I need help on this one - loops

So I need to display the following pattern
0 1 2
1 1 2
2 2 4
1 2 3
2 4 6
3 6 9
2 3 4
3 9 12
4 12 16
so far this my code..
int a,b,c,z;
for(a=0;a<3;a++)
{
System.out.print("\n");
for(b=0;b<3;b++)
{
for(c=0;c<3;c++)
{
z=((c+b)+(a));
System.out.print(z);
System.out.print("\t");
}
System.out.print("\n");
}
}
output:
0 1 2
1 2 3
2 3 4
1 2 3
2 3 4
3 4 5
2 3 4
3 4 5
4 5 6

The pattern is like a multiplication table. Use a multiplication not an addition

Related

Problems with setting array elements in Forth

I am writing code in Forth that should create a 12x12 array of random numbers from 1 to 8.
create big_array 144 allocate drop
: reset_array big_array 144 0 fill ;
reset_array
variable rnd here rnd !
: random rnd # 31421 * 6927 + dup rnd ! ;
: choose random um* nip ;
: random_fill 144 1 do 8 choose big_array i + c! loop ;
random_fill
: Array_# 12 * + big_array swap + c# ;
: show_small_array cr 12 0 do 12 0 do i j Array_# 5 u.r loop cr loop ;
show_small_array
However, I notice that elements 128 to 131 of my array are always much larger than expected:
0 4 0 4 2 6 0 5 2 5 7 3
6 3 7 3 7 7 3 1 5 0 6 1
0 3 3 0 3 1 0 7 2 0 4 5
3 7 6 6 2 1 0 2 3 4 2 7
4 7 1 5 3 5 7 2 3 5 3 6
3 0 6 4 1 3 3 2 5 4 4 7
3 2 1 4 3 4 3 7 2 6 5 5
2 4 4 3 4 5 4 4 6 5 6 0
2 5 2 7 3 1 5 0 1 4 6 7
2 0 3 3 0 7 3 6 4 1 3 6
0 1 1 6 0 3 0 2 169 112 41 70
7 2 3 1 2 2 7 6 0 5 1 2
Moreover, when I try to change the value of these elements individually, this causes the other three elements to change value. For example, if I code:
9 choose big_array 128 + c!
then the array will become:
0 4 0 4 2 6 0 5 2 5 7 3
6 3 7 3 7 7 3 1 5 0 6 1
0 3 3 0 3 1 0 7 2 0 4 5
3 7 6 6 2 1 0 2 3 4 2 7
4 7 1 5 3 5 7 2 3 5 3 6
3 0 6 4 1 3 3 2 5 4 4 7
3 2 1 4 3 4 3 7 2 6 5 5
2 4 4 3 4 5 4 4 6 5 6 0
2 5 2 7 3 1 5 0 1 4 6 7
2 0 3 3 0 7 3 6 4 1 3 6
0 1 1 6 0 3 0 2 2 12 194 69
7 2 3 1 2 2 7 6 0 5 1 2
Do you have any idea why these specific elements are always impacted and if there is a way to prevent this?
Better readability and less error prone: 144 allocate ⇨ 144 chars allocate
A mistake: create big_array 144 allocate drop ⇨ create big_array 144 chars allot
A mistake: random um* nip ⇨ random swap mod
A mistake: 144 1 do ⇨ 144 0 do
An excessive operation: big_array swap + ⇨ big_array +
And add the stack comments, please. Especially, when you ask for help.
Do you have any idea why these specific elements are always impacted and if there is a way to prevent this?
Since you try to use memory in the dictionary space without reserving it. This memory is used by the Forth system.

