//integrator
for (int k=0; k<m;k++)
{
integrator(F, 18, y, t, dt, yn);
t=t+dt;
for(int i=0; i<18; ++i) y[i] = yn[i];
printf("%e ", t); for(int i=0; i<18; ++i) printf("%e ", y[i]);
printf("\n");
}
// printf("the integrated components re are %e %e %e\n",yn[0], yn[1], yn[2]);
// printf("the integrated components ve are %e %e %e\n",yn[3], yn[4], yn[5]);
// printf("the integrated components rs are %e %e %e\n",yn[6], yn[7], yn[8]);
// printf("the integrated components vs are %e %e %e\n",yn[9], yn[10], yn[11]);
// printf("the intigrated theta is %lf\n",yn[2]);
//printf("%lf\n",dcube);
//fprintf(f,"%lf/t%lf/n",y[0],y[2]);
//fclose(f);
return 0;
}
void F(double* y, double t, double* f)
{
double d[3] = {y[0]-y[6], y[1]-y[7], y[5]-y[8]};
double dcube;
double dsqrt;
double d5;
double d3 = d[0]*sin(y[13])*sin(y[14])-d[1]*cos(y[13])*sin(y[14])+d[2]*cos(y[14]);
double c0;
dsqrt = d[0]*d[0] + d[1]*d[1] + d[2]*d[2];
dcube = pow(dsqrt, 1.5);
d5 = pow(dsqrt, 2.5);
c0 = 2.0*M_PI/Tday;
//the term angular[] (different for every component)
double a1 = sin(y[12])*sin(y[13]);
double a2 = -cos(y[12])*sin(y[13]);
double a3 = cos(y[13]);
double angular[3]={a1, a2, a3};
for (int i = 0; i<3; ++i)
{
//velocity Earth
f[i] = y[3+i];
//acceleration Earth
f[3+i] = -(G*ms*d[i]/dcube) + (3.0*G*ms*(I1-I3)*((d[i]/2.0) - (5.0*pow(d3, 2)*d[i]/2.0*dsqrt) + (d3*angular[i]/2.0)))/d5*me;
//Velocity Sun
f[6+i] = y[9+i];
//acceleration Sun
f[9+i] = (G*me*d[i]/dcube) - (3.0*G*(I1-I3)*((d[i]/2.0) - (5.0*pow(d3, 2)*d[i]/2.0*dsqrt) + (d3*angular[i]/2.0)))/d5;
}
//angles
f[12] = y[15];
f[13] = y[16];
f[14] = y[17];
f[15] = (2.0*y[15]*y[16]*cos(y[13]) + I3*c0*y[16]/I1 + 3.0*G*ms*(I1-I3)*d3*(y[0]*cos(y[12])+y[1]*sin(y[12])))/sin(y[13]);
f[16] = pow(y[15], 2)*sin(y[13])*cos(y[13]) - (I3*c0*y[15]*sin(y[13])/I1) + 3.0*G*ms*(I1-I3)*d3*((d[0]*sin(y[12])-d[1]*cos(y[12]))*cos(y[13])-d[2]*sin(y[13]))/(d5*I1);
f[17] = y[15]*y[16]*sin(y[13]) - f[16]*cos(y[13]);
}
and this is a Makefile:
integrator: integrator.o rk4.o
gcc -o $# $^ -lm
integrator.o: integrator.c
gcc -g -c integrator.c -std=c99 -lm
rk4.o: rk4.c
gcc -g -c rk4.c -std=c99 -lm
clean:
rm -rf *.o integrator
Help, please! There are still a probability that I have messed up formulas, but I assume that there also wrong declaration of something or some overflow...
Thank you all in advance!

Given your math, this is probably how you end up with NaN.
Step 1: something / 0 -> INF (or -INF)
Step 2: something * INF -> NaN
So put tests in your code for every divisor to see if it is or close to zero: I usually test that the value is (-1e-20 < x ) && ( x < 1e-20 )
You can also use the tests in <math.h> isinf() and isnan() to test as you go.

Related

getPositiveValues won't return the values

What is not working:
In the code below, the values input in scanf under getPositiveValue will not return. They return as 0 no matter what the input is.
I have no clue how to get around this. Can someone show me why it is not working?
What I have tried:
I tried using return CHAN; and even return CHAN.n; and all the other members but that did not work.
My code:
#include <stdio.h>
#include <math.h>
#define TRUE 1
#define FALSE 0
#define N 25 //number of lines
typedef struct CHANNEL_ //Structure CHANNEL
{
char name[9];
double n;//roughness coefficient
double S;//channel slope
double B;//width
double D;//maxDepth
} CHANNEL;
double computeVelocity(CHANNEL, double);
int main(void)
{
CHANNEL CHAN;
void getPositiveValue(CHANNEL);
void displayTable(CHANNEL);
//Function declarations
printf("Enter the name of the channel: ");
fgets(CHAN.name, 9, stdin);
getPositiveValue(CHAN);
printf("Channel data for %s\n Coefficient of roughness: %lf\n Slope: %lf\n Width: %lf\n Maximum depth: %lf\n", CHAN.name, CHAN.n, CHAN.S, CHAN.B, CHAN.D);
printf("Depth Average Velocity\n");
displayTable(CHAN); //function call to display the table with values
}
void getPositiveValue(CHANNEL CHAN)
{
int Flag; //sentinel
do
{
Flag = FALSE;
printf("Give the coefficient for roughness, slope, width, and maxdepth: ");
scanf("%lf %lf %lf %lf", &CHAN.n, &CHAN.S, &CHAN.B, &CHAN.D);
if(CHAN.n < 0 || CHAN.S < 0 || CHAN.B < 0 || CHAN.D < 0) //sentinel checkpoint
{
Flag = TRUE;
printf("The values must be positive.\n");
}
} while(Flag == TRUE);
}
void displayTable(CHANNEL CHAN)
{
double increment = CHAN.D/N;
double H = 0; //depth
double arraydepth[N]; //N is used to avoid magic numbers when defining array size
double arrayvelocity[N]; //N is used to avoid magic numbers when defining array size
int i; //using separate integers for the two different arrays just so it looks better and less confusing
for ( i = 0; i < N; i++)
{
H += increment;
arrayvelocity[i] = computeVelocity(CHAN, H);
arraydepth[i] = H;
printf("%lf %lf\n", arraydepth[i], arrayvelocity[i]);
}
}
double computeVelocity(CHANNEL CHAN, double H)
{
double U;
U = CHAN.B / H;
U = U / (CHAN.B + (2 * H));
U = pow(U, (2 / 3));
U = U / CHAN.n;
U = U * (sqrt(CHAN.S));
return U;
}
The input problem you are having is because of the fact that functions are call by value in C. This means that when you pass a struct to a function, it is a copy of the struct that is worked with in the function, not the original. Any changes made to the struct within the getPositiveValue() function are not visible once control returns to main().
