Finding number of k-prime numbers; - c

Given a range a to b , and number k, find all the k-prime numbers between a to b [inclusive both].
Definition of k-prime : A number is a k-prime if it has exactly k distinct prime factors.
i.e. a=4, b=10 k=2 the answer is 2. Since the prime factors of 6 are [2,3] and the prime factors of 10 are [2,5].
Now here's my attempt
#include<stdio.h>
#include<stdlib.h>
int main(){
int numOfInp;
scanf("%d",&numOfInp);
int a,b,k;
scanf("%d %d %d",&a,&b,&k);
int *arr;
arr = (int*)calloc(b+1,sizeof(int));
int i=2,j=2,count=0;
//Count is the count of distic k prim factors for a particular number
while(i<=b){
if(arr[i]==0){
for(j=i;j<=b;j=j+i){
arr[j]++;
}
}
if(i>=a && arr[i]==k)
count++;
i++;
}
printf("%d\n",count);
free(arr);
return 0;
}
This problem is taken from Codechef
Here's what I've done, I take an array of size b, and for each number starting from 2, I do the following.
For 2 check if arr[2] is 0, then arr[2]++,arr[4]++,arr[6]++ .... so on.
For 3 check if arr[2] is 0, then arr[3]++,arr[6]++,arr[9]++ .... so on.
Since arr[4] is not zero, leave it.
In the end, the value arr[i] will give me the answer, i.e arr[2] is 1, hence 2 is 1-prime number, arr[6] is 2, hence 6 is 2-prime number.
Questions:
What is the complexity of this code, and can it be done in O(n)?
Am I using Dynamic Programming here?

The algorithm you are using is know as Sieve of Eratosthenes. It is a well known algorithm for finding prime numbers. Now to answer your questions :
1a) What is the complexity of this code
The complexity of your code is O(n log(log n)).
For and input of a and b the complexity of your code is O(b log log b). The runtime is due to the fact that you first mark b/2 number then b/3 then b/5 and so on. So your runtime is b * (1/2 + 1/3 + 1/5 + 1/7 + 1/11 + ... + 1/prime_closest_to_b). What we have there is a prime harmonic series which grows asymptotically as ln(ln(b+1)) (see here).
Asymptotically the upper bound is:
O(b * (1/2 + 1/3 + 1/5 + 1/7 +..)) = O(b) * O(log(log(b+1))) = O(b*log(log(b))
1b) Can it be done in O(n)
This is tricky. I would say that for all practical purposes an O(n log log n) algorithm is gonna be about as good as any O(n) algorithm, since log(log(n)) grows really really really slow.
Now, if my life depended on it I would try to see if I can find a method to generate all numbers up to n in a way where every operation generates a unique number and tells me how many unique prime divisors it has.
2) Am I using Dynamic Programming here?
Definition of dynamic programming from wikipedia says:
Dynamic programming is a method for solving complex problems by breaking them down into simpler subproblems
The definition is quite broad, so it is unfortunately open to interpretation. I would say that this isn't dynamic programming, because you aren't breaking down your problem into smaller smaller sub-problems and using the results from those sub-problems to find the final answer.

Related

Time complexity for GCD function [duplicate]

I am having difficulty deciding what the time complexity of Euclid's greatest common denominator algorithm is. This algorithm in pseudo-code is:
function gcd(a, b)
while b ≠ 0
t := b
b := a mod b
a := t
return a
It seems to depend on a and b. My thinking is that the time complexity is O(a % b). Is that correct? Is there a better way to write that?
One trick for analyzing the time complexity of Euclid's algorithm is to follow what happens over two iterations:
a', b' := a % b, b % (a % b)
Now a and b will both decrease, instead of only one, which makes the analysis easier. You can divide it into cases:
Tiny A: 2a <= b
Tiny B: 2b <= a
Small A: 2a > b but a < b
Small B: 2b > a but b < a
Equal: a == b
Now we'll show that every single case decreases the total a+b by at least a quarter:
Tiny A: b % (a % b) < a and 2a <= b, so b is decreased by at least half, so a+b decreased by at least 25%
Tiny B: a % b < b and 2b <= a, so a is decreased by at least half, so a+b decreased by at least 25%
Small A: b will become b-a, which is less than b/2, decreasing a+b by at least 25%.
Small B: a will become a-b, which is less than a/2, decreasing a+b by at least 25%.
Equal: a+b drops to 0, which is obviously decreasing a+b by at least 25%.
