Related
I am trying to create a Binary Search Tree (BST) for a really large txt file (around 150000 lines), but my BST is not sorting properly. My current theory is, when I fetch the key from the txt file, it doesn't register properly, making it fetch a random number from memory. Other than that, I have no idea whats wrong.
NOTE: the txt file has the following format (key on left, value on right)
0016718719 #:#-;QZL=!9v
0140100781 5:`ziuiCMMUC
0544371484 W{<_|b5Qd534
0672094320 QcvX=;[lpR("
0494074201 FB[?T5VHc7Oc
0317651971 K`9#Qn{#h]1z
0635368102 KGVm-?hX{Rv7
0107206064 =n1AsY32_.J9
0844660357 L4qL)x{>5e8H
0699014627 v/<4%"sJ4eHR
0786095462 G!cl'YMAL*#S
0067578317 6{"W,j2>#{p*
0730012647 rAi?q<X5NaKT
0715302988 ,8SrSw0rEEc&
0234601050 PRg$$:b|B0'x
0537081097 fgoDc05rc,n|
0226858124 OV##d6th'<us
1059497442 2,'n}YmK,s^i
0597822915 LhicQ#r<Yh\8
0742176394 g`XkLi.>}s+Q
0984120927 DyB:-u*}E&X)
0202768627 8(&zqlPV#DCb
0089402669 tv-vTkn"AIxt
1045610730 hOxZQ<"yyew`
0671297494 )r7gD;:9FHrq
0245267004 f0oO:/Zul0<"
0766946589 n/03!]3t0Lux
0521860458 _D+$,j#YT$cS
0891617938 t%gYiWV17Z/'
0566759626 r2A'PB'xhfw#
0221374897 e[-Nf"#<o9^p
0428608071 46S4!vZA.S&.
0755431241 mgE?2IewG!=g
0534588781 %P|b"_d'VF0S
0030447903 Q&Dow27tkc9+
0957065636 [pHMrM*q*ED7
0739800529 wR;u\Ct/-Vzo
0556668090 =|T.z]?.:DnC
0649777919 2}5M=.u'#1,L
0464018855 x+JImm6w/eG]
0460707117 lxY}\Cdn%!rs
0273053706 s9GmIAE."j|2
0596408906 %'1|R%3tI-Tz
0473143619 k,h&_7rT)?Nb
0922139211 [e0Q1].<Qb;[
0207160144 t!&lXR7`eW#n
0128147823 L,d'7]ZTvPDQ
0178779865 (&--sQ..)7d'
0531711943 4o'^xS6rK]yl
0429655621 eyd7UwKQ][%i
0566959905 k{)d*OH&w2P<
0472331841 DiZF(W"wO42H
0589473577 V0$9-X%YD_kD
0272100993 i%c&R{^#SM$#
0956804045 BtY'cQ){wR{{
0635780805 dWnP0sP2]Tu[
0874803681 swn\*HS08v<w
1027292189 w#E:LaCg(L(I
0592836099 ]&Q({r^(/H%0
0882899568 zb_4acX8E<2-
0542667063 n'xbSaoXArp6
0289624942 G5X#aqr7+*pb
0682188682 H^o)>1\4o5WV
0984355947 =Z{wmP'Z(#2r
0459720821 1vNg_4`3IUUJ
0563538441 uA>QKi]Z31#x
1032927818 $jReN<b/(e{E
0299897321 j=PAkNj#H(L^
0428967901 8lszH<!m\C`w
0668128293 SO("{Rm29l#Y
0354915591 2coM%<Iiwwn<
0672908146 r3VRE;Q3)zi>
0435139431 d_q_)mM"X]N-
0728369037 >X_!}vtc;G(M
0982520682 {h\5gbvzsqGZ
0396776915 $py=A?iNde7(
0511806860 #T+Y0HI9/U6K
0013335601 <$8f|iV\=/RD
0511264736 NFI-#xssP)F*
0727884351 5ZMcmA0[K3P2
0460487630 .D'h(f"LV]#x
0178037927 o3a&fO}="I.S
Here is my Main file:
#include "LAB3BST2.h"
#include <string.h>
#define HEIGHT_WRITTEN 1
#define FINDPARENTHELPER_WRITTEN 1
#define DELETE_WRITTEN 1
#define LOOKUP_written 1
int digit(char *key) {
int number = 0;//create a
while (*key != '\0') {//loop until the end of the string (number)
number = 10 * number + *key - '0';//(10*number) this represents moving the current value of key one up
//(*key - '0') the current char subtracted by '0' or the value of 48
// example: (char '1') - '0' == int 1. Reference ASCII chart to see hexadecimal logic
*key++;
}
return number;
}
int main(void) {
Node *n = NULL; // eliminates compiler warning
FILE *fp;
int c;
Tree *t = NULL;
char *pbuff = (char *)malloc(256);
char *p, *key, *pass;
int temp = 0;
long bst_node = 0;
fp = fopen("IDENTS.txt", "r");
if (!fp) {
printf("File Open Failed\n");
return 0;
}//initialize the head of the tree
while (1) {
p = fgets(pbuff, 256, fp);
if (p == NULL)
break; //memory not allocated, or end of file
while (*p == ' ')
p++; //if spaces, iterate through string
key = p;
p++;
while ((*p) >= 48 && (*p) <= 57)