J: Coordinates with specific value

Let's say we have array
0 1 2 3 4 5 8 7 8 9
There are two indexes that have value 8:
(i.10) ([#~8={) 0 1 2 3 4 5 8 7 8 9
6 8
Is there any shorter way to get this result? May be some built-in verb.
But more important. What about higher dimensions?
Let's say we have matrix 5x4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
I want to find out what are coordinates with value 6.
I want to get result such (there are three coordinates):
4 1
3 2
2 3
It's pretty basic task and I think it should exist some simple solution.
The same in three dimensions?
Thank you
Using Sparse array functionality ($.) provides a very fast and lean solution that also works for multiple dimensions.
]a=: 5 ]\ 1 + i. 8
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
6 = a
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
4 $. $. 6 = a
1 4
2 3
3 2
Tacitly:
getCoords=: 4 $. $.
getCoords 6 = a ,: a
0 1 4
0 2 3
0 3 2
1 1 4
1 2 3
1 3 2
Verb indices I. almost does the job.
When you have a simple list, I.'s use is straightforward:
I. 8 = 0 1 2 3 4 5 8 7 8 9
6 8
For higher order matrices you can pair it with antibase #: to get the coordinates in base $ matrix. Eg:
]a =: 4 5 $ 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
I. 6 = ,a
9 13 17
($a) #: 9 13 17
1 4
2 3
3 2
Similarly, for any number of dimensions: flatten (,), compare (=), get indices (I.) and convert coordinates (($a)&#:):
]coords =: ($a) #: I. 5 = , a =: ? 5 6 7 $ 10
0 0 2
0 2 1
0 2 3
...
(<"1 coords) { a
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
By the way, you can write I. x = y as x (I.#:=) y for extra performance. It is special code for
indices where x f y

Unique Columns Across an Array?

I have an array structured like so:
a = [1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5;
1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 3 3 1 1 1 2 3 4 4 4 1 1 1 1 2 2 3 3];
Pretty much, it's a 2 by n (I simplified my matrix in this question with reduced number of columns for simplicity's sake), no real pattern. I want to be able to find the unique number of columns. So in this simplified example, I can (but it'll take a while) count by hand and noticed that my unique matrix b is:
b= 1 1 2 2 2 3 3 3 3 4 5 5
1 2 1 2 3 1 2 3 4 1 2 3
In MATLAB, I can do something like
size(b,2)
To get the number of unique columns. In this example
size(b,2) = 12
My question is, how do I go from matrix a to matrix b so that I can do this computationally for very large n dimensional matrices that I have?
Use unique:
a = [1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5;
1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 3 3 1 1 1 2 3 4 4 4 1 1 1 1 2 2 3 3];
% Transpose to leverage the rows flag, then transpose back
b = unique(a.', 'rows').';
Which returns:
b =
1 1 2 2 2 3 3 3 3 4 5 5
1 2 1 2 3 1 2 3 4 1 2 3

How to concatenate submatrix into a bigger matrix in Octave

I'm trying to solve the following issue: I have an 3x3x4 array like this:
A(:,:,1) = A(:,:,2) = A(:,:,3) = A(:,:,4) =
1 1 1 2 2 2 3 3 3 4 4 4
1 1 1 2 2 2 3 3 3 4 4 4
1 1 1 2 2 2 3 3 3 4 4 4
I would like to produce a 6x6 matrix like the following:
B =
1 1 1 3 3 3
1 1 1 3 3 3
1 1 1 3 3 3
2 2 2 4 4 4
2 2 2 4 4 4
2 2 2 4 4 4
My first thought was to use something like the reshape function, but since it operates columnwise, the result is not what I want.
Do you have any ideas to perform it efficiently?
Thanks in advance
This is for a general case of converting a 3D array into such a 2D array -
m = 2; %// number of 3D slices to be vertically concatenated to form the rows
m1 = size(A,1)*m;
m2 = size(A,3)/m;
B = reshape(permute(reshape(permute(A,[1 3 2]),m1,m2,[]),[1 3 2]),m1,[])
Sample run -
A(:,:,1) =
1 1 7
1 9 1
1 7 2
A(:,:,2) =
3 9 2
9 4 7
9 3 7
A(:,:,3) =
2 6 8
4 8 4
1 8 4
A(:,:,4) =
1 1 7
8 3 4
1 9 8
A(:,:,5) =
7 9 2
6 8 5
4 1 6
A(:,:,6) =
3 2 8
4 9 1
4 4 4
B =
1 1 7 2 6 8 7 9 2
1 9 1 4 8 4 6 8 5
1 7 2 1 8 4 4 1 6
3 9 2 1 1 7 3 2 8
9 4 7 8 3 4 4 9 1
9 3 7 1 9 8 4 4 4
Since your sub-matrices are all of the same size you can assign them directly into B:
clear
B = zeros(6);
A(:,:,1) = ones(3);
A(:,:,2) = 2*ones(3);
A(:,:,3) = 3*ones(3);
A(:,:,4) = 4*ones(3);
B = [A(:,:,1) A(:,:,3); A(:,:,2) A(:,:,4)]
B =
1 1 1 3 3 3
1 1 1 3 3 3
1 1 1 3 3 3
2 2 2 4 4 4
2 2 2 4 4 4
2 2 2 4 4 4
This might prove cumbersome if you have many more sub-matrices though but that could be automated.
permute is much more efficient (à la Divakar) or manually slicing into a 2D array (à la Benoit), but I'll add something to the mix for future readers. One way I can suggest is to take each plane and place it into a 1D cell array, reshape the cell array into a 2 x 2 grid, then convert the 2 x 2 grid into a final matrix. Something like:
B = arrayfun(#(x) A(:,:,x), 1:4, 'uni', 0);
B = reshape(B, 2, 2);
B = cell2mat(B)
B =
1 1 1 3 3 3
1 1 1 3 3 3
1 1 1 3 3 3
2 2 2 4 4 4
2 2 2 4 4 4
2 2 2 4 4 4