To fix this problem, pass a pointer to the structure. Use the -> operator to dereference the pointer and access members in one shot. Here is a modified version of your code. I also took the liberty of moving your function declarations to the top of the program.
There is also an error in the call to the pow() function found in computeVelocity():
U = pow(U, (2 / 3));
should be:
U = pow(U, (2.0 / 3.0));
The expression 2 / 3 performs integer division, with the result zero, so after this call to pow(), U is always 1. This can be easily fixed by forcing floating point division, as in the second line above.
#include <stdio.h>
#include <math.h>
#define TRUE 1
#define FALSE 0
#define N 25 //number of lines
typedef struct CHANNEL_ //Structure CHANNEL
{
char name[9];
double n;//roughness coefficient
double S;//channel slope
double B;//width
double D;//maxDepth
} CHANNEL;
double computeVelocity(CHANNEL, double);
void getPositiveValue(CHANNEL *);
void displayTable(CHANNEL);
int main(void)
{
CHANNEL CHAN;
printf("Enter the name of the channel: ");
fgets(CHAN.name, 9, stdin);
getPositiveValue(&CHAN);
printf("Channel data for %s\n Coefficient of roughness: %lf\n Slope: %lf\n Width: %lf\n Maximum depth: %lf\n", CHAN.name, CHAN.n, CHAN.S, CHAN.B, CHAN.D);
printf("Depth Average Velocity\n");
displayTable(CHAN); //function call to display the table with values
}
void getPositiveValue(CHANNEL *CHAN)
{
int Flag; //sentinel
do
{
Flag = FALSE;
printf("Give the coefficient for roughness, slope, width, and maxdepth: ");
scanf("%lf %lf %lf %lf", &CHAN->n, &CHAN->S, &CHAN->B, &CHAN->D);
if(CHAN->n < 0 || CHAN->S < 0 || CHAN->B < 0 || CHAN->D < 0) //sentinel checkpoint
{
Flag = TRUE;
printf("The values must be positive.\n");
}
}while(Flag == TRUE);
}
void displayTable(CHANNEL CHAN)
{
double increment = CHAN.D/N;
double H = 0; //depth
double arraydepth[N]; //N is used to avoid magic numbers when defining array size
double arrayvelocity[N]; //N is used to avoid magic numbers when defining array size
int i; //using separate integers for the two different arrays just so it looks better and less confusing
for ( i = 0; i < N; i++)
{
H += increment;
arrayvelocity[i] = computeVelocity(CHAN, H);
arraydepth[i] = H;
printf("%lf %lf\n", arraydepth[i], arrayvelocity[i]);
}
}
double computeVelocity(CHANNEL CHAN, double H)
{
double U;
U = CHAN.B / H;
U = U / (CHAN.B + (2 * H));
U = pow(U, (2.0 / 3.0));
U = U / CHAN.n;
U = U * (sqrt(CHAN.S));
return U;
}
Sample program interaction:
Enter the name of the channel: chan
Give the coefficient for roughness, slope, width, and maxdepth: 0.035 0.0001 10 4.2
Channel data for chan
Coefficient of roughness: 0.035000
Slope: 0.000100
Width: 10.000000
Maximum depth: 4.200000
Depth Average Velocity
0.168000 0.917961
0.336000 0.566077
0.504000 0.423161
0.672000 0.342380
0.840000 0.289368
1.008000 0.251450
1.176000 0.222759
1.344000 0.200172
1.512000 0.181859
1.680000 0.166669
1.848000 0.153840
2.016000 0.142843
2.184000 0.133301
2.352000 0.124935
2.520000 0.117535
2.688000 0.110939
2.856000 0.105020
3.024000 0.099677
3.192000 0.094829
3.360000 0.090410
3.528000 0.086363
3.696000 0.082644
3.864000 0.079214
4.032000 0.076040
4.200000 0.073095
There are many compiler error in your code. Here is my first try to fix it
#include <stdio.h>
#include <math.h>
#define TRUE 1
#define FALSE 0
#define N 25 //number of lines
typedef struct CHANNEL_ {
char name[50];
double n;//roughness coefficient
double S;//channel slope
double B;//width
double D;//maxDepth
} CHANNEL;
double computeVelocity(CHANNEL, double);
void getPositiveValue(CHANNEL);
void displayTable(CHANNEL);
int main(void) {
CHANNEL CHAN;
printf("Enter the name of the channel: ");
fgets(CHAN.name, 50, stdin);
getPositiveValue(CHAN);
printf("Channel data for %s\n Coefficient of roughness: %lf\n Slope: %lf\n Width: %lf\n Maximum depth: %lf\n", CHAN.name, CHAN.n, CHAN.S, CHAN.B, CHAN.D);
printf("Depth Average Velocity\n");
displayTable(CHAN); //function call to display the table with values
}
void getPositiveValue(CHANNEL CHAN) {
int Flag; //sentinel
do {
Flag = FALSE;
printf("Give the coefficient for roughness: \n Give the slope: \n Give the channel width: \n Give the maximum depth of the channel: ");
scanf("%lf %lf %lf %lf", &CHAN.n, &CHAN.S, &CHAN.B, &CHAN.D);
if(CHAN.n < 0 || CHAN.S < 0 || CHAN.B < 0 || CHAN.D < 0) {
Flag = TRUE;
printf("The values must be positive.\n");
}
} while(Flag == TRUE);
}
void displayTable(CHANNEL CHAN) {
double increment = CHAN.D/N;
double H = 0; //depth
double arraydepth[N];
double arrayvelocity[N];
int i;
for ( i = 0; i < N; i++) {
H += increment;
arrayvelocity[i] = computeVelocity(CHAN, H);
arraydepth[i] = H;
printf("%lf %lf\n", arraydepth[i], arrayvelocity[i]);
}
}
double computeVelocity(CHANNEL CHAN, double H)
{
double U;
U = CHAN.B / H;
U = U / (CHAN.B + (2 * H));
U = pow(U, (2 / 3));
U = U / CHAN.n;
U = U * (sqrt(CHAN.S));
return U;
}
The first error would be struct definition. In C, you can define the struct and at the same time define a variable. But you should not use the same name to confuse yourself and the compiler. Also you need to understand void function does not return a value and cannot be on the right side of an = expression.
Use typedef can save you to type struct keyword each time you need it. You also need to use %s to output a string. Also typos here and there.

How to use GSL to fit an arbitrary function (i.e. 1/x + 1/x^2) to some data?

I have some data and I need to fit a second order "polynomial" in 1/x to it using C and GSL, but I don't really understand how to do it.
The documentation for GSL is, unfortunately, not very helpful, I have read it for a few hours now, but I don't seem to be getting closer to the solution.