p++;//if a digit character (47<p<58 or 0-9), iterate through key
*p = '\0';//null everything after the key (digits)
p++; //iterate onto the password
while (*p == ' ')
p++;//if spaces, iterate through string
pass = p;
p++;
while ((*p) != '\r' && (*p) != '\n') {
p++;
}// iterate until the end of the string ('\n')
*p = '\0';//null the rest, and reset "p"
temp = digit(key);
if (temp < 0) {
continue;
}
if (temp == 170696526) {
//nothing
}
if (t == NULL) {
t = initTree(temp, pass);
} else
insert(temp, pass, t->root);//WE NEED TO BE ABLE TO CREATE A PASS THAT DOES NOT CHANGE
bst_node++;
}
printf("\nBST NODES: %ld", bst_node);
fclose(fp);
/*
printf("Original Tree: \n");
printTree(t->root);
printf("\n\n");
if (HEIGHT_WRITTEN == 1) {
printf("Height of tree: %d\n\n", height(t->root));
}
*/
if (DELETE_WRITTEN == 1) {
FILE *fp_del;
fp_del = fopen("DELETES.txt", "r");
while (1) {
p = fgets(pbuff, 256, fp_del);
if (p == NULL)
break;
while (*p == ' ')
p++;
key = p;
p++;
while (*p != '\r' && *p != '\n') {
p++;
}
*p = '\0';
int k = withdraw(digit(key), t->root);
if (k)
bst_node--;
}
}
printf("\nNODES AFTER DELETES: %ld \n", bst_node);
if (!bst_check(t->root))
printf("NOT BST\n");
else
printf("IS A BST\n");
if (LOOKUP_written) {
FILE *fp_look;
fp_look = fopen("LOOKUPS.txt", "r");
int nnkey = 0;
while (1) {
p = fgets(pbuff, 256, fp_look);
if (p == NULL)
break;
while (*p == ' ')
p++;
key = p;
p++;
while (*p != '\r' && *p != '\n') {
p++;
}
*p = '\0';
nnkey = digit(key);
Node* k = find(nnkey, t->root);
if (!k) {
printf("ID: %13d PASSWORD: <NOT FOUND>\n", nnkey);
} else {
printf("ID: %13d PASSWORD: %s\n", nnkey, k->value);
}
}
}
return 0;
}//main()
Here is my function file
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "LAB3BST2.h"
Node *initNode(Key k, char *v)
// Allocate memory for new node and initialize fields.
// Returns pointer to node created.
{
Node *n = malloc(sizeof(Node));
// initialize node if memory obtained
if (n != NULL) {
n->key = k;
n->value = strdup(v);
n->leftChild = NULL;
n->rightChild = NULL;
}
return n;
}//initNode()
Tree *initTree(Key k, char *v)
// Set up new tree. Allocates memory for Tree structure, then
// calls initNode() to allocate first node.
{
Tree *t = malloc(sizeof(Tree));
if (t != NULL)
t->root = initNode(k, v);
return t;
}//initTree()
void printTreeExplanation(void)
// Prints hint to reader what to expect on screen
{
static int done = 0;
if (!done) {
printf("First time explanation of tree display:\n");
printf("Every node is displayed as a comma-separated pair within brackets:");
printf(" (kk,vv)\n");
printf("where kk is the key and vv is the value\n");
printf("A tree starts with a curly bracket { and ends with a curly bracket }.\n");
printf("An empty tree will be {}\n");
printf("A tree with no children will be { (kk,vv),{},{} }\n");
printf("If either subtree is populated, it will be shown using the same ");
printf("technique as described above\n");
printf("(Hint: Start at root - and then match up all the remaining\n");
printf("brackets, then interpret what those bracket pairs are telling\n");
printf("you.)\n============\n\n");
done = 1;
}
}//printTreeExplanation()
void printTree(Node *root)
// Print whole tree. We cannot make it look pretty graphically, so we add some
// characters to make it a little easier to understand. We also don't really
// know what the value field is - it is declared to be a void pointer - so we
// treat it as though it points to an integer.