Therefore, by case analysis, every double-step decreases a+b by at least 25%. There's a maximum number of times this can happen before a+b is forced to drop below 1. The total number of steps (S) until we hit 0 must satisfy (4/3)^S <= A+B. Now just work it:
(4/3)^S <= A+B
S <= lg[4/3](A+B)
S is O(lg[4/3](A+B))
S is O(lg(A+B))
S is O(lg(A*B)) //because A*B asymptotically greater than A+B
S is O(lg(A)+lg(B))
//Input size N is lg(A) + lg(B)
S is O(N)
So the number of iterations is linear in the number of input digits. For numbers that fit into cpu registers, it's reasonable to model the iterations as taking constant time and pretend that the total running time of the gcd is linear.
Of course, if you're dealing with big integers, you must account for the fact that the modulus operations within each iteration don't have a constant cost. Roughly speaking, the total asymptotic runtime is going to be n^2 times a polylogarithmic factor. Something like n^2 lg(n) 2^O(log* n). The polylogarithmic factor can be avoided by instead using a binary gcd.
The suitable way to analyze an algorithm is by determining its worst case scenarios.
Euclidean GCD's worst case occurs when Fibonacci Pairs are involved.
void EGCD(fib[i], fib[i - 1]), where i > 0.
For instance, let's opt for the case where the dividend is 55, and the divisor is 34 (recall that we are still dealing with fibonacci numbers).
As you may notice, this operation costed 8 iterations (or recursive calls).
Let's try larger Fibonacci numbers, namely 121393 and 75025. We can notice here as well that it took 24 iterations (or recursive calls).
You can also notice that each iterations yields a Fibonacci number. That's why we have so many operations. We can't obtain similar results only with Fibonacci numbers indeed.
Hence, the time complexity is going to be represented by small Oh (upper bound), this time. The lower bound is intuitively Omega(1): case of 500 divided by 2, for instance.
Let's solve the recurrence relation:
We may say then that Euclidean GCD can make log(xy) operation at most.
There's a great look at this on the wikipedia article.
It even has a nice plot of complexity for value pairs.
It is not O(a%b).
It is known (see article) that it will never take more steps than five times the number of digits in the smaller number. So the max number of steps grows as the number of digits (ln b). The cost of each step also grows as the number of digits, so the complexity is bound by O(ln^2 b) where b is the smaller number. That's an upper limit, and the actual time is usually less.
See here.
In particular this part:
Lamé showed that the number of steps needed to arrive at the greatest common divisor for two numbers less than n is
So O(log min(a, b)) is a good upper bound.
Here's intuitive understanding of runtime complexity of Euclid's algorithm. The formal proofs are covered in various texts such as Introduction to Algorithms and TAOCP Vol 2.
First think about what if we tried to take gcd of two Fibonacci numbers F(k+1) and F(k). You might quickly observe that Euclid's algorithm iterates on to F(k) and F(k-1). That is, with each iteration we move down one number in Fibonacci series. As Fibonacci numbers are O(Phi ^ k) where Phi is golden ratio, we can see that runtime of GCD was O(log n) where n=max(a, b) and log has base of Phi. Next, we can prove that this would be the worst case by observing that Fibonacci numbers consistently produces pairs where the remainders remains large enough in each iteration and never become zero until you have arrived at the start of the series.
We can make O(log n) where n=max(a, b) bound even more tighter. Assume that b >= a so we can write bound at O(log b). First, observe that GCD(ka, kb) = GCD(a, b). As biggest values of k is gcd(a,c), we can replace b with b/gcd(a,b) in our runtime leading to more tighter bound of O(log b/gcd(a,b)).
Here is the analysis in the book Data Structures and Algorithm Analysis in C by Mark Allen Weiss (second edition, 2.4.4):
Euclid's algorithm works by continually computing remainders until 0 is reached. The last nonzero remainder is the answer.
Here is the code:
unsigned int Gcd(unsigned int M, unsigned int N)
{
unsigned int Rem;
while (N > 0) {
Rem = M % N;
M = N;
N = Rem;
}
Return M;
}
Here is a THEOREM that we are going to use:
If M > N, then M mod N < M/2.
PROOF:
There are two cases. If N <= M/2, then since the remainder is smaller
than N, the theorem is true for this case. The other case is N > M/2.
But then N goes into M once with a remainder M - N < M/2, proving the
theorem.