Google doesn't turn up anything useful either, and I really don't know what to do anymore.
Could you maybe give me some hints on how to accomplish this, or where even to look?
Thanks
Edit 1: The main problem basically is that
Sum n : a_n*x^(-1)
is not a polynomial, so basic fitting or solving algorithms won't work correctly. That's what I tried, using the code for quadratic fitting from this link, also substituting x->1/x, but it didn't work.
May be it's a bit too late for you to read this. However, I post my answer anyway for other people looking for enlightenment.
I suppose, that this basic example can help you. First of all, you have to read about this method of non-linear fitting since you have to adapt the code for any of your own problem.
Second, it's a bit not really clear for me from your post what function you use.
For the sake of clarity let's consider
a1/x + a2/x**2
where a1 and a2 - your parameters.
Using that slightly modified code from the link above ( I replaced 1/x with 1/(x + 0.1) to avoid singularities but it doesn't really change the picture):
#include <stdlib.h>
#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_multifit_nlinear.h>
/* number of data points to fit */
#define N 40
#define FIT(i) gsl_vector_get(w->x, i)
#define ERR(i) sqrt(gsl_matrix_get(covar,i,i))
struct data
{
size_t n;
double * y;
};
int expb_f (const gsl_vector * x, void *data, gsl_vector * f)
{
size_t n = ((struct data *)data)->n;
double *y = ((struct data *)data)->y;
double A_1 = gsl_vector_get (x, 0);
double A_2 = gsl_vector_get (x, 1);
size_t i;
for (i = 0; i < n; i++)
{
/* Model Yi = A_1 / x + A_2 / x**2 */
double t = i;
double Yi = A_1 / (t + 0.1) +A_2 / (t*t + 0.2*t + 0.01) ;
gsl_vector_set (f, i, Yi - y[i]);
}
return GSL_SUCCESS;
}
int expb_df (const gsl_vector * x, void *data, gsl_matrix * J)
{
size_t n = ((struct data *)data)->n;
double A_1 = gsl_vector_get (x, 0);
double A_2 = gsl_vector_get (x, 1);
size_t i;
for (i = 0; i < n; i++)
{
/* Jacobian matrix J(i,j) = dfi / dxj, */
/* where fi = (Yi - yi)/sigma[i], */
/* Yi = A_1 / (t + 0.1) +A_2 / (t*t + 0.2*t + 0.01) */
/* and the xj are the parameters (A_1,A_2) */
double t = i;
double e = 1 / (t + 0.1);
double e1 = 1 / (t*t + 0.2*t + 0.01);
gsl_matrix_set (J, i, 0, e);
gsl_matrix_set (J, i, 1, e1);
}
return GSL_SUCCESS;
}
void callback(const size_t iter, void *params, const gsl_multifit_nlinear_workspace *w)
{
gsl_vector *f = gsl_multifit_nlinear_residual(w);
gsl_vector *x = gsl_multifit_nlinear_position(w);
double rcond;
/* compute reciprocal condition number of J(x) */
gsl_multifit_nlinear_rcond(&rcond, w);
fprintf(stderr, "iter %2zu: A_1 = % e A_2 = % e cond(J) = % e, |f(x)| = % e \n", iter, gsl_vector_get(x, 0), gsl_vector_get(x, 1), 1.0 / rcond, gsl_blas_dnrm2(f));
}
int main (void)
{
const gsl_multifit_nlinear_type *T = gsl_multifit_nlinear_trust;
gsl_multifit_nlinear_workspace *w;
gsl_multifit_nlinear_fdf fdf;
gsl_multifit_nlinear_parameters fdf_params = gsl_multifit_nlinear_default_parameters();
const size_t n = N;
const size_t p = 2;
gsl_vector *f;
gsl_matrix *J;
gsl_matrix *covar = gsl_matrix_alloc (p, p);
double y[N], weights[N];
struct data d = { n, y };
double x_init[2] = { 1.0, 1.0 }; /* starting values */
gsl_vector_view x = gsl_vector_view_array (x_init, p);
gsl_vector_view wts = gsl_vector_view_array(weights, n);
gsl_rng * r;
double chisq, chisq0;
int status, info;
size_t i;
const double xtol = 1e-8;
const double gtol = 1e-8;
const double ftol = 0.0;
gsl_rng_env_setup();
r = gsl_rng_alloc(gsl_rng_default);
/* define the function to be minimized */
fdf.f = expb_f;
fdf.df = expb_df; /* set to NULL for finite-difference Jacobian */
fdf.fvv = NULL; /* not using geodesic acceleration */
fdf.n = n;
fdf.p = p;
fdf.params = &d;
/* this is the data to be fitted */
for (i = 0; i < n; i++)
{
double t = i;
double yi = (0.1 + 3.2/(t + 0.1))/(t + 0.1);
double si = 0.1 * yi;
double dy = gsl_ran_gaussian(r, si);
weights[i] = 1.0 / (si * si);
y[i] = yi + dy;
printf ("% e % e \n",t + 0.1, y[i]);
};
/* allocate workspace with default parameters */
w = gsl_multifit_nlinear_alloc (T, &fdf_params, n, p);
/* initialize solver with starting point and weights */
gsl_multifit_nlinear_winit (&x.vector, &wts.vector, &fdf, w);
/* compute initial cost function */
f = gsl_multifit_nlinear_residual(w);
gsl_blas_ddot(f, f, &chisq0);
/* solve the system with a maximum of 20 iterations */
status = gsl_multifit_nlinear_driver(20, xtol, gtol, ftol, callback, NULL, &info, w);
/* compute covariance of best fit parameters */
J = gsl_multifit_nlinear_jac(w);
gsl_multifit_nlinear_covar (J, 0.0, covar);
/* compute final cost */
gsl_blas_ddot(f, f, &chisq);
fprintf(stderr, "summary from method '%s/%s'\n", gsl_multifit_nlinear_name(w), gsl_multifit_nlinear_trs_name(w));
fprintf(stderr, "number of iterations: %zu \n", gsl_multifit_nlinear_niter(w));
fprintf(stderr, "function evaluations: %zu \n", fdf.nevalf);
fprintf(stderr, "Jacobian evaluations: %zu \n", fdf.nevaldf);
fprintf(stderr, "reason for stopping: %s \n", (info == 1) ? "small step size" : "small gradient");
fprintf(stderr, "initial |f(x)| = % e \n", sqrt(chisq0));
fprintf(stderr, "final |f(x)| = % e \n", sqrt(chisq));
{
double dof = n - p;
double c = GSL_MAX_DBL(1, sqrt(chisq / dof));
fprintf(stderr, "chisq/dof = % e \n", chisq / dof);
fprintf (stderr, "A_1 = % f +/- % f \n", FIT(0), c*ERR(0));
fprintf (stderr, "A_2 = % f +/- % f \n", FIT(1), c*ERR(1));
}
fprintf (stderr, "status = %s \n", gsl_strerror (status));
gsl_multifit_nlinear_free (w);
gsl_matrix_free (covar);
gsl_rng_free (r);
return 0;
}
Results of simulations
Unfortunately, Gnuplot doesn't want to fit this data for some reason. Usually it gives the same function up to certain decimal numbers and helps to verify your code.