{
// assume printTree magically knows the types in the tree node
printTreeExplanation();
// start of this tree
printf("{");
// values in the root node (assuming value is pointing to an integer)
printf("(%d,%s),", root->key, root->value);
// Now show left subtree or {} if there is no left subtree
if (root->leftChild != NULL)
printTree(root->leftChild);
else
printf("{}");
// Marker between left and right subtrees
printf(",");
// Now show right subtree or {} if there is no right subtree
if (root->rightChild != NULL)
printTree(root->rightChild);
else
printf("{}");
// Close display of this tree with closing curly bracket
printf("}");
}//printTree()
Node *find(Key k, Node *root)
{
// termination conditions - either true, search is ended
if ((root == NULL) || (root->key == k))
return root;
if (k > root->key) //traverse through the right subtree (larger)
return find(k, root->rightChild);
else //traverse through the right
return find(k, root->leftChild);
}//find()
int insert(Key k, char *v, Node *root)
{
int result = BST_FAIL;
// this if statement can only be true with first root (root of whole tree)
if (root == NULL) {
Node *n = initNode(k, v);
root = n;
return BST_SUCCESS;
}
if (root->key == k)
root->value = strdup(v);//replace password
else
if (k < root->key) {
// key value less than key value in root node - try to insert into left
// subtree, if it exists.
if (root->leftChild != NULL)
// there is a left subtree - insert it
result = insert(k, v, root->leftChild);
else {
// new Node becomes the left subtree
Node *n = initNode(k, v);
root->leftChild = n;
result = BST_SUCCESS;
}
} else
if (k > root->key) { // test actually redundant
// key is greater than this nodes key value, so value goes into right
// subtree, if it exists
if (root->rightChild != NULL)
// there is a right subtree - insert new node
result = insert(k, v, root->rightChild);
else {
// no right subtree - new node becomes right subtree
Node *n = initNode(k, v);
root->rightChild = n;
result = BST_SUCCESS;
}
}
return result;
}//insert()
int intmax(int a, int b) {
return (a >= b) ? a : b;
}//intmax()
int height(Node *root)
// Height definition:
// Height of an empty tree is -1. Height of a leaf node is 0. Height of other
// nodes is 1 more than larger height of node's two subtrees.
{
int nodeheight = -1;
int right, left;// default returned for empty tree
if (root != NULL) {
left = height(root->leftChild);
right = height(root->rightChild);
nodeheight = intmax(left, right);
}
return nodeheight;
}//height()
Node *findParentHelper(Key k, Node *root)
// Help find parent of node with key == k. Parameter root is node with
// at least one child (see findParent()).
{
if (root->leftChild != NULL) {
if (root->leftChild->key == k)
return root;
}
if (root->rightChild != NULL) {
if (root->rightChild->key == k)
return root;
}
if (k > root->key)
return findParentHelper(k, root->rightChild);
else
return findParentHelper(k, root->leftChild);
}//findparenthelper()
Node *findParent(Key k, Node *root)
// root
{
// Deal with special special cases which could only happen for root
// of whole tree
if (root == NULL)
return root;
// real root doesn't have parent so we make it parent of itself
if (root->key == k)
return root;
// root has no children
if ((root->leftChild == NULL) && (root->rightChild == NULL))
return NULL;
// Deal with cases where root has at least one child
return findParentHelper(k, root);
}//findParent()
Node *findMin(Node *root) {
if (root->leftChild == NULL)
return root;
return findMin(root->leftChild);
}
Node *findMax(Node *root) {
if (root->rightChild == NULL)
return root;
return findMax(root->rightChild);
}
int check(Node *p, Node *n) {
if (p->rightChild == n)
return 1; //1==right, 0==left
return 0;
}
void delete(Node *p, Node *n)
// Delete node pointed to by n.
// Parameters:
// n - points to node to be deleted
// p - points to parent of node to be deleted.
{
// Deletion has 3 cases - no subtrees, only left or right subtree, or both
// left and right subtrees.
