Cuda Fortran 4D array - arrays

My code is being slowed down by a my 4D arrays access in global memory.
I am using PGI compiler 2010.
The 4D array I am accessing is read only from the device and the size is known at run time.
I wanted to allocate to the texture memory and found that my PGI version does not support texture. As the size is known only at run time, it is not possible to use constant memory too.
Only One dimension is known at compile time like this MyFourD(100, x,y,z) where x,y,z are user input.
My first idea is about pointers but not familiar with pointer fortran.
If you have experience how to deal with such a situation, I will appreciate your help. Because only this makes my codes 5times slower than expected
Following is a sample code of what I am trying to do
int i,j,k
i = (blockIdx%x-1) * blockDim%x + threadIdx%x-1
j = (blockIdx%y-1) * blockDim%y + threadIdx%y-1
do k = 0, 100
regvalue1 = somevalue1
regvalue2 = somevalue2
regvalue3 = somevalue3
d_value(i,j,k)=d_value(i,j,k)
& +myFourdArray(10,i,j,k)*regvalue1
& +myFourdArray(32,i,j,k)*regvalue2
& +myFourdArray(45,i,j,k)*regvalue3
end do
Best regards,

I believe the answer from #Alexander Vogt is on the right track - I would think about re-ordering the array storage. But I would try it like this:
int i,j,k
i = (blockIdx%x-1) * blockDim%x + threadIdx%x-1
j = (blockIdx%y-1) * blockDim%y + threadIdx%y-1
do k = 0, 100
regvalue1 = somevalue1
regvalue2 = somevalue2
regvalue3 = somevalue3
d_value(i,j,k)=d_value(i,j,k)
& +myFourdArray(i,j,k,10)*regvalue1
& +myFourdArray(i,j,k,32)*regvalue2
& +myFourdArray(i,j,k,45)*regvalue3
end do
Note that the only change is to myFourdArray, there is no need for a change in data ordering in the d_value array.
The crux of this change is that we are allowing adjacent threads to access adjacent elements in myFourdArray and so we are allowing for coalesced access. Your original formulation forced adjacent threads to access elements that were separated by the length of the first dimension, and so did not allow for useful coalescing.
Whether in CUDA C or CUDA Fortran, threads are grouped in X first, then Y and then Z dimensions. So the rapidly varying thread subscript is X first. Therefore, in matrix access, we want this rapidly varying subscript to show up in the index that is also rapidly varying.
In Fortran this index is the first of a multiple-subscripted array.
In C, this index is the last of a multiple-subscripted array.
Your original code followed this convention for d_value by placing the X thread index (i) in the first array subscript position. But it broke this convention for myFourdArray by putting a constant in the first array subscript position. Thus your access to myFourdArray are noticeably slower.
When there is a loop in the code, we also don't want to place the loop variable first (for Fortran, or last for C) (i.e. k, in this case, as Alexander Vogt did) because doing that will also break coalescing. For each iteration of the loop, we have multiple threads executing in lockstep, and those threads should all access adjacent elements. This is facilitated by having the X thread indexed subscript (e.g. i) first (for Fortran, or last for C).

You could invert the indexing, i.e. let the first dimension change the Fastest. Fortran is column major!
do k = 0, 100
regvalue1 = somevalue1
regvalue2 = somevalue2
regvalue3 = somevalue3
d_value(k,i,j)=d_value(k,i,j) + &
myFourdArray(k,i,j,10)*regvalue1 + &
myFourdArray(k,i,j,32)*regvalue2 + &
myFourdArray(k,i,j,45)*regvalue3
end do
If the last (in the original case second) dimension is always fixed (and not too large), consider individual arrays instead.
In my experience, pointers do not change much in terms of speed-up when applied to large arrays. What you could try is strip-mining to optimize your loops in terms of cache access, but I do not know the compile option to enable this with the PGI compiler.
Ah, ok it is a simple directive:
!$acc do vector
do k=...
enddo

