Inexpensive/free way to delete a kind from datastore? - google-app-engine

I have about 8.8 million entities for a particular kind. They take up 5GB of space.
The built-in indexes for this kind take up 50GB of space.
I did some tests, and deleting 100k entries produces over a million data store write operations.
Since datastore writes cost ~$1 for a million ops, it looks like it will cost me at least $100 to delete this kind.
Is there any shortcut to doing this? I did try using the built-in mapreduce 'delete' in the appengine interface, but it started burning through my daily quota quite fast so I stopped it.
So the question is: is there any inexpensive/free way to delete a kind that I am missing?
-s

Enable the Datastore Admin feature in your GAE app. Once it's enabled open Datastore Admin in the Admin Console. Among other things it allows you to bulk delete all entities of a kind. While Google says:
Caution: This feature is currently experimental. We believe it is the fastest way to bulk-delete data, but it is not yet stable and you may encounter occasional bugs.
.. they don't say what the pricing on bulk delete is. It might be the same as for Datastore Writes. If it is then 100k ops will cost $0.09 resulting in a total cost of $0.09 / 100,000 * 8,800,000 = $7.92.

Related

Is google Datastore recommended for storing logs?

I am investigating what might be the best infrastructure for storing log files from many clients.
Google App engine offers a nice solution that doesn't make the process a IT nightmare: Load balancing, sharding, server, user authentication - all in once place with almost zero configuration.
However, I wonder if the Datastore model is the right for storing logs. Each log entry should be saved as a single document, where each clients uploads its document on a daily basis and can consists of 100K of log entries each day.
Plus, there are some limitation and questions that can break the requirements:
60 seconds timeout on bulk transaction - How many log entries per second will I be able to insert? If 100K won't fit into the 60 seconds frame - this will affect the design and the work that needs to be put into the server.
5 inserts per entity per seconds - Is a transaction considered a single insert?
Post analysis - text search, searching for similar log entries cross clients. How flexible and efficient is Datastore with these queries?
Real time data fetch - getting all the recent log entries.
The other option is to deploy an elasticsearch cluster on goole compute and write the server on our own which fetches data from ES.
Thanks!
Bad idea to use datastore and even worse if you use entity groups with parent/child as a comment mentions when comparing performance.
Those numbers do not apply but datastore is not at all designed for what you want.
bigquery is what you want. its designed for this specially if you later want to analyze the logs in a sql-like fashion. Any more detail requires that you ask a specific question as it seems you havent read much about either service.
I do not agree, Data Store is a totally fully managed no sql document store database, you can store the logs you want in this type of storage and you can query directly in datastore, the benefits of using this instead of BigQuery is the schemaless part, in BigQuery you have to define the schema before inserting the logs, this is not necessary if you use DataStore, think of DataStore as a MongoDB log analysis use case in Google Cloud.

Improving database record retrieval throughput with appengine

Using AppEngine with Python and the HRD retrieving records sequentially (via an indexed field which is an incrementing integer timestamp) we get 15,000 records returned in 30-45 seconds. (Batching and limiting is used.) I did experiment with doing queries on two instances in parallel but still achieved the same overall throughput.
Is there a way to improve this overall number without changing any code? I'm hoping we can just pay some more and get better database throughput. (You can pay more for bigger frontends but that didn't affect database throughput.)
We will be changing our code to store multiple underlying data items in one database record, but hopefully there is a short term workaround.
Edit: These are log records being downloaded to another system. We will fix it in the future and know how to do so, but I'd rather work on more important things first.
Try splitting the records on different entity groups. That might force them to go to different physical servers. Read entity groups in parallel from multiple threads or instances.
Using cache mght not work well for large tables.
Maybe you can cache your records, like use Memcache:
https://developers.google.com/appengine/docs/python/memcache/
This could definitely speed up your application access. I don't think that App Engine Datastore is designed for speed but for scalability. Memcache however is.
BTW, if you are conscious about the performance that GAE gives as per what you pay, then maybe you can try setting up your own App Engine cloud with:
AppScale
JBoss CapeDwarf
Both have an active community support. I'm using CapeDwarf in my local environment it is still in BETA but it works.
Move to any of the in-memory databases. If you have Oracle Database, using TimesTen will improve the throughput multifold.

Is GAE optimized for database-heavy applications?