if (p == n) { //if the root is the node to be deleted
Node *temp;
int key;
char *pass;
if (p->rightChild) {
temp = findMin(p->rightChild);
key = temp->key;
pass = strdup(temp->value);
delete(findParent(temp->key, n), temp);
p->key = key;
p->value = pass;
} else
if (p->leftChild) {
temp = findMax(p->leftChild);
key = temp->key;
pass = strdup(temp->value);
delete(findParent(temp->key, n), temp);
p->key = key;
p->value = pass;
}
return;
}
if (n->leftChild != NULL) { // there is left child
if (n->rightChild) { //if both
Node *temp = findMin(n->rightChild);
n->key = temp->key;
n->value = strdup(temp->value);
delete(findParent(temp->key, n), temp);//delete the min value found (which is a leaf on the left most right branch)
} else { //if only left
if (check(p, n)) {
p->rightChild = n->leftChild;
} else
p->leftChild = n->leftChild;
free(n);
}
} else
if (n->rightChild) { // there is only a right child
if (check(p, n)) {
p->rightChild = n->rightChild;
} else
p->leftChild = n->rightChild;
free(n);
} else {// no children
if (check(p, n)) {
p->rightChild = NULL;
} else
p->leftChild = NULL;
free(n);
}
}//delete()
int withdraw(Key k, Node *root)
// Withdraw does two things:
// return a copy of the node with key k (and value v)
// Delete the node with key k from the tree while ensuring the tree remains valid
{
Node *p, *m;
m = find(k, root);
if (m != NULL) {
// create a copy of the node with the same key and value
//n = initNode(m->key, m->value);
p = findParent(k, root);
// can delete the node
delete(p, m);
return 1;
}
return 0;
}//withdraw()
int bst_check(Node *root) {
if (root == NULL)
return 1; // if on a leaf (return back up to root) //170696526
if (root->leftChild != NULL && root->leftChild->key > root->key)
//if the left child exists and its key is greater than the root
return 0;
if (root->rightChild != NULL && root->rightChild->key < root->key)
// if the right child exists and is smaller than the root
return 0;
if (!bst_check(root->leftChild) || !bst_check(root->rightChild))
//if the check was unsuccessful for both the right and left subtrees
//also recursively checks the left and right child
return 0;
//if all pass, then the tree was a bst
return 1;
}
Here is my function file (.h file):
// LAB3_BST.H
// Header file to be used with code for ELEC278 Lab 3.
//
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
typedef int Key;
#define BST_FAIL 0 // return value when BST function fails
#define BST_SUCCESS 1 // return value when BST function succeeds
// Node in tree has key and pointer to value associated with key.
// Also contains structural components - two pointers to left and
// right subtrees.
typedef struct password {
char *word;
struct password *next;
} pnode;
typedef struct Node {
Key key;
char *value;
struct Node *leftChild, *rightChild;
} Node, pNode;
// Tree is basically pointer to top node in a tree.
typedef struct Tree {
Node *root;
} Tree;
Node *initNode(int k, char *v);
// Create new tree by creating new node with key = k and value = v
// and making it root
Tree *initTree(int k, char *v);
// Find node with key k in tree. Returns pointer to Node if found;
// Returns NULL if not found
Node *find(Key k, Node *root);
// Create new node with key=k, value=v and insert it into tree
// Returns 1 upon success, 0 failure
int insert(int k, char *v, Node *root);
// Print text representation of tree (starting at any Node)
void printTree(Node *root);
// Returns Maximum of two integer numbers
int intmax(int a, int b);
// Find parent of node n where n->key = k
// Returns pointer to parent node if found; Returns NULL if not found
Node *findParent(Key k, Node *root);
// 1. Make copy of node with key=k and returns it
// 2. Delete node with key=k from tree
// Return pointer of node created in 1; Returns NULL if no node
// with specified key value is found
int withdraw(Key k, Node *root);
// Return height of tree (height of specified root)
int height(Node *root);
// Helper function for findParent - see specification in lab
// instructions
Node *findParentHelper(Key k, Node *root);
// Delete node from tree while ensuring tree remains valid
void delete(Node *p, Node *n);
Node* inorder(Node *pn);
int bst_check(Node *root);
I dont know where to start.
There are some problems in function insert:
if the root argument is NULL, the new node is just stored into the argument pointer and BST_SUCCESS is returned. The caller's node variable is not updated. This function should take the address of the Node* as an argument. In your case, the tree is initialized as non empty, so this never occurs, but the tree will become empty after removing all elements and in this case, insert will always fail in spite of returning BST_SUCCESS.
if root->key == k, a new value is allocated for this duplicate key, but the previous value is not freed, hence there is a memory leak.
the test else if (k > root->key) is indeed redundant
Here is a modified and much simpler version:
int insert(Key k, const char *v, Node **np) {
Node *node = *np;
if (node == NULL) {
*np = initNode(k, v);
if (*np == NULL)
return BST_FAIL;
else
return BST_SUCCESS;
}
if (k == node->key) {
// node exists, replace password
char *str = strdup(v);
if (str == NULL) {
return BST_FAIL;
} else {
free(node->value);
node->value = str;
return BST_SUCCESS; // no new node, but insertion successful
}
}
if (k < node->key) {
// key value is less than key value in this node
// insert it into left subtree, creating it if needed.
return insert(k, v, &node->leftChild);
} else {
// key value is greater than key value in this node
// insert it into right subtree, creating it if needed.