Related

Seg faulting with 4D arrays & initializing dynamic arrays

I ran into a big of a problem with a tetris program I'm writing currently in C.
I am trying to use a 4D multi-dimensional array e.g.
uint8_t shape[7][4][4][4]
but I keep getting seg faults when I try that, I've read around and it seems to be that I'm using up all the stack memory with this kind of array (all I'm doing is filling the array with 0s and 1s to depict a shape so I'm not inputting a ridiculously high number or something).
Here is a version of it (on pastebin because as you can imagine its very ugly and long).
If I make the array smaller it seems to work but I'm trying to avoid a way around it as theoretically each "shape" represents a rotation as well.
https://pastebin.com/57JVMN20
I've read that you should use dynamic arrays so they end up on the heap but then I run into the issue how someone would initialize a dynamic array in such a way as linked above. It seems like it would be a headache as I would have to go through loops and specifically handle each shape?
I would also be grateful for anybody to let me pick their brain on dynamic arrays how best to go about them and if it's even worth doing normal arrays at all.
Even though I have not understood why do you use 4D arrays to store shapes for a tetris game, and I agree with bolov's comment that such an array should not overflow the stack (7*4*4*4*1 = 448 bytes), so you should probably check other code you wrote.
Now, to your question on how to manage 4D (N-Dimensional)dynamically sized arrays. You can do this in two ways:
The first way consists in creating an array of (N-1)-Dimensional arrays. If N = 2 (a table) you end up with a "linearized" version of the table (a normal array) which dimension is equal to R * C where R is the number of rows and C the number of columns. Inductively speaking, you can do the very same thing for N-Dimensional arrays without too much effort. This method has some drawbacks though:
You need to know beforehand all the dimensions except one (the "latest") and all the dimensions are fixed. Back to the N = 2 example: if you use this method on a table of C columns and R rows, you can change the number of rows by allocating C * sizeof(<your_array_type>) more bytes at the end of the preallocated space, but not the number of columns (not without rebuilding the entire linearized array). Moreover, different rows must have the same number of columns C (you cannot have a 2D array that looks like a triangle when drawn on paper, just to get things clear).
You need to carefully manage the indicies: you cannot simply write my_array[row][column], instead you must access that array with my_array[row*C + column]. If N is not 2, then this formula gets... interesting
You can use N-1 arrays of pointers. That's my favourite solution because it does not have any of the drawbacks from the previous solution, although you need to manage pointers to pointers to pointers to .... to pointers to a type (but that's what you do when you access my_array[7][4][4][4].
Solution 1
Let's say you want to build an N-Dimensional array in C using the first solution.
You know the length of each dimension of the array up to the (N-1)-th (let's call them d_1, d_2, ..., d_(N-1)). We can build this inductively:
We know how to build a dynamic 1-dimensional array
Supposing we know how to build a (N-1)-dimensional array, we show that we can build a N-Dimensional array by putting each (N-1)-dimensional array we have available in a 1-Dimensional array, thus increasing the available dimensions by 1.
Let's also assume that the data type that the arrays must hold is called T.
Let's suppose we want to create an array with R (N-1)-dimensional arrays inside it. For that we need to know the size of each (N-1)-dimensional array, so we need to calculate it.
For N = 1 the size is just sizeof(T)
For N = 2 the size is d_1 * sizeof(T)
For N = 3 the size is d_2 * d_1 * sizeof(T)
You can easily inductively prove that the number of bytes required to store R (N-1)-dimensional arrays is R*(d_1 * d_2 * ... * d_(n-1) * sizeof(T)). And that's done.
Now, we need to access a random element inside this massive N-dimensional array. Let's say we want to access the item with indicies (i_1, i_2, ..., i_N). For this we are going to repeat the inductive reasoning:
For N = 1, the index of the i_1 element is just my_array[i_1]
For N = 2, the index of the (i_1, i_2) element can be calculated by thinking that each d_1 elements, a new array begins, so the element is my_array[i_1 * d_1 + i_2].
For N = 3, we can repeat the same process and end up having the element my_array[d_2 * ((i_1 * d_1) + i_2) + i_3]
And so on.
Solution 2
The second solution wastes a bit more memory, but it's more straightforward, both to understand and to implement.
Let's just stick to the N = 2 case so that we can think better. Imagine to have a table and to split it row by row and to place each row in its own memory slot. Now, a row is a 1-dimensional array, and to make a 2-dimensional array we only need to be able to have an ordered array with references to each row. Something like the following drawing shows (the last row is the R-th row):
+------+
| R1 -------> [1,2,3,4]
|------|
| R2 -------> [2,4,6,8]
|------|
| R3 -------> [3,6,9,12]
|------|
| .... |
|------|
| RR -------> [R, 2*R, 3*R, 4*R]
+------+
In order to do that, you need to first allocate the references array (R elements long) and then, iterate through this array and assign to each entry the pointer to a newly allocated memory area of size d_1.
We can easily extend this for N dimensions. Simply build a R dimensional array and, for each entry in this array, allocate a new 1-Dimensional array of size d_(N-1) and do the same for the newly created array until you get to the array with size d_1.
Notice how you can easily access each element by simply using the expression my_array[i_1][i_2][i_3]...[i_N].
For example, let's suppose N = 3 and T is uint8_t and that d_1, d_2 and d_3 are known (and not uninitialized) in the following code:
size_t d1 = 5, d2 = 7, d3 = 3;
int ***my_array;
my_array = malloc(d1 * sizeof(int**));
for(size_t x = 0; x<d1; x++){
my_array[x] = malloc(d2 * sizeof(int*));
for (size_t y = 0; y < d2; y++){
my_array[x][y] = malloc(d3 * sizeof(int));
}
}
//Accessing a random element
size_t x1 = 2, y1 = 6, z1 = 1;
my_array[x1][y1][z1] = 32;
I hope this helps. Please feel free to comment if you have questions.