Program to find root of a third degree polynomial in c (Sidi's Method)

I am trying to write a program to find the root of a third degree polynomial function using Sidi's method which is similar to Newton's Method and the Secant Method. The only difference is using the interpolated polynomial instead of the derivative of the function. I also have to test my code with 50 guesses, and I have tried writing the code but when I execute it nothing happens. This is my code
double f(double x)
{
return ((3*x*x*x)-(6*x*x)-(6*x)-5);//polynomial equation
}
double y(double z)
{
return ((17.8*z*z*z)-(34.5*z*z)+(199.7*z)+30);//interpolation equation
}
double dy (float z)
{
return ((53.4*z*z)-(69*z)+199.7);//derivative of interpolation equation
}
main()
{
double i;
int maxitr = 10;
int itr;
double a;
double b;
double maxdec = 0.000001;
for(i=1; i<= 50; i++){
printf("Input guess ");
scanf("%lf", i);
for(itr = 1; itr < maxitr; itr++){
a = f(i) / dy(i);
b = i - a;
if(fabs(a) < maxdec){
printf("root: %lf", b);
return 0;
}
i = b;
}
}
Hope this helps you. My program solves this equation f(x)=x^7-1000 = 0.You can add your equation by editing the void f(double x[],int x1,int x2) function. Also you add whatever else you want more.
#include<stdio.h>
#include<math.h>
void f(double x[],int x1,int x2);
int main()
{
double x[50];
int x1,x2;
printf("Enter x1:\n");
scanf("%d",&x1);
printf("Enter x2:\n");
scanf("%d",&x2);
printf("\nCalculating....\n");
f(x,x1,x2);
return 0;
}
void f(double x[],int x1,int x2)
{
// Assuming Equation is x^7 - 1000
// you can edit this code to keep your
// own equation
int i,prec=10000;
double a,b,num;
double denom,d1,d2;
x[0] = 0.00; //let's start with index 1 instead of 0
x[1] = x1;
x[2] = x2;
printf("x[2]:%f\n",x[2]);
for(i=3;i<=50;i++)
{
num = pow(x[i-1],7)-1000;
d1 = (pow(x[i-1],7)-1000) - (pow(x[i-2],7)-1000);
d2 = (x[i-1] - x[i-2]);
denom = d1/d2;
x[i] = x[i-1] - num/denom;
printf("x[%d]:%f\n",i,x[i]);
a= (long int)(x[i]*prec);
b= (long int)(x[i-1]*prec);
if(a == b)
{
break;
}
}
printf("x[%d]=%f and x[%d]=%f are apprx equal!\n",i-1,x[i-1],i,x[i]);
}
Where,
num is (x2)^7 - 1000
d1 is ((x2)^7 - 1000)-((x1)^7-1000)
d2 is x2-x1
denom is d1/d2

R freezes when I call a C code

I wrote a small C code to do random walk metropolis, which I call in R. When I run it, R freezes. I am not sure which part of the code is incorrect. I following this Peng and Leeuw tutorial (on Page 6). As a disclaimer: I don't have much experience with C, and have only some basic knowledge of C++
#----C code --------
#include <R.h>
#include <Rmath.h>
void mcmc(int *niter, double *mean, double *sd, double *lo_bound,
double *hi_bound, double *normal)
{
int i, j;
double x, x1, h, p;
x = runif(-5, 5);
for(i=0; i < *niter; i++) {
x1 = runif(*lo_bound, *hi_bound);
while((x1 + x) > 5 || (x1 + x) < -5)
x1 = runif(*lo_bound, *hi_bound);
h = dnorm(x+x1, *mean, *sd, 0)/dnorm(x, *mean, *sd, 0);
if(h >= 1)
h = 1;
p = runif(0, 1);
if(p < h)
x += x1;
normal[i] = x;
}
}
#-----R code ---------
foo_C<-function(mean, sd, lo_bound, hi_bound, niter)
{
result <- .C("mcmc", as.integer(niter), as.double(mean), as.double(sd),
as.double(lo_bound), as.double(hi_bound), normal=double(niter))
result[["normal"]]
}
After compiling it:
dyn.load("foo_C.so")
foo_C(0, 1, -0.5, 0.5, 100)
FOLLOW UP:
The while loop is where the problem lies. But the root of the problem seems to have to do with the function runif, which is supposed to generate a random variable between a lower bound and an upper bound. But it seems that what the function actually does is to randomly pick either the upper bound value (5) or the lower bound value (-5).
You need to follow the instructions in Writing R Extensions, section 6.3 Random number generation and call GetRNGstate(); before you call R's random number generation routines. You also need to call PutRNGstate(); when you're finished.
The reason your code started working is likely because you called set.seed in the R session before you called your mcmc C function.
So your C code should look like this:
#include <R.h>
#include <Rmath.h>
void mcmc(int *niter, double *mean, double *sd, double *lo_bound,
double *hi_bound, double *normal)
{
int i;
double x, x1, h, p;
GetRNGstate();
x = runif(-5.0, 5.0);
for(i=0; i < *niter; i++) {
x1 = runif(*lo_bound, *hi_bound);
while((x1 + x) > 5.0 || (x1 + x) < -5.0) {
x1 = runif(*lo_bound, *hi_bound);
//R_CheckUserInterrupt();
}
h = dnorm(x+x1, *mean, *sd, 0)/dnorm(x, *mean, *sd, 0);
if(h >= 1)
h = 1;
p = runif(0, 1);
if(p < h)
x += x1;
normal[i] = x;
}
PutRNGstate();
}

fast & efficient least squares fit algorithm in C?

I am trying to implement a linear least squares fit onto 2 arrays of data: time vs amplitude. The only technique I know so far is to test all of the possible m and b points in (y = m*x+b) and then find out which combination fits my data best so that it has the least error. However, I think iterating so many combinations is sometimes useless because it tests out everything. Are there any techniques to speed up the process that I don't know about? Thanks.
Try this code. It fits y = mx + b to your (x,y) data.
The arguments to linreg are
linreg(int n, REAL x[], REAL y[], REAL* b, REAL* m, REAL* r)
n = number of data points
x,y = arrays of data
*b = output intercept
*m = output slope
*r = output correlation coefficient (can be NULL if you don't want it)
The return value is 0 on success, !=0 on failure.