return insert(k, v, &node->rightChild);
}
}
Here is a non recursive version:
int insert(Key k, const char *v, Node **np) {
while (*np) {
Node *node = *np;
if (k == node->key) {
// node exists, replace password
char *str = strdup(v);
if (str == NULL) {
return BST_FAIL;
} else {
free(node->value);
node->value = str;
return BST_SUCCESS; // no new node, but insertion successful
}
}
if (k < node->key) {
// key value is less than key value in this node
// insert it into left subtree, creating it if needed.
np = &root->leftChild;
} else {
// key value is greater than key value in this node
// insert it into right subtree, creating it if needed.
np = &root->rightChild;
}
}
*np = initNode(k, v);
if (*np == NULL)
return BST_FAIL;
else
return BST_SUCCESS;
}
Note however that neither of the above functions implement a balanced tree (BST). The tree needs rebalancing if the height of left and right child nodes' heights become too different.
This is not an answer but wanted to add a graph of the input data. I don't see anything out of order (i.e. non-reproducable):
Im working on a Binary Search Tree assignment for class and for this function I need to follow my professor's pseudo code. Unfortunately, I'm not sure about one specific detail, and she refuses to clarify.
Link to the pseudo code is here:
https://imgur.com/a/rhjhEIa
SUBROUTINE insert(current, parent, node)
IF current is null
IF parent is null
root = node
ELSE
ID node.value < parent.value
parent.left = node
ELSE
parent.right = node
END IF
RETURN true
END IF
ELSE IF node.value = current.=value
RETURN false
ELSE IF ode.value < current.value
insert(current.left, current, node)
ELSE
insert(current.right, current, node)
END IF
END SUBROUTINE
In place of node, I've tried seemingly most of the allowed variables, including current, parent, (and even value, which didn't work. Shocker.)
bool recursiveInsert(Node* current, Node* parent, double value)
{
if (current == NULL)
{
if (parent == NULL)
{
}
else
{
if (current->value < parent->value)
{
parent->left = current;
}
else
{
parent->right = current;
}
return true;
}
}
else if(parent->value == current->value)
{
return false;
}
else if (parent->value < current->value)
{
insert(current->left, current->value, current);
}
else
{
insert(current->right, current->value, current);
}
}
I expect the output to add the value to the binary search tree and return true, but the program currently just throws a error whenever I get to the parts that require "node".
node in the context of the pseudocode is a previously allocated node containing the data being inserted into the tree. The initial caller allocates it (which is both pointless and never done in RW code).In reality, it is highly unlikely to actually do this pattern unless you're considering a library that potentially moves nodes out of one tree into another, and you want to avoid the expense of setting-up/tearing-down the nodes themselves.
Regarding the algorithm, it's fairly straightforward, though not very pretty:
If both current and parent are null, it means this must be the first node in the tree tracked by some global pointer root. Therefore, root is assigned the incoming node directly.
Otherwise, If current is null but parent is not if means parent is some potential leaf in the tree (meaning it has either a left, a right, or both contained pointers that are null), and you've landed on the null pointer. The insertion requires comparing against the parent value to know whether you hang the node on the left or the right. Note that this is inefficient, as you already did this comparison (it's how you got here in the first place).
Otherwise if current is not-null we simply check whether the values are equal, or less (greater is assumed if neither of those are true), and drive into the subtree of left or right if warranted. In that case, current.left or current.right become the recursed current, and current becomes the parent of said-same recursive call.
That's it. That's how that algorithm works. And frankly, it's marginal.
To implement this algorithm with your argument list (that takes a value rather than a node for the final argument), you need only ensure node allocation only happens when it is time to actually hang it, and only then (there are two such cases.
bool recursiveInsert(Node* current, Node* parent, double value)
{
bool result = false;
if (current == NULL)
{
if (parent == NULL)
{
root = malloc(sizeof *root);
root->value = value;
root->left = root->right = NULL;
}
else
{
Node *p = malloc(sizeof *p);
p->value = value;
p->left = p->right = NULL;
if (value < parent->value)
{
parent->left = p;
}
else
{
parent->right = p;
}
result = true;
}
}
else if (value < parent->value)
result = recursiveInsert(current->left, current, value);
else if (parent->value < value)
result = recursiveInsert(current->right, current, value);
return result;
}
When inserting a value into the tree, the call will look something like this:
recursiveInsert(root, NULL, value);
It's not pretty, but it works. That it relies on global root presence is probably the worst part of this algorithm. The multi-compare is probably second on the list of yuck.