So, we can make the following inference:
Variables M N Rem
initial M N M%N
1 iteration N M%N N%(M%N)
2 iterations M%N N%(M%N) (M%N)%(N%(M%N)) < (M%N)/2
So, after two iterations, the remainder is at most half of its original value. This would show that the number of iterations is at most 2logN = O(logN).
Note that, the algorithm computes Gcd(M,N), assuming M >= N.(If N > M, the first iteration of the loop swaps them.)
Worst case will arise when both n and m are consecutive Fibonacci numbers.
gcd(Fn,Fn−1)=gcd(Fn−1,Fn−2)=⋯=gcd(F1,F0)=1 and nth Fibonacci number is 1.618^n, where 1.618 is the Golden ratio.
So, to find gcd(n,m), number of recursive calls will be Θ(logn).
The worst case of Euclid Algorithm is when the remainders are the biggest possible at each step, ie. for two consecutive terms of the Fibonacci sequence.
When n and m are the number of digits of a and b, assuming n >= m, the algorithm uses O(m) divisions.
Note that complexities are always given in terms of the sizes of inputs, in this case the number of digits.
Gabriel Lame's Theorem bounds the number of steps by log(1/sqrt(5)*(a+1/2))-2, where the base of the log is (1+sqrt(5))/2. This is for the the worst case scenerio for the algorithm and it occurs when the inputs are consecutive Fibanocci numbers.
A slightly more liberal bound is: log a, where the base of the log is (sqrt(2)) is implied by Koblitz.
For cryptographic purposes we usually consider the bitwise complexity of the algorithms, taking into account that the bit size is given approximately by k=loga.
Here is a detailed analysis of the bitwise complexity of Euclid Algorith:
Although in most references the bitwise complexity of Euclid Algorithm is given by O(loga)^3 there exists a tighter bound which is O(loga)^2.
Consider; r0=a, r1=b, r0=q1.r1+r2 . . . ,ri-1=qi.ri+ri+1, . . . ,rm-2=qm-1.rm-1+rm rm-1=qm.rm
observe that: a=r0>=b=r1>r2>r3...>rm-1>rm>0 ..........(1)
and rm is the greatest common divisor of a and b.
By a Claim in Koblitz's book( A course in number Theory and Cryptography) is can be proven that: ri+1<(ri-1)/2 .................(2)
Again in Koblitz the number of bit operations required to divide a k-bit positive integer by an l-bit positive integer (assuming k>=l) is given as: (k-l+1).l ...................(3)
By (1) and (2) the number of divisons is O(loga) and so by (3) the total complexity is O(loga)^3.
Now this may be reduced to O(loga)^2 by a remark in Koblitz.
consider ki= logri +1
by (1) and (2) we have: ki+1<=ki for i=0,1,...,m-2,m-1 and ki+2<=(ki)-1 for i=0,1,...,m-2
and by (3) the total cost of the m divisons is bounded by: SUM [(ki-1)-((ki)-1))]*ki for i=0,1,2,..,m
rearranging this: SUM [(ki-1)-((ki)-1))]*ki<=4*k0^2
So the bitwise complexity of Euclid's Algorithm is O(loga)^2.
For the iterative algorithm, however, we have:
int iterativeEGCD(long long n, long long m) {
long long a;
int numberOfIterations = 0;
while ( n != 0 ) {
a = m;
m = n;
n = a % n;
numberOfIterations ++;
}
printf("\nIterative GCD iterated %d times.", numberOfIterations);
return m;
}
With Fibonacci pairs, there is no difference between iterativeEGCD() and iterativeEGCDForWorstCase() where the latter looks like the following:
int iterativeEGCDForWorstCase(long long n, long long m) {
long long a;
int numberOfIterations = 0;
while ( n != 0 ) {
a = m;
m = n;
n = a - n;
numberOfIterations ++;
}
printf("\nIterative GCD iterated %d times.", numberOfIterations);
return m;
}
Yes, with Fibonacci Pairs, n = a % n and n = a - n, it is exactly the same thing.
We also know that, in an earlier response for the same question, there is a prevailing decreasing factor: factor = m / (n % m).
Therefore, to shape the iterative version of the Euclidean GCD in a defined form, we may depict as a "simulator" like this:
void iterativeGCDSimulator(long long x, long long y) {
long long i;
double factor = x / (double)(x % y);
int numberOfIterations = 0;
for ( i = x * y ; i >= 1 ; i = i / factor) {
numberOfIterations ++;
}
printf("\nIterative GCD Simulator iterated %d times.", numberOfIterations);
}
Based on the work (last slide) of Dr. Jauhar Ali, the loop above is logarithmic.