Here's the code
#include "linreg.h"
#include <stdlib.h>
#include <math.h> /* math functions */
//#define REAL float
#define REAL double
inline static REAL sqr(REAL x) {
return x*x;
}
int linreg(int n, const REAL x[], const REAL y[], REAL* m, REAL* b, REAL* r){
REAL sumx = 0.0; /* sum of x */
REAL sumx2 = 0.0; /* sum of x**2 */
REAL sumxy = 0.0; /* sum of x * y */
REAL sumy = 0.0; /* sum of y */
REAL sumy2 = 0.0; /* sum of y**2 */
for (int i=0;i<n;i++){
sumx += x[i];
sumx2 += sqr(x[i]);
sumxy += x[i] * y[i];
sumy += y[i];
sumy2 += sqr(y[i]);
}
REAL denom = (n * sumx2 - sqr(sumx));
if (denom == 0) {
// singular matrix. can't solve the problem.
*m = 0;
*b = 0;
if (r) *r = 0;
return 1;
}
*m = (n * sumxy - sumx * sumy) / denom;
*b = (sumy * sumx2 - sumx * sumxy) / denom;
if (r!=NULL) {
*r = (sumxy - sumx * sumy / n) / /* compute correlation coeff */
sqrt((sumx2 - sqr(sumx)/n) *
(sumy2 - sqr(sumy)/n));
}
return 0;
}
Example
You can run this example online.
int main()
{
int n = 6;
REAL x[6]= {1, 2, 4, 5, 10, 20};
REAL y[6]= {4, 6, 12, 15, 34, 68};
REAL m,b,r;
linreg(n,x,y,&m,&b,&r);
printf("m=%g b=%g r=%g\n",m,b,r);
return 0;
}
Here is the output
m=3.43651 b=-0.888889 r=0.999192
Here is the Excel plot and linear fit (for verification).
All values agree exactly with the C code above (note C code returns r while Excel returns R**2).
There are efficient algorithms for least-squares fitting; see Wikipedia for details. There are also libraries that implement the algorithms for you, likely more efficiently than a naive implementation would do; the GNU Scientific Library is one example, but there are others under more lenient licenses as well.
From Numerical Recipes: The Art of Scientific Computing in (15.2) Fitting Data to a Straight Line:
Linear Regression:
Consider the problem of fitting a set of N data points (xi, yi) to a straight-line model:
Assume that the uncertainty: sigmai associated with each yi and that the xi’s (values of the dependent variable) are known exactly. To measure how well the model agrees with the data, we use the chi-square function, which in this case is:
The above equation is minimized to determine a and b. This is done by finding the derivative of the above equation with respect to a and b, equate them to zero and solve for a and b. Then we estimate the probable uncertainties in the estimates of a and b, since obviously the measurement errors in the data must introduce some uncertainty in the determination of those parameters. Additionally, we must estimate the goodness-of-fit of the data to the
model. Absent this estimate, we have not the slightest indication that the parameters a and b in the model have any meaning at all.
The below struct performs the mentioned calculations:
struct Fitab {
// Object for fitting a straight line y = a + b*x to a set of
// points (xi, yi), with or without available
// errors sigma i . Call one of the two constructors to calculate the fit.
// The answers are then available as the variables:
// a, b, siga, sigb, chi2, and either q or sigdat.
int ndata;
double a, b, siga, sigb, chi2, q, sigdat; // Answers.
vector<double> &x, &y, &sig;
// Constructor.
Fitab(vector<double> &xx, vector<double> &yy, vector<double> &ssig)
: ndata(xx.size()), x(xx), y(yy), sig(ssig), chi2(0.), q(1.), sigdat(0.)
{
// Given a set of data points x[0..ndata-1], y[0..ndata-1]
// with individual standard deviations sig[0..ndata-1],
// sets a,b and their respective probable uncertainties
// siga and sigb, the chi-square: chi2, and the goodness-of-fit
// probability: q
Gamma gam;
int i;
double ss=0., sx=0., sy=0., st2=0., t, wt, sxoss; b=0.0;
for (i=0;i < ndata; i++) { // Accumulate sums ...
wt = 1.0 / SQR(sig[i]); //...with weights
ss += wt;
sx += x[i]*wt;
sy += y[i]*wt;
}
sxoss = sx/ss;
for (i=0; i < ndata; i++) {
t = (x[i]-sxoss) / sig[i];
st2 += t*t;
b += t*y[i]/sig[i];
}
b /= st2; // Solve for a, b, sigma-a, and simga-b.
a = (sy-sx*b) / ss;
siga = sqrt((1.0+sx*sx/(ss*st2))/ss);
sigb = sqrt(1.0/st2); // Calculate chi2.
for (i=0;i<ndata;i++) chi2 += SQR((y[i]-a-b*x[i])/sig[i]);
if (ndata>2) q=gam.gammq(0.5*(ndata-2),0.5*chi2); // goodness of fit
}
// Constructor.
Fitab(vector<double> &xx, vector<double> &yy)
: ndata(xx.size()), x(xx), y(yy), sig(xx), chi2(0.), q(1.), sigdat(0.)
{
// As above, but without known errors (sig is not used).
// The uncertainties siga and sigb are estimated by assuming
// equal errors for all points, and that a straight line is
// a good fit. q is returned as 1.0, the normalization of chi2
// is to unit standard deviation on all points, and sigdat
// is set to the estimated error of each point.
int i;
double ss,sx=0.,sy=0.,st2=0.,t,sxoss;
b=0.0; // Accumulate sums ...
for (i=0; i < ndata; i++) {
sx += x[i]; // ...without weights.
sy += y[i];
}
ss = ndata;
sxoss = sx/ss;
for (i=0;i < ndata; i++) {
t = x[i]-sxoss;
st2 += t*t;
b += t*y[i];
}
b /= st2; // Solve for a, b, sigma-a, and sigma-b.
a = (sy-sx*b)/ss;
siga=sqrt((1.0+sx*sx/(ss*st2))/ss);
sigb=sqrt(1.0/st2); // Calculate chi2.
for (i=0;i<ndata;i++) chi2 += SQR(y[i]-a-b*x[i]);
if (ndata > 2) sigdat=sqrt(chi2/(ndata-2));
// For unweighted data evaluate typical
// sig using chi2, and adjust
// the standard deviations.
siga *= sigdat;
sigb *= sigdat;
}
};
where struct Gamma:
struct Gamma : Gauleg18 {
// Object for incomplete gamma function.