Dynamically indexing an array in C

Is it possible to create arrays based of their index as in
int x = 4;
int y = 5;
int someNr = 123;
int foo[x][y] = someNr;
dynamically/on the run, without creating foo[0...3][0...4]?
If not, is there a data structure that allow me to do something similar to this in C?
No.
As written your code make no sense at all. You need foo to be declared somewhere and then you can index into it with foo[x][y] = someNr;. But you cant just make foo spring into existence which is what it looks like you are trying to do.
Either create foo with correct sizes (only you can say what they are) int foo[16][16]; for example or use a different data structure.
In C++ you could do a map<pair<int, int>, int>
Variable Length Arrays
Even if x and y were replaced by constants, you could not initialize the array using the notation shown. You'd need to use:
int fixed[3][4] = { someNr };
or similar (extra braces, perhaps; more values perhaps). You can, however, declare/define variable length arrays (VLA), but you cannot initialize them at all. So, you could write:
int x = 4;
int y = 5;
int someNr = 123;
int foo[x][y];
for (int i = 0; i < x; i++)
{
for (int j = 0; j < y; j++)
foo[i][j] = someNr + i * (x + 1) + j;
}
Obviously, you can't use x and y as indexes without writing (or reading) outside the bounds of the array. The onus is on you to ensure that there is enough space on the stack for the values chosen as the limits on the arrays (it won't be a problem at 3x4; it might be at 300x400 though, and will be at 3000x4000). You can also use dynamic allocation of VLAs to handle bigger matrices.
VLA support is mandatory in C99, optional in C11 and C18, and non-existent in strict C90.
Sparse arrays
If what you want is 'sparse array support', there is no built-in facility in C that will assist you. You have to devise (or find) code that will handle that for you. It can certainly be done; Fortran programmers used to have to do it quite often in the bad old days when megabytes of memory were a luxury and MIPS meant millions of instruction per second and people were happy when their computer could do double-digit MIPS (and the Fortran 90 standard was still years in the future).
You'll need to devise a structure and a set of functions to handle the sparse array. You will probably need to decide whether you have values in every row, or whether you only record the data in some rows. You'll need a function to assign a value to a cell, and another to retrieve the value from a cell. You'll need to think what the value is when there is no explicit entry. (The thinking probably isn't hard. The default value is usually zero, but an infinity or a NaN (not a number) might be appropriate, depending on context.) You'd also need a function to allocate the base structure (would you specify the maximum sizes?) and another to release it.
Most efficient way to create a dynamic index of an array is to create an empty array of the same data type that the array to index is holding.
Let's imagine we are using integers in sake of simplicity. You can then stretch the concept to any other data type.
The ideal index depth will depend on the length of the data to index and will be somewhere close to the length of the data.
Let's say you have 1 million 64 bit integers in the array to index.
First of all you should order the data and eliminate duplicates. That's something easy to achieve by using qsort() (the quick sort C built in function) and some remove duplicate function such as
uint64_t remove_dupes(char *unord_arr, char *ord_arr, uint64_t arr_size)
{
uint64_t i, j=0;
for (i=1;i<arr_size;i++)
{
if ( strcmp(unord_arr[i], unord_arr[i-1]) != 0 ){
strcpy(ord_arr[j],unord_arr[i-1]);
j++;
}
if ( i == arr_size-1 ){
strcpy(ord_arr[j],unord_arr[i]);
j++;
}
}
return j;
}
Adapt the code above to your needs, you should free() the unordered array when the function finishes ordering it to the ordered array. The function above is very fast, it will return zero entries when the array to order contains one element, but that's probably something you can live with.
Once the data is ordered and unique, create an index with a length close to that of the data. It does not need to be of an exact length, although pledging to powers of 10 will make everything easier, in case of integers.
uint64_t* idx = calloc(pow(10, indexdepth), sizeof(uint64_t));
This will create an empty index array.
Then populate the index. Traverse your array to index just once and every time you detect a change in the number of significant figures (same as index depth) to the left add the position where that new number was detected.
If you choose an indexdepth of 2 you will have 10² = 100 possible values in your index, typically going from 0 to 99.
When you detect that some number starts by 10 (103456), you add an entry to the index, let's say that 103456 was detected at position 733, your index entry would be:
index[10] = 733;
Next entry begining by 11 should be added in the next index slot, let's say that first number beginning by 11 is found at position 2023
index[11] = 2023;
And so on.
When you later need to find some number in your original array storing 1 million entries, you don't have to iterate the whole array, you just need to check where in your index the first number starting by the first two significant digits is stored. Entry index[10] tells you where the first number starting by 10 is stored. You can then iterate forward until you find your match.
In my example I employed a small index, thus the average number of iterations that you will need to perform will be 1000000/100 = 10000
If you enlarge your index to somewhere close the length of the data the number of iterations will tend to 1, making any search blazing fast.
What I like to do is to create some simple algorithm that tells me what's the ideal depth of the index after knowing the type and length of the data to index.
Please, note that in the example that I have posed, 64 bit numbers are indexed by their first index depth significant figures, thus 10 and 100001 will be stored in the same index segment. That's not a problem on its own, nonetheless each master has his small book of secrets. Treating numbers as a fixed length hexadecimal string can help keeping a strict numerical order.
You don't have to change the base though, you could consider 10 to be 0000010 to keep it in the 00 index segment and keep base 10 numbers ordered, using different numerical bases is nonetheless trivial in C, which is of great help for this task.
As you make your index depth become larger, the amount of entries per index segment will be reduced
Please, do note that programming, especially lower level like C consists in comprehending the tradeof between CPU cycles and memory use in great part.
Creating the proposed index is a way to reduce the number of CPU cycles required to locate a value at the cost of using more memory as the index becomes larger. This is nonetheless the way to go nowadays, as masive amounts of memory are cheap.
As SSDs' speed become closer to that of RAM, using files to store indexes is to be taken on account. Nevertheless modern OSs tend to load in RAM as much as they can, thus using files would end up in something similar from a performance point of view.