Yes, small Oh because the simulator tells the number of iterations at most. Non Fibonacci pairs would take a lesser number of iterations than Fibonacci, when probed on Euclidean GCD.
At every step, there are two cases
b >= a / 2, then a, b = b, a % b will make b at most half of its previous value
b < a / 2, then a, b = b, a % b will make a at most half of its previous value, since b is less than a / 2
So at every step, the algorithm will reduce at least one number to at least half less.
In at most O(log a)+O(log b) step, this will be reduced to the simple cases. Which yield an O(log n) algorithm, where n is the upper limit of a and b.
I have found it here

While loop time complexity O(logn)

I cannot understand why the time complexity for this code is O(logn):
double n;
/* ... */
while (n>1) {
n*=0.999;
}
At least it says so in my study materials.
Imagine if the code were as follows:
double n;
/* ... */
while (n>1) {
n*=0.5;
}
It should be intuitive to see how this is O(logn), I hope.
When you multiply by 0.999 instead, it becomes slower by a constant factor, but of course the complexity is still written as O(logn)
You want to calculate how many iterations you need before n becomes equal to (or less than) 1.
If you call the number of iterations for k you want to solve
n * 0.999^k = 1
It goes like this
n * 0.999^k = 1
0.999^k = 1/n
log(0.999^k) = log(1/n)
k * log(0.999) = -log(n)
k = -log(n)/log(0.999)
k = (-1/log(0.999)) * log(n)
For big-O we only care about "the big picture" so we throw away constants. Here log(0.999) is a negative constant so (-1/log(0.999)) is a positive constant that we can "throw away", i.e. set to 1. So we get:
k ~ log(n)
So the code is O(logn)
From this you can also notice that the value of the constant (i.e. 0.999 in your example) doesn't matter for the big-O calculation. All constant values greater than 0 and less than 1 will result in O(logn).
Logarithm has two inputs: a base and a number. The result of a logarithm is the power you need to raise the base to to achieve the given number. Since your base is 0.999, the number is the first smaller than 1 and you have a scalar, which is n, effectively the number of steps depends on the power you need to raise your base to achieve such a small number, which multiplied with n will yield a smaller number than 1. This corresponds to the definition of the logarithm, with which I have started my answer.
EDIT:
Think about it this way: You have n as an input and you search for the first k where
n * .999^k < 1
since you are searching k by incrementing it, since if you have l >= n at a step, then you will have l * .999 in the next step. Repeating this achieves a logarithmic complexity for your multiplication algorithm.

Big O analysis of GCD computation function [duplicate]

I am having difficulty deciding what the time complexity of Euclid's greatest common denominator algorithm is. This algorithm in pseudo-code is:
function gcd(a, b)
while b ≠ 0
t := b
b := a mod b
a := t
return a
It seems to depend on a and b. My thinking is that the time complexity is O(a % b). Is that correct? Is there a better way to write that?
One trick for analyzing the time complexity of Euclid's algorithm is to follow what happens over two iterations:
a', b' := a % b, b % (a % b)
Now a and b will both decrease, instead of only one, which makes the analysis easier. You can divide it into cases:
Tiny A: 2a <= b
Tiny B: 2b <= a
Small A: 2a > b but a < b
Small B: 2b > a but b < a
Equal: a == b
Now we'll show that every single case decreases the total a+b by at least a quarter:
Tiny A: b % (a % b) < a and 2a <= b, so b is decreased by at least half, so a+b decreased by at least 25%
Tiny B: a % b < b and 2b <= a, so a is decreased by at least half, so a+b decreased by at least 25%
Small A: b will become b-a, which is less than b/2, decreasing a+b by at least 25%.
Small B: a will become a-b, which is less than a/2, decreasing a+b by at least 25%.
Equal: a+b drops to 0, which is obviously decreasing a+b by at least 25%.
Therefore, by case analysis, every double-step decreases a+b by at least 25%. There's a maximum number of times this can happen before a+b is forced to drop below 1. The total number of steps (S) until we hit 0 must satisfy (4/3)^S <= A+B. Now just work it:
(4/3)^S <= A+B
S <= lg[4/3](A+B)
S is O(lg[4/3](A+B))
S is O(lg(A+B))
S is O(lg(A*B)) //because A*B asymptotically greater than A+B
S is O(lg(A)+lg(B))
//Input size N is lg(A) + lg(B)
S is O(N)
So the number of iterations is linear in the number of input digits. For numbers that fit into cpu registers, it's reasonable to model the iterations as taking constant time and pretend that the total running time of the gcd is linear.