A Different Approach
Ideally the root of the tree is passed in as an argument. Further, we can make the algorithm recursive as it is now, but no longer rely on some global root. Finally, we can reduce the argument count to two: the address of a pointer (initially the address of the root pointer), and the value being inserted. sing a pointer-to-pointer as the tree access method makes this algorithm elegant, whether using recursion or not. Both are provided below:
Recursive Insertion
bool treeInsert(Node **pp, double value)
{
bool result = false;
if (!*pp)
{
*pp = malloc(sizeof **pp);
(*pp)->value = value;
(*pp)->left = (*pp)->right = NULL;
result = true;
}
else if (value < (*pp)->value)
{
result = recursiveInsert(&(*pp)->left, value);
}
else if ((*pp)->value < value)
{
result = recursiveInsert(&(*pp)->right, value);
}
return result;
}
Iterative Insertion
bool treeInsert(Node **pp, double value)
{
bool result = false;
while (*pp)
{
if (value < (*pp)->value)
pp = &(*pp)->left;
else if ((*pp)->value < value)
pp = &(*pp)->right;
else break;
}
if (!*pp)
{
*pp = malloc(sizeof **pp);
(*pp)->value = value;
(*pp)->left = (*pp)->right = NULL;
result = true;
}
return result;
}
in either case, you invoke by passing the address of the root pointer (thus a pointer to pointer), where an empty try is signified by a NULL root:
treeInsert(&root, value);
Either function will accomplish the task at hand. I leave the error-hardening asa task for you (check your mallocs).
As you have mentioned, this is a function to insert a node in a binary search tree. The parameters are as follows
parent is the parent of the node being examined. This would be called with the root of the tree.
current is the left or right of the parent node being examined. While calling the function for the first time, you should use root->left if the value of the current node is less than root, or root->right if the value is greater than root. If root is null, then current should also be NULL
if (root == NULL)
{
ret = recursiveInsert(NULL, NULL, node);
}
else if (root->value < node->value)
{
ret = recursiveInsert(root->left, root, node);
}
else if (root-> value > node->value)
{
ret = recursiveInsert(root->right, root, node);
}
else
{
//same value, handle error
}
node is the new node to be added to the tree. The memory allocation for this node should be done before the call to recursiveinsert and the value should be specified.
Now let us look at the code that you have written.
The first mistake is to have the third parameter as a double. This should be a parameter of type node which should have already been allocated before.
From the condition check that
ELSE IF node.value = current.=value
RETURN false
it seems that node->value is of integer type.
Taking all this into consideration, the updated code is below.
Node* root = NULL; //global variable
...
bool recursiveInsert(Node* current, Node* parent, Node* node)
{
if (current == NULL)
{
if (parent == NULL)
{
root = node;
}
else
{
if (current->value < parent->value)
{
parent->left = node;
}
else
{
parent->right = node;
}
return true;
}
}
else if(node->value == current->value)
{
return false;
}
else if (parent->value < current->value)
{
recursiveInsert(current->left, current, node);
}
else
{
recursiveInsert(current->right, current, node);
}
}
Is there any way to insert a new node in a binary tree (not bst) without comparing key values? The following code only works for the very first three nodes.
node *insert (node *root, int *key) {
if (root==NULL) {
root=newNode(root, key);
return root;
}
else if (root->left == NULL)
root->left=insert(root->left,key);
else if (root-> right == NULL)
root->right=insert(root->right,key);
return root;
}
If you change
else if (root-> right == NULL)
to just
else
Then it would have the effect of always adding to the right.
If you want it to randomly pick, add a call to srand outside this function.
srand(time(NULL));
Then in this function, call
else if (rand() > MAX_RAND / 2) {
root->right = insert(root->right, key);
} else {
root->left = insert(root->left, key);
}
at the end of your existing if/else structure.
See also:
Lack of randomness in C rand()
If your tree tracks its height at each node, you could add after your null checks something like
else if (root->left->height <= root->right->height) {
root->left = insert(root->left, key);
} else {
root->right = insert(root->right, key);
}
That would keep the tree balanced automatically. But it requires additional code to manage the height. E.g.
root->height = 1 + ((root->left->height > root->right->height) ? root->left->height : root->right->height);
I leave it up to you whether that additional overhead is worth it.
The people suggesting using a heap are suggesting using the indexes as the ordering. This is kind of useless as a heap, but it would make a balanced binary tree. So the root node would be the first inserted and the most recent inserted would be the rightmost leaf.