Run-time efficient transposition of a rectangular matrix of arbitrary size

I am pressed for time to optimize a large piece of C code for speed and I am looking for an algorithm---at the best a C "snippet"---that transposes a rectangular source matrix u[r][c] of arbitrary size (r number of rows, c number of columns) into a target matrix v[s][d] (s = c number of rows, d = r number of columns) in a "cache-friendly" i. e. data-locality respecting way. The typical size of u is around 5000 ... 15000 rows by 50 to 500 columns, and it is clear that a row-wise access of elements is very cache-inefficient.
There are many discussions on this topic in the web (nearby this thread), but as far as I see all of them discuss the spacial cases like square matrices, u[r][r], or the definition an on-dimensional array, e. g. u[r * c], not the above mentioned "array of arrays" (of equal length) used in my context of Numerical Recipes (background see here).
I would by very thankful for any hint that helps to spare me the "reinvention of the wheel".
Martin
I do not think that array of arrays is much harder to transpose than linear array in general. But if you are going to have 50 columns in each array, that sounds bad: it may be not enough to hide the overhead of pointer dereferencing.
I think that the overall strategy of cache-friendly implementation is the same: process your matrix in tiles, choose size of tiles which performs best according to experiments.
template<int BLOCK>
void TransposeBlocked(Matrix &dst, const Matrix &src) {
int r = dst.r, c = dst.c;
assert(r == src.c && c == src.r);
for (int i = 0; i < r; i += BLOCK)
for (int j = 0; j < c; j += BLOCK) {
if (i + BLOCK <= r && j + BLOCK <= c)
ProcessFullBlock<BLOCK>(dst.data, src.data, i, j);
else
ProcessPartialBlock(dst.data, src.data, r, c, i, j, BLOCK);
}
}
I have tried to optimize the best case when r = 10000, c = 500 (with float type). On my local machine 128 x 128 tiles give speedup in 2.5 times. Also, I have tried to use SSE to accelerate transposition, but it does not change timings significantly. I think that's because the problem is memory bound.
Here are full timings (for 100 launches each) of various implementations on Core2 E4700 2.6GHz:
Trivial: 6.111 sec
Blocked(4): 8.370 sec
Blocked(16): 3.934 sec
Blocked(64): 2.604 sec
Blocked(128): 2.441 sec
Blocked(256): 2.266 sec
BlockedSSE(16): 4.158 sec
BlockedSSE(64): 2.604 sec
BlockedSSE(128): 2.245 sec
BlockedSSE(256): 2.036 sec
Here is the full code used.
So, I'm guessing you have an array of array of floats/doubles. This setup is already very bad for cache performance. The reason is that with a 1-dimensional array the compiler can output code that results in a prefetch operation and ( in the case of a very new compiler) produce SIMD/vectorized code. With an array of pointers there's a deference operation on each step making a prefetch more difficult. Not to mention there aren't any guarantees on memory alignment.
If this is for an assignment and you have no choice but to write the code from scratch, I'd recommend looking at how CBLAS does it (note that you'll still need your array to be "flattened"). Otherwise, you're much better off using a highly optimized BLAS implementation like
OpenBLAS. It's been optimized for nearly a decade and will produce the fastest code for your target processor (tuning for things like cache sizes and vector instruction set).
The tl;dr is that using an array of arrays will result in terrible performance no matter what. Flatten your arrays and make your code nice to read by using a #define to access elements of the array.