Reshape acast() remove missing values

I have this dataframe:
df <- data.frame(subject = c(rep("one", 20), c(rep("two", 20))),
score1 = sample(1:3, 40, replace=T),
score2 = sample(1:6, 40, replace=T),
score3 = sample(1:3, 40, replace=T),
score4 = sample(1:4, 40, replace=T))
subject score1 score2 score3 score4
1 one 2 4 2 2
2 one 3 3 1 2
3 one 1 2 1 3
4 one 3 4 1 2
5 one 1 2 2 3
6 one 1 5 2 4
7 one 2 5 3 2
8 one 1 5 1 3
9 one 3 5 2 2
10 one 2 3 3 4
11 one 3 2 1 3
12 one 2 5 2 1
13 one 2 4 1 4
14 one 2 2 1 3
15 one 1 3 1 4
16 one 1 6 1 3
17 one 3 4 2 2
18 one 3 2 1 3
19 one 2 5 3 1
20 one 3 6 2 1
21 two 1 6 3 4
22 two 1 2 1 2
23 two 3 2 1 2
24 two 1 2 2 1
25 two 2 3 1 3
26 two 1 5 3 3
27 two 2 4 1 4
28 two 2 6 2 4
29 two 1 6 2 2
30 two 1 5 1 4
31 two 2 1 2 4
32 two 3 6 1 1
33 two 1 1 3 1
34 two 2 4 2 3
35 two 2 1 3 2
36 two 2 3 1 3
37 two 1 2 3 4
38 two 3 5 2 2
39 two 2 1 3 4
40 two 2 1 1 3
Note that the scores have different ranges of values. Score 1 ranges from 1-3, score 2 from -6, score 3 from 1-3, score 4 from 1-4
I'm trying to reshape data like this:
library(reshape2)
dfMelt <- melt(df, id.vars="subject")
acast(dfMelt, subject ~ value ~ variable)
Aggregation function missing: defaulting to length
, , score1
1 2 3 4 5 6
one 6 7 7 0 0 0
two 8 9 3 0 0 0
, , score2
1 2 3 4 5 6
one 0 5 3 4 6 2
two 5 4 2 2 3 4
, , score3
1 2 3 4 5 6
one 10 7 3 0 0 0
two 8 6 6 0 0 0
, , score4
1 2 3 4 5 6
one 3 6 7 4 0 0
two 3 5 5 7 0 0
Note that the output array includes scores as "0" if they are missing. Is there any way to stop these missing scores being outputted by acast?
In this case, you might do better sticking to base R's table feature. I'm not sure that you can have an irregular array like you are looking for.
For example:
> lapply(df[-1], function(x) table(df[[1]], x))
$score1
x
1 2 3
one 9 6 5
two 11 4 5
$score2
x
1 2 3 4 5 6
one 2 5 4 3 3 3
two 4 2 2 3 4 5
$score3
x
1 2 3
one 9 5 6
two 4 11 5
$score4
x
1 2 3 4
one 4 4 8 4
two 2 6 5 7
Or, using your "long" data:
with(dfMelt, by(dfMelt, variable,
FUN = function(x) table(x[["subject"]], x[["value"]])))
Since each "score" subset is going to have a different shape, you will not be able to preserve the array structure. One option is to use lists of two-dim arrays or data.frames. eg:
# your original acast call
res <- acast(dfMelt, subject ~ value ~ variable)
# remove any columns that are all zero
apply(res, 3, function(x) x[, apply(x, 2, sum)!=0] )
Which gives:
$score1
1 2 3
one 7 8 5
two 6 8 6
$score2
1 2 3 4 5 6
one 4 2 6 4 1 3
two 2 5 3 4 3 3
$score3
1 2 3
one 5 10 5
two 5 11 4
$score4
1 2 3 4
one 5 4 4 7
two 4 6 6 4

Resources