I'm writing a very limited-purpose web application that stores about 10-20k user-submitted articles (typically 500-700 words). At any time, any user should be able to perform searches on tags and keywords, edit any part of any article (metadata, text, or tags), or download a copy of the entire database that is recent up-to-the-hour. (It can be from a cache as long as it is updated hourly.) Activity tends to happen in a few unpredictable spikes over a day (wherein many users download the entire database simultaneously requiring 100% availability and fast downloads) and itermittent weeks of low activity. This usage pattern is set in stone.
Is GAE a wise choice for this application? It appeals to me for its low cost (hopefully free), elasticity of scale, and professional management of most of the stack. I like the idea of an app engine as an alternative to a host. However, the excessive limitations and quotas on all manner of datastore usage concern me, as does the trade-off between strong and eventual consistency imposed by the datastore's distributed architecture.
Is there a way to fit this application into GAE? Should I use the ndb API instead of the plain datastore API? Or are the requirements so data-intensive that GAE is more expensive than hosts like Webfaction?
As long as you don't require full text search on the articles (which is currently still marked as experimental and limited to ~1000 queries per day), your usage scenario sounds like it would fit just fine in App Engine.
stores about 10-20k user-submitted articles (typically 500-700 words)
Maximum entity size in App Engine is 1 MB, so as long as the total size of the article is lower than that, it should not be a problem. Also, the cost for reading data in is not tied to the size of the entity but to the number of entities being read.
At any time, any user should be able to perform searches on tags and keywords.
Again, as long as the search on the tags and keywords are not full text searches, App Engine's datastore queries could handle these kind of searches efficiently. If you want to search on both tags and keywords at the same time, you would need to build a composite index for both fields. This could increase your write cost.
download a copy of the entire database that is recent up-to-the-hour.
You could use cron/scheduled task to schedule a hourly dump to the blobstore. The cron could be targeted to a backend instance if your dump takes more than 60 seconds to be finished. Do remember that with each dump, you would need to read all entities in the database, and this means 10-20k read ops per hour. You could add a timestamp field to your entity, and have your dump servlet query for anything newer than the last dump instead to save up read ops.
Activity tends to happen in a few unpredictable spikes over a day (wherein many users download the entire database simultaneously requiring 100% availability and fast downloads) and itermittent weeks of low activity.
This is where GAE shines, you could have very efficient instance usages with GAE in this case.
I don't think your application is particularly "database-heavy".
500-700 words is only a few KB of data.
I think GAE is a good fit.
You could store each article as a textproperty on an entity, with tags in a listproperty. For searching text you could use the search service https://developers.google.com/appengine/docs/python/search/ (which currently has quota limits).
Not 100% sure about downloading all the data, but I think you could store all the data in the blobstore (possibly as pdf?) and then allow users to download that blob.
I would choose NDB over regular datastore, mostly for the built-in async functionality and caching.
Regarding staying below quota, it depends on how many people are accessing the site and how much data they download/upload.

Google App Engine - stats on datastore reads for a complete application

In order to decrease the cost of an existing application which over-consumes on Datastore reads, I am trying to get stats on the application as a whole.
What I'd like to get for the overall application is stats about the queries that are returning the biggest number of rows during a complete day of production. The cost of retrieving data being $0.70 / million, there is a big incentive to optimise / cache some queries but first I have to understand which query retrieves too much data.
Appstats apparently does not provide this information as the tool's primary driver is to optimise one RPC call.
Does anyone has a magic solution for this one ? One alternative I thought about was to build by myself a tool to log after each query the number of rows returned but that looks like an overkill and will require to open the code.
Thanks a lot for your help !
Hugues
See this related post: https://stackoverflow.com/questions/11282567/calculating-datastore-api-usage-per-request/
What you can do to measure and optimize is to look at the cost field provided by the LogService. (It's called cpm_usd in the admin panel).
Using this information you can find the most expensive urls and thus optimize its queries.

Distributed store with transactions

I currently develop an application hosted at google app engine. However, gae has many disadvantages: it's expensive and is very hard to debug since we can't attach to real instances.
I am considering changing the gae to an open source alternative. Unfortunately, none of the existing NOSQL solutions which satisfy me support transactions similar to gae's transactions (gae support transactions inside of entity groups).
What do you think about solving this problem? I am currently considering a store like Apache Cassandra + some locking service (hazelcast) for transactions. Did anyone has any experience in this area? What can you recommend
There are plans to support entity groups in cassandra in the future, see CASSANDRA-1684.
If your data can't be easily modelled without transactions, is it worth using a non transcational database? Do you need the scalability?
The standard way to do transaction like things in cassandra is described in this presentation, starting at slide 24. Basically you write something similar to a WAL log entry to 1 row, then perform the actual writes on multiple rows, then delete the WAL log row. On failure, simply read and perform actions in the WAL log. Since all cassandra writes have a user supplied time stamp, all writes can be made idempotent, just store the time stamp of your write with the WAL log entry.
This strategy gives you the Atomic and Durable in ACID, but you do not get Consistency and Isolation. If you are working at scale that requires something like cassandra, you probably need to give up full ACID transactions anyway.
You may want to try AppScale or TyphoonAE for hosting applications built for App Engine on your own hardware.
If you are developing under Python, you have very interesting debugging options with the Werkzeug debugger.

Resources