You could just keep track of the height of each node, and always insert it into the side with fewer children:
node *insert (node *root, int *key) {
if (root==NULL) {
root=newNode(root, key);
root->height = 0
}
else if (root->left == NULL) {
insert(root->left,key);
}
else if (root->right == NULL) {
insert(root->right,key);
}
else if (root->left->height <= root->right->height) {
insert(root->left,key);
} else {
insert(root->right,key);
}
root->height++
}
Comparing values is actually irrelevant, the only think you need to do is set a pointer. Since you didn't specify any real requirements, one solution could be as follows:
Changing the signature a bit so now you have a pointer to an already allocated node:
void insertNode(node *&root, node *newNode) {
if (root == NULL) {
root = newNode;
return;
}
if (root->left == NULL) {
root-left = newNode;
return;
}
helperInsert(root->left, newNode);
return;
}
This will set the head (assuming I got the signature right), and otherwise check the left child.
void helperInsert(node *it, node *newNode) {
if (it->left == NULL) {
it->left = newNode;
return;
}
helperInsert(it->left, newNode);
return;
}
This is obviously a flawed approach (the tree will not be balanced at the slightest), almost treating the tree as a linked list, but to my best understanding of the question, this is an example of how it can be done.
In
else if (root->left == NULL)
root->left=insert(root->left,key);
you know root->left is NULL so why to do the recursive call ?
Of course same for the next else
The following code only works for the very first three nodes.
If both left and right are non NULL you do not insert, that time it was necessary to do the recursive call on one of the two branches, and you will consider the key (so insert ordered) to decide which one. Note that the 2 tests to NULL you did are not correct if you insert to have a sorted tree ...
The heap advice is most sound. You don't need to heapify anything, just follow the rules that an element at index k has children at 2*k + 1 and 2*k + 2.
Another approach, useful when there is no array, but the nodes are generated on the fly, is to fill the tree level-wise. Notice that at level k there are 2 ** k slots, conveniently indexed by a k-bit integer. Interpret the index as a path down the tree (clear bit tells to follow left child, set bit tells to follow a right one), along the lines of:
void insert_node(struct node * root, struct node * node, unsigned mask, unsigned path)
{
while ((mask >> 1) != 1) {
root = mask & path? root->right: root->left;
}
if (mask & path) {
assert (root->right == NULL);
root->right = node;
} else {
assert (root->left == NULL);
root->left = node;
}
}
void fill_level_k(struct node * root, unsigned k)
{
unsigned slots = 1 << k;
for (unsigned slot = 0; slot < slots; slot++) {
struct node * node = generate_new_node();
insert_node(root, node, slots, slot);
}
}
The successor of an element in a BST is the element's successor in the
sorted order determined by the inorder traversal. Finding the
successor when each node has a pointer to its parent node is presented
in CLRS's algorithm textbook (Introduction to Algorithms by MIT
press).
Is there a way to find the first value that is bigger than X without parent in the struct? Like:
typedef struct tree tree;
struct tree{
int value;
tree *left;
tree *right;
};
//Function:
tree *find_first_bigger(tree *t, int x){}
I tried working with:
tree *find_first_bigger(tree *t, int x){
if(t == NULL)
return NULL;
if((*t)->value > x)
find_first_bigger((*t)->left, x);
else if((*t)->value < x)
find_first_bigger((*t)->right), x);
else if((*t)->value == x){
if((*t)->right != NULL)
return tree_first_bigger((*t)->right);
else
return tree;
}
}
With this example(it's using letter but there its not a problem), if I try to search the first bigger than N(It should return me O) but it returns me N.
You have done 90% of the job.Allow me to do the remaining 10%.
Since t is a pointer to structure you should use t->left instead of (*t)->left and same applies while accessing right and value fields of the struct.
Now, Just modify your function as:
Add this as first line of your function
static tree* PTR=NULL;
Modify the second if condition as:
if(t->value > x)
{
PTR=t;
find_first_bigger(t->left, x);
}
Modify the second else if condition as:
else if(t->value == x)
{
if(t->right != NULL)
{
t=t->right;
while(t->left!=NULL)
t=t->left;
return t;
}
else return PTR;
}
Hence the correct function is
tree *find_first_bigger(tree *t, int x)
{
static tree* PTR=NULL;
if(t == NULL)
return NULL;
if(t->value > x)
{
PTR=t;
find_first_bigger(t->left, x);
}
else if(t->value < x)
find_first_bigger(t->right, x);
else if(t->value == x)
{
if(t->right != NULL)
{
t=t->right;
while(t->left!=NULL)
t=t->left;
return t;
}
else return PTR;
}
}
In the main function if pointer returned is NULL, this means that :the key itself is the largest key. Feel free for any queries.
I haven't tested this, but I think it should work. Let me know if it is wrong.