Optimising C for performance vs memory optimisation using multidimensional arrays

I am struggling to decide between two optimisations for building a numerical solver for the poisson equation.
Essentially, I have a two dimensional array, of which I require n doubles in the first row, n/2 in the second n/4 in the third and so on...
Now my difficulty is deciding whether or not to use a contiguous 2d array grid[m][n], which for a large n would have many unused zeroes but would probably reduce the chance of a cache miss. The other, and more memory efficient method, would be to dynamically allocate an array of pointers to arrays of decreasing size. This is considerably more efficient in terms of memory storage but would it potentially hinder performance?
I don't think I clearly understand the trade-offs in this situation. Could anybody help?
For reference, I made a nice plot of the memory requirements in each case:
There is no hard and fast answer to this one. If your algorithm needs more memory than you expect to be given then you need to find one which is possibly slower but fits within your constraints.
Beyond that, the only option is to implement both and then compare their performance. If saving memory results in a 10% slowdown is that acceptable for your use? If the version using more memory is 50% faster but only runs on the biggest computers will it be used? These are the questions that we have to grapple with in Computer Science. But you can only look at them once you have numbers. Otherwise you are just guessing and a fair amount of the time our intuition when it comes to optimizations are not correct.
Build a custom array that will follow the rules you have set.
The implementation will use a simple 1d contiguous array. You will need a function that will return the start of array given the row. Something like this:
int* Get( int* array , int n , int row ) //might contain logical errors
{
int pos = 0 ;
while( row-- )
{
pos += n ;
n /= 2 ;
}
return array + pos ;
}
Where n is the same n you described and is rounded down on every iteration.
You will have to call this function only once per entire row.
This function will never take more that O(log n) time, but if you want you can replace it with a single expression: http://en.wikipedia.org/wiki/Geometric_series#Formula
You could use a single array and just calculate your offset yourself
size_t get_offset(int n, int row, int column) {
size_t offset = column;
while (row--) {
offset += n;
n << 1;
}
return offset;
}
double * array = calloc(sizeof(double), get_offset(n, 64, 0));
access via
array[get_offset(column, row)]

how to make matlab loop over 2d array faster

I have the above loop running on the above variables:
A is a 2d array of size mxn.
mask is a 1d logical array of size 1xn
results is a 1d array of size 1xn
B is a vector of the form mx1
C is a mxm matrix, m is the same as the above.
Edit: expanded foo(x) into the function.
here is the code:
temp = (B.'*C*B);
for k = 1:n
x = A(:,k);
if(mask(k) == 1)
result(k) = (B.'*C*x)^2 / (temp*(x.'*C*x)); %returns scalar
end
end
take note, I am already successfully using the above code as a parfor loop instead of for. I was hoping you would be able to suggest some way to use meshgrid or the sort to yield better performance improvement. I don't think I have RAM problems so a solution can also be expensive memory wise.
Many thanks.
try this:
result=(B.'*C*A).^2./diag(temp*(A.'*C*A))'.*mask;
This vectorization via matrix multiplication will also make sure that result is a 1xn vector. In the code you provided there can be a case where the last elements in mask are zeros, in this case your code will truncate result to a smaller length, whereas, in the answer it'll keep these elements zero.
If your foo admits matrix input, you could do:
result = zeros(1,n); % preallocate result with zeros
mask = logical(mask); % make mask logical type
result(mask) = foo(A(mask),:); % compute foo for all selected columns

Resources