Of course, if you're dealing with big integers, you must account for the fact that the modulus operations within each iteration don't have a constant cost. Roughly speaking, the total asymptotic runtime is going to be n^2 times a polylogarithmic factor. Something like n^2 lg(n) 2^O(log* n). The polylogarithmic factor can be avoided by instead using a binary gcd.
The suitable way to analyze an algorithm is by determining its worst case scenarios.
Euclidean GCD's worst case occurs when Fibonacci Pairs are involved.
void EGCD(fib[i], fib[i - 1]), where i > 0.
For instance, let's opt for the case where the dividend is 55, and the divisor is 34 (recall that we are still dealing with fibonacci numbers).
As you may notice, this operation costed 8 iterations (or recursive calls).
Let's try larger Fibonacci numbers, namely 121393 and 75025. We can notice here as well that it took 24 iterations (or recursive calls).
You can also notice that each iterations yields a Fibonacci number. That's why we have so many operations. We can't obtain similar results only with Fibonacci numbers indeed.
Hence, the time complexity is going to be represented by small Oh (upper bound), this time. The lower bound is intuitively Omega(1): case of 500 divided by 2, for instance.
Let's solve the recurrence relation:
We may say then that Euclidean GCD can make log(xy) operation at most.
There's a great look at this on the wikipedia article.
It even has a nice plot of complexity for value pairs.
It is not O(a%b).
It is known (see article) that it will never take more steps than five times the number of digits in the smaller number. So the max number of steps grows as the number of digits (ln b). The cost of each step also grows as the number of digits, so the complexity is bound by O(ln^2 b) where b is the smaller number. That's an upper limit, and the actual time is usually less.
See here.
In particular this part:
Lamé showed that the number of steps needed to arrive at the greatest common divisor for two numbers less than n is
So O(log min(a, b)) is a good upper bound.
Here's intuitive understanding of runtime complexity of Euclid's algorithm. The formal proofs are covered in various texts such as Introduction to Algorithms and TAOCP Vol 2.
First think about what if we tried to take gcd of two Fibonacci numbers F(k+1) and F(k). You might quickly observe that Euclid's algorithm iterates on to F(k) and F(k-1). That is, with each iteration we move down one number in Fibonacci series. As Fibonacci numbers are O(Phi ^ k) where Phi is golden ratio, we can see that runtime of GCD was O(log n) where n=max(a, b) and log has base of Phi. Next, we can prove that this would be the worst case by observing that Fibonacci numbers consistently produces pairs where the remainders remains large enough in each iteration and never become zero until you have arrived at the start of the series.
We can make O(log n) where n=max(a, b) bound even more tighter. Assume that b >= a so we can write bound at O(log b). First, observe that GCD(ka, kb) = GCD(a, b). As biggest values of k is gcd(a,c), we can replace b with b/gcd(a,b) in our runtime leading to more tighter bound of O(log b/gcd(a,b)).
Here is the analysis in the book Data Structures and Algorithm Analysis in C by Mark Allen Weiss (second edition, 2.4.4):
Euclid's algorithm works by continually computing remainders until 0 is reached. The last nonzero remainder is the answer.
Here is the code:
unsigned int Gcd(unsigned int M, unsigned int N)
{
unsigned int Rem;
while (N > 0) {
Rem = M % N;
M = N;
N = Rem;
}
Return M;
}
Here is a THEOREM that we are going to use:
If M > N, then M mod N < M/2.
PROOF:
There are two cases. If N <= M/2, then since the remainder is smaller
than N, the theorem is true for this case. The other case is N > M/2.
But then N goes into M once with a remainder M - N < M/2, proving the
theorem.
So, we can make the following inference:
Variables M N Rem
initial M N M%N
1 iteration N M%N N%(M%N)
2 iterations M%N N%(M%N) (M%N)%(N%(M%N)) < (M%N)/2
So, after two iterations, the remainder is at most half of its original value. This would show that the number of iterations is at most 2logN = O(logN).
Note that, the algorithm computes Gcd(M,N), assuming M >= N.(If N > M, the first iteration of the loop swaps them.)
Worst case will arise when both n and m are consecutive Fibonacci numbers.
gcd(Fn,Fn−1)=gcd(Fn−1,Fn−2)=⋯=gcd(F1,F0)=1 and nth Fibonacci number is 1.618^n, where 1.618 is the Golden ratio.