// Gauleg18 provides coefficients for Gauss-Legendre quadrature.
static const Int ASWITCH=100; When to switch to quadrature method.
static const double EPS; // See end of struct for initializations.
static const double FPMIN;
double gln;
double gammp(const double a, const double x) {
// Returns the incomplete gamma function P(a,x)
if (x < 0.0 || a <= 0.0) throw("bad args in gammp");
if (x == 0.0) return 0.0;
else if ((Int)a >= ASWITCH) return gammpapprox(a,x,1); // Quadrature.
else if (x < a+1.0) return gser(a,x); // Use the series representation.
else return 1.0-gcf(a,x); // Use the continued fraction representation.
}
double gammq(const double a, const double x) {
// Returns the incomplete gamma function Q(a,x) = 1 - P(a,x)
if (x < 0.0 || a <= 0.0) throw("bad args in gammq");
if (x == 0.0) return 1.0;
else if ((Int)a >= ASWITCH) return gammpapprox(a,x,0); // Quadrature.
else if (x < a+1.0) return 1.0-gser(a,x); // Use the series representation.
else return gcf(a,x); // Use the continued fraction representation.
}
double gser(const Doub a, const Doub x) {
// Returns the incomplete gamma function P(a,x) evaluated by its series representation.
// Also sets ln (gamma) as gln. User should not call directly.
double sum,del,ap;
gln=gammln(a);
ap=a;
del=sum=1.0/a;
for (;;) {
++ap;
del *= x/ap;
sum += del;
if (fabs(del) < fabs(sum)*EPS) {
return sum*exp(-x+a*log(x)-gln);
}
}
}
double gcf(const Doub a, const Doub x) {
// Returns the incomplete gamma function Q(a, x) evaluated
// by its continued fraction representation.
// Also sets ln (gamma) as gln. User should not call directly.
int i;
double an,b,c,d,del,h;
gln=gammln(a);
b=x+1.0-a; // Set up for evaluating continued fraction
// by modified Lentz’s method with with b0 = 0.
c=1.0/FPMIN;
d=1.0/b;
h=d;
for (i=1;;i++) {
// Iterate to convergence.
an = -i*(i-a);
b += 2.0;
d=an*d+b;
if (fabs(d) < FPMIN) d=FPMIN;
c=b+an/c;
if (fabs(c) < FPMIN) c=FPMIN;
d=1.0/d;
del=d*c;
h *= del;
if (fabs(del-1.0) <= EPS) break;
}
return exp(-x+a*log(x)-gln)*h; Put factors in front.
}
double gammpapprox(double a, double x, int psig) {
// Incomplete gamma by quadrature. Returns P(a,x) or Q(a, x),
// when psig is 1 or 0, respectively. User should not call directly.
int j;
double xu,t,sum,ans;
double a1 = a-1.0, lna1 = log(a1), sqrta1 = sqrt(a1);
gln = gammln(a);
// Set how far to integrate into the tail:
if (x > a1) xu = MAX(a1 + 11.5*sqrta1, x + 6.0*sqrta1);
else xu = MAX(0.,MIN(a1 - 7.5*sqrta1, x - 5.0*sqrta1));
sum = 0;
for (j=0;j<ngau;j++) { // Gauss-Legendre.
t = x + (xu-x)*y[j];
sum += w[j]*exp(-(t-a1)+a1*(log(t)-lna1));
}
ans = sum*(xu-x)*exp(a1*(lna1-1.)-gln);
return (psig?(ans>0.0? 1.0-ans:-ans):(ans>=0.0? ans:1.0+ans));
}
double invgammp(Doub p, Doub a);
// Inverse function on x of P(a,x) .
};
const Doub Gamma::EPS = numeric_limits<Doub>::epsilon();
const Doub Gamma::FPMIN = numeric_limits<Doub>::min()/EPS
and stuct Gauleg18:
struct Gauleg18 {
// Abscissas and weights for Gauss-Legendre quadrature.
static const Int ngau = 18;
static const Doub y[18];
static const Doub w[18];
};
const Doub Gauleg18::y[18] = {0.0021695375159141994,
0.011413521097787704,0.027972308950302116,0.051727015600492421,
0.082502225484340941, 0.12007019910960293,0.16415283300752470,
0.21442376986779355, 0.27051082840644336, 0.33199876341447887,
0.39843234186401943, 0.46931971407375483, 0.54413605556657973,
0.62232745288031077, 0.70331500465597174, 0.78649910768313447,
0.87126389619061517, 0.95698180152629142};
const Doub Gauleg18::w[18] = {0.0055657196642445571,
0.012915947284065419,0.020181515297735382,0.027298621498568734,
0.034213810770299537,0.040875750923643261,0.047235083490265582,
0.053244713977759692,0.058860144245324798,0.064039797355015485
0.068745323835736408,0.072941885005653087,0.076598410645870640,
0.079687828912071670,0.082187266704339706,0.084078218979661945,
0.085346685739338721,0.085983275670394821};
and, finally fuinction Gamma::invgamp():
double Gamma::invgammp(double p, double a) {
// Returns x such that P(a,x) = p for an argument p between 0 and 1.
int j;
double x,err,t,u,pp,lna1,afac,a1=a-1;
const double EPS=1.e-8; // Accuracy is the square of EPS.
gln=gammln(a);
if (a <= 0.) throw("a must be pos in invgammap");
if (p >= 1.) return MAX(100.,a + 100.*sqrt(a));
if (p <= 0.) return 0.0;
if (a > 1.) {
lna1=log(a1);
afac = exp(a1*(lna1-1.)-gln);
pp = (p < 0.5)? p : 1. - p;
t = sqrt(-2.*log(pp));
x = (2.30753+t*0.27061)/(1.+t*(0.99229+t*0.04481)) - t;
if (p < 0.5) x = -x;
x = MAX(1.e-3,a*pow(1.-1./(9.*a)-x/(3.*sqrt(a)),3));
} else {
t = 1.0 - a*(0.253+a*0.12); and (6.2.9).
if (p < t) x = pow(p/t,1./a);
else x = 1.-log(1.-(p-t)/(1.-t));
}
for (j=0;j<12;j++) {
if (x <= 0.0) return 0.0; // x too small to compute accurately.
err = gammp(a,x) - p;
if (a > 1.) t = afac*exp(-(x-a1)+a1*(log(x)-lna1));
else t = exp(-x+a1*log(x)-gln);
u = err/t;
// Halley’s method.
x -= (t = u/(1.-0.5*MIN(1.,u*((a-1.)/x - 1))));
// Halve old value if x tries to go negative.
if (x <= 0.) x = 0.5*(x + t);
if (fabs(t) < EPS*x ) break;
}
return x;
}
Here is my version of a C/C++ function that does simple linear regression. The calculations follow the wikipedia article on simple linear regression. This is published as a single-header public-domain (MIT) library on github: simple_linear_regression. The library (.h file) is tested to work on Linux and Windows, and from C and C++ using -Wall -Werror and all -std versions supported by clang/gcc.