//c++ 11
#include<iostream>
using namespace std;
struct BSTNode{
int val;
BSTNode* left;
BSTNode* right;
};
int FindJustLarger(BSTNode*& node, int token, int sofarlarge){
// for invalid inputs it will return intial value of sofarlarge
// By invalid input I mean token > largest value in BST
if(node == nullptr)
return sofarlarge;
else if(node->val > token){
sofarlarge = node->val;
return FindJustLarger(node->left, token, sofarlarge);}
else
return FindJustLarger(node->right, token, sofarlarge);}
int main(){
BSTNode* head = new BSTNode{5, nullptr, nullptr};
FindJustLarger(head, 5, NULL);
delete head;
return 0;}
Some changes you can do in your code:
You have to return the values from the recursive calls
If the value is not found, return NULL. This means returning NULL if t->right == NULL on the last if.
When going to the left, if the value is not found there, the answer must be the node itself. In the case of N, it is the last node where we turn left: O. If it were P, the answer would be T itself.
After all those changes, the code should look like this:
tree *find_first_bigger(tree *t, int x){
if(t == NULL)
return NULL;
if(t->value > x) {
tree *answer = find_first_bigger(t->left, x);
if (answer != NULL)
return answer;
return t;
} else if(t->value < x) {
return find_first_bigger(t->right, x);
} else if(t->value == x) {
if (t->right != NULL)
return tree_first_bigger(t->right);
return NULL;
}
}
You can find the entire code I used to test in this gist.
In your question, you seemed to indicate that you want to find out InOrderSuccessor() of the the given value 'x'.
If 'x' does not necessarily exist in the tree, we need to change the algorithm. Given the example you provided and the problem statement, here is code for finding the next element in a BST.
The key cases are :
No greater element exists, because 'x' is the biggest.
'x' has a right child ?
YES: get left-most child of x's right sub-tree.
NO : return parent.
Key observation is that we don't update the parent pointer, whenever we go right in the tree.
tree *ptr = root;
tree *prnt = NULL;
while (ptr != NULL) {
if (x == ptr->key) {
if (ptr->right != NULL) {
return GetLeftMostChild(ptr->right);
} else {
return prnt;
}
} else if (x > ptr->key) {
ptr = ptr->right;
} else {
prnt = ptr;
ptr = ptr->left;
}
}
Here is the definition for leftMostChild()
tree *GetLeftMostChild(tree *n) {
tree *ptr = n;
while (ptr->left != NULL) {
ptr = ptr->left;
}
return ptr;
}
Well, I've been at it for a while...trying to figure out an algorithm to insert my list of random numbers into a binary tree.
This is what I have gotten so far:
NodePtr and Tree are pointers to a node
NodePtr CreateTree(FILE * fpData)
{
int in;
fscanf(fpData, "%i", &in);
Tree T = (NodePtr)malloc(sizeof(Node));
T->Left = NULL;
T->Right = NULL;
T->value = in;
while((fscanf(fpData, "%i", &in)) != EOF)
{
InsertInTree(in, T);
printf("\n %p", T);
}
return T;
}
void InsertInTree(int value,Tree T)
{
if(T == NULL)
{
T->Left = (NodePtr)malloc(sizeof(Node));
T->Left->Left = NULL;
T->Left->Right = NULL;
T->Left->value = value;
printf("\n %i ", value);
return;
}
if(T->Left == NULL)
{
InsertInNull(value, T->Left);
}
else if(T->Right == NULL)
{
InsertInNull(value, T->Right);
}
else
{
if(T->Left->Left == NULL || T->Left->Right == NULL) InsertInTree(value, T->Left);
else InsertInTree(value, T->Right);
}
}
I'm lost on what to do if the both children of a particular node are not null. What I did here works for a small amount of numbers (1,2,3,5,6) but if the list is larger it becomes unbalanced and wrong.
Is it meant to be a search-tree? I don't see any if (value < T->Value) conditions.
And you have an InsertNull (not shown). That shouldn't be necessary, 1 function should be enough.
To address your main problem, use a pointer-to-pointer parameter or, more elegant, always return a new Tree:
//untested, no balancing
Tree InsertValue(Tree t, int value)
{
if (t == null)
t = // create and return new node
else
{
if (value < t->Value)
t->Left = InsertValue(t->Left, value);
else
t->Right = InsertValue(t->Left, value);
}
return t;
}
And in CreateTree:
Tree t = InsertValue(null, in);
Since the assignment is not for a sorted tree, you can populate it in a breadth-first manner. This means the first thing inserted is always the root, the next is the first node at the next level so it looks like this:
0
1 2
3 4 5 6
Here is an article that explains it further:
http://www.cs.bu.edu/teaching/c/tree/breadth-first/
Simple insertion in a binary tree and keeping a binary tree balanced are different problems. I suggest you start with the first problem and just focus on keeping order properties correct within the tree. Your are not far from that.
Then you should have a look at classical implementations for red-black trees, well studied and efficient way of keeping trees balanced, but with a cost, it's more complex.