#define SIMPLE_LINEAR_REGRESSION_ERROR_INPUT_VALUE -2
#define SIMPLE_LINEAR_REGRESSION_ERROR_NUMERIC -3
int simple_linear_regression(const double * x, const double * y, const int n, double * slope_out, double * intercept_out, double * r2_out) {
double sum_x = 0.0;
double sum_xx = 0.0;
double sum_xy = 0.0;
double sum_y = 0.0;
double sum_yy = 0.0;
double n_real = (double)(n);
int i = 0;
double slope = 0.0;
double denominator = 0.0;
if (x == NULL || y == NULL || n < 2) {
return SIMPLE_LINEAR_REGRESSION_ERROR_INPUT_VALUE;
}
for (i = 0; i < n; ++i) {
sum_x += x[i];
sum_xx += x[i] * x[i];
sum_xy += x[i] * y[i];
sum_y += y[i];
sum_yy += y[i] * y[i];
}
denominator = n_real * sum_xx - sum_x * sum_x;
if (denominator == 0.0) {
return SIMPLE_LINEAR_REGRESSION_ERROR_NUMERIC;
}
slope = (n_real * sum_xy - sum_x * sum_y) / denominator;
if (slope_out != NULL) {
*slope_out = slope;
}
if (intercept_out != NULL) {
*intercept_out = (sum_y - slope * sum_x) / n_real;
}
if (r2_out != NULL) {
denominator = ((n_real * sum_xx) - (sum_x * sum_x)) * ((n_real * sum_yy) - (sum_y * sum_y));
if (denominator == 0.0) {
return SIMPLE_LINEAR_REGRESSION_ERROR_NUMERIC;
}
*r2_out = ((n_real * sum_xy) - (sum_x * sum_y)) * ((n_real * sum_xy) - (sum_x * sum_y)) / denominator;
}
return 0;
}
Usage example:
#define SIMPLE_LINEAR_REGRESSION_IMPLEMENTATION
#include "simple_linear_regression.h"
#include <stdio.h>
/* Some data that we want to find the slope, intercept and r2 for */
static const double x[] = { 1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83 };
static const double y[] = { 52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46 };
int main() {
double slope = 0.0;
double intercept = 0.0;
double r2 = 0.0;
int res = 0;
res = simple_linear_regression(x, y, sizeof(x) / sizeof(x[0]), &slope, &intercept, &r2);
if (res < 0) {
printf("Error: %s\n", simple_linear_regression_error_string(res));
return res;
}
printf("slope: %f\n", slope);
printf("intercept: %f\n", intercept);
printf("r2: %f\n", r2);
return 0;
}
The original example above worked well for me with slope and offset but I had a hard time with the corr coef. Maybe I don't have my parenthesis working the same as the assumed precedence? Anyway, with some help of other web pages I finally got values that match the linear trend-line in Excel. Thought I would share my code using Mark Lakata's variable names. Hope this helps.
double slope = ((n * sumxy) - (sumx * sumy )) / denom;
double intercept = ((sumy * sumx2) - (sumx * sumxy)) / denom;
double term1 = ((n * sumxy) - (sumx * sumy));
double term2 = ((n * sumx2) - (sumx * sumx));
double term3 = ((n * sumy2) - (sumy * sumy));
double term23 = (term2 * term3);
double r2 = 1.0;
if (fabs(term23) > MIN_DOUBLE) // Define MIN_DOUBLE somewhere as 1e-9 or similar
r2 = (term1 * term1) / term23;
as an assignment I had to code in C a simple linear regression using RMSE loss function. The program is dynamic and you can enter your own values and choose your own loss function which is for now limited to Root Mean Square Error. But first here are the algorithms I used:
now the code... you need gnuplot to display the chart, sudo apt install gnuplot
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <sys/types.h>
#define BUFFSIZE 64
#define MAXSIZE 100
static double vector_x[MAXSIZE] = {0};
static double vector_y[MAXSIZE] = {0};
static double vector_predict[MAXSIZE] = {0};
static double max_x;
static double max_y;
static double mean_x;
static double mean_y;
static double teta_0_intercept;
static double teta_1_grad;
static double RMSE;
static double r_square;
static double prediction;
static char intercept[BUFFSIZE];
static char grad[BUFFSIZE];
static char xrange[BUFFSIZE];
static char yrange[BUFFSIZE];
static char lossname_RMSE[BUFFSIZE] = "Simple Linear Regression using RMSE'";
static char cmd_gnu_0[BUFFSIZE] = "set title '";
static char cmd_gnu_1[BUFFSIZE] = "intercept = ";
static char cmd_gnu_2[BUFFSIZE] = "grad = ";
static char cmd_gnu_3[BUFFSIZE] = "set xrange [0:";
static char cmd_gnu_4[BUFFSIZE] = "set yrange [0:";
static char cmd_gnu_5[BUFFSIZE] = "f(x) = (grad * x) + intercept";
static char cmd_gnu_6[BUFFSIZE] = "plot f(x), 'data.temp' with points pointtype 7";
static char const *commands_gnuplot[] = {
cmd_gnu_0,
cmd_gnu_1,
cmd_gnu_2,
cmd_gnu_3,
cmd_gnu_4,
cmd_gnu_5,
cmd_gnu_6,
};
static size_t size;
static void user_input()
{
printf("Enter x,y vector size, MAX = 100\n");
scanf("%lu", &size);
if (size > MAXSIZE) {
printf("Wrong input size is too big\n");
user_input();
}
printf("vector's size is %lu\n", size);
size_t i;
for (i = 0; i < size; i++) {
printf("Enter vector_x[%ld] values\n", i);
scanf("%lf", &vector_x[i]);
}
for (i = 0; i < size; i++) {
printf("Enter vector_y[%ld] values\n", i);
scanf("%lf", &vector_y[i]);
}
}
static void display_vector()
{
size_t i;
for (i = 0; i < size; i++){
printf("vector_x[%lu] = %lf\t", i, vector_x[i]);
printf("vector_y[%lu] = %lf\n", i, vector_y[i]);
}
}
static void concatenate(char p[], char q[]) {
int c;
int d;
c = 0;
while (p[c] != '\0') {
c++;
}
d = 0;
while (q[d] != '\0') {
p[c] = q[d];
d++;
c++;
}
p[c] = '\0';
}
static void compute_mean_x_y()
{
size_t i;
double tmp_x = 0.0;
double tmp_y = 0.0;
for (i = 0; i < size; i++) {
tmp_x += vector_x[i];
tmp_y += vector_y[i];
}
mean_x = tmp_x / size;
mean_y = tmp_y / size;
printf("mean_x = %lf\n", mean_x);
printf("mean_y = %lf\n", mean_y);
}
static void compute_teta_1_grad()
{
double numerator = 0.0;
double denominator = 0.0;
double tmp1 = 0.0;
double tmp2 = 0.0;
size_t i;
for (i = 0; i < size; i++) {
numerator += (vector_x[i] - mean_x) * (vector_y[i] - mean_y);
}
for (i = 0; i < size; i++) {
tmp1 = vector_x[i] - mean_x;
tmp2 = tmp1 * tmp1;
denominator += tmp2;
}
teta_1_grad = numerator / denominator;
printf("teta_1_grad = %lf\n", teta_1_grad);
}
static void compute_teta_0_intercept()
{
teta_0_intercept = mean_y - (teta_1_grad * mean_x);
printf("teta_0_intercept = %lf\n", teta_0_intercept);
}
static void compute_prediction()
{
size_t i;
for (i = 0; i < size; i++) {
vector_predict[i] = teta_0_intercept + (teta_1_grad * vector_x[i]);
printf("y^[%ld] = %lf\n", i, vector_predict[i]);
}
printf("\n");
}
static void compute_RMSE()
{
compute_prediction();
double error = 0;
size_t i;
for (i = 0; i < size; i++) {
error = (vector_predict[i] - vector_y[i]) * (vector_predict[i] - vector_y[i]);
printf("error y^[%ld] = %lf\n", i, error);
RMSE += error;
}
/* mean */
RMSE = RMSE / size;
/* square root mean */
RMSE = sqrt(RMSE);
printf("\nRMSE = %lf\n", RMSE);
}
static void compute_loss_function()
{
int input = 0;
printf("Which loss function do you want to use?\n");
printf(" 1 - RMSE\n");
scanf("%d", &input);
switch(input) {
case 1:
concatenate(cmd_gnu_0, lossname_RMSE);
compute_RMSE();
printf("\n");
break;
default:
printf("Wrong input try again\n");
compute_loss_function(size);
}
}
static void compute_r_square(size_t size)
{
double num_err = 0.0;
double den_err = 0.0;
size_t i;
for (i = 0; i < size; i++) {
num_err += (vector_y[i] - vector_predict[i]) * (vector_y[i] - vector_predict[i]);
den_err += (vector_y[i] - mean_y) * (vector_y[i] - mean_y);
}
r_square = 1 - (num_err/den_err);
printf("R_square = %lf\n", r_square);
}
static void compute_predict_for_x()
{
double x = 0.0;
printf("Please enter x value\n");
scanf("%lf", &x);
prediction = teta_0_intercept + (teta_1_grad * x);
printf("y^ if x = %lf -> %lf\n",x, prediction);
}
static void compute_max_x_y()
{
size_t i;
double tmp1= 0.0;
double tmp2= 0.0;
for (i = 0; i < size; i++) {
if (vector_x[i] > tmp1) {
tmp1 = vector_x[i];
max_x = vector_x[i];
}
if (vector_y[i] > tmp2) {
tmp2 = vector_y[i];
max_y = vector_y[i];
}
}
printf("vector_x max value %lf\n", max_x);
printf("vector_y max value %lf\n", max_y);
}
static void display_model_line()
{
sprintf(intercept, "%0.7lf", teta_0_intercept);
sprintf(grad, "%0.7lf", teta_1_grad);
sprintf(xrange, "%0.7lf", max_x + 1);
sprintf(yrange, "%0.7lf", max_y + 1);
concatenate(cmd_gnu_1, intercept);
concatenate(cmd_gnu_2, grad);
concatenate(cmd_gnu_3, xrange);
concatenate(cmd_gnu_3, "]");
concatenate(cmd_gnu_4, yrange);
concatenate(cmd_gnu_4, "]");
printf("grad = %s\n", grad);
printf("intercept = %s\n", intercept);
printf("xrange = %s\n", xrange);
printf("yrange = %s\n", yrange);
printf("cmd_gnu_0: %s\n", cmd_gnu_0);
printf("cmd_gnu_1: %s\n", cmd_gnu_1);
printf("cmd_gnu_2: %s\n", cmd_gnu_2);
printf("cmd_gnu_3: %s\n", cmd_gnu_3);
printf("cmd_gnu_4: %s\n", cmd_gnu_4);
printf("cmd_gnu_5: %s\n", cmd_gnu_5);
printf("cmd_gnu_6: %s\n", cmd_gnu_6);
/* print plot */
FILE *gnuplot_pipe = (FILE*)popen("gnuplot -persistent", "w");
FILE *temp = (FILE*)fopen("data.temp", "w");
/* create data.temp */
size_t i;
for (i = 0; i < size; i++)
{
fprintf(temp, "%f %f \n", vector_x[i], vector_y[i]);
}
/* display gnuplot */
for (i = 0; i < 7; i++)
{
fprintf(gnuplot_pipe, "%s \n", commands_gnuplot[i]);
}
}
int main(void)
{
printf("===========================================\n");
printf("INPUT DATA\n");
printf("===========================================\n");
user_input();
display_vector();
printf("\n");
printf("===========================================\n");
printf("COMPUTE MEAN X:Y, TETA_1 TETA_0\n");
printf("===========================================\n");
compute_mean_x_y();
compute_max_x_y();
compute_teta_1_grad();
compute_teta_0_intercept();
printf("\n");
printf("===========================================\n");
printf("COMPUTE LOSS FUNCTION\n");
printf("===========================================\n");
compute_loss_function();
printf("===========================================\n");
printf("COMPUTE R_square\n");
printf("===========================================\n");
compute_r_square(size);
printf("\n");
printf("===========================================\n");
printf("COMPUTE y^ according to x\n");
printf("===========================================\n");
compute_predict_for_x();
printf("\n");
printf("===========================================\n");
printf("DISPLAY LINEAR REGRESSION\n");
printf("===========================================\n");
display_model_line();
printf("\n");
return 0;
}
Look at Section 1 of this paper. This section expresses a 2D linear regression as a matrix multiplication exercise. As long as your data is well-behaved, this technique should permit you to develop a quick least squares fit.
Depending on the size of your data, it might be worthwhile to algebraically reduce the matrix multiplication to simple set of equations, thereby avoiding the need to write a matmult() function. (Be forewarned, this is completely impractical for more than 4 or 5 data points!)
The fastest, most efficient way to solve least squares, as far as I am aware, is to subtract (the gradient)/(the 2nd order gradient) from your parameter vector. (2nd order gradient = i.e. the diagonal of the Hessian.)
Here is the intuition:
Let's say you want to optimize least squares over a single parameter. This is equivalent to finding the vertex of a parabola. Then, for any random initial parameter, x0, the vertex of the loss function is located at x0 - f(1) / f(2). That's because adding - f(1) / f(2) to x will always zero out the derivative, f(1).
Side note: Implementing this in Tensorflow, the solution appeared at w0 - f(1) / f(2) / (number of weights), but I'm not sure if that's due to Tensorflow or if it's due to something else..

Resources