So, to find gcd(n,m), number of recursive calls will be Θ(logn).
The worst case of Euclid Algorithm is when the remainders are the biggest possible at each step, ie. for two consecutive terms of the Fibonacci sequence.
When n and m are the number of digits of a and b, assuming n >= m, the algorithm uses O(m) divisions.
Note that complexities are always given in terms of the sizes of inputs, in this case the number of digits.
Gabriel Lame's Theorem bounds the number of steps by log(1/sqrt(5)*(a+1/2))-2, where the base of the log is (1+sqrt(5))/2. This is for the the worst case scenerio for the algorithm and it occurs when the inputs are consecutive Fibanocci numbers.
A slightly more liberal bound is: log a, where the base of the log is (sqrt(2)) is implied by Koblitz.
For cryptographic purposes we usually consider the bitwise complexity of the algorithms, taking into account that the bit size is given approximately by k=loga.
Here is a detailed analysis of the bitwise complexity of Euclid Algorith:
Although in most references the bitwise complexity of Euclid Algorithm is given by O(loga)^3 there exists a tighter bound which is O(loga)^2.
Consider; r0=a, r1=b, r0=q1.r1+r2 . . . ,ri-1=qi.ri+ri+1, . . . ,rm-2=qm-1.rm-1+rm rm-1=qm.rm
observe that: a=r0>=b=r1>r2>r3...>rm-1>rm>0 ..........(1)
and rm is the greatest common divisor of a and b.
By a Claim in Koblitz's book( A course in number Theory and Cryptography) is can be proven that: ri+1<(ri-1)/2 .................(2)
Again in Koblitz the number of bit operations required to divide a k-bit positive integer by an l-bit positive integer (assuming k>=l) is given as: (k-l+1).l ...................(3)
By (1) and (2) the number of divisons is O(loga) and so by (3) the total complexity is O(loga)^3.
Now this may be reduced to O(loga)^2 by a remark in Koblitz.
consider ki= logri +1
by (1) and (2) we have: ki+1<=ki for i=0,1,...,m-2,m-1 and ki+2<=(ki)-1 for i=0,1,...,m-2
and by (3) the total cost of the m divisons is bounded by: SUM [(ki-1)-((ki)-1))]*ki for i=0,1,2,..,m
rearranging this: SUM [(ki-1)-((ki)-1))]*ki<=4*k0^2
So the bitwise complexity of Euclid's Algorithm is O(loga)^2.
For the iterative algorithm, however, we have:
int iterativeEGCD(long long n, long long m) {
long long a;
int numberOfIterations = 0;
while ( n != 0 ) {
a = m;
m = n;
n = a % n;
numberOfIterations ++;
}
printf("\nIterative GCD iterated %d times.", numberOfIterations);
return m;
}
With Fibonacci pairs, there is no difference between iterativeEGCD() and iterativeEGCDForWorstCase() where the latter looks like the following:
int iterativeEGCDForWorstCase(long long n, long long m) {
long long a;
int numberOfIterations = 0;
while ( n != 0 ) {
a = m;
m = n;
n = a - n;
numberOfIterations ++;
}
printf("\nIterative GCD iterated %d times.", numberOfIterations);
return m;
}
Yes, with Fibonacci Pairs, n = a % n and n = a - n, it is exactly the same thing.
We also know that, in an earlier response for the same question, there is a prevailing decreasing factor: factor = m / (n % m).
Therefore, to shape the iterative version of the Euclidean GCD in a defined form, we may depict as a "simulator" like this:
void iterativeGCDSimulator(long long x, long long y) {
long long i;
double factor = x / (double)(x % y);
int numberOfIterations = 0;
for ( i = x * y ; i >= 1 ; i = i / factor) {
numberOfIterations ++;
}
printf("\nIterative GCD Simulator iterated %d times.", numberOfIterations);
}
Based on the work (last slide) of Dr. Jauhar Ali, the loop above is logarithmic.
Yes, small Oh because the simulator tells the number of iterations at most. Non Fibonacci pairs would take a lesser number of iterations than Fibonacci, when probed on Euclidean GCD.
At every step, there are two cases
b >= a / 2, then a, b = b, a % b will make b at most half of its previous value
b < a / 2, then a, b = b, a % b will make a at most half of its previous value, since b is less than a / 2
So at every step, the algorithm will reduce at least one number to at least half less.
In at most O(log a)+O(log b) step, this will be reduced to the simple cases. Which yield an O(log n) algorithm, where n is the upper limit of a and b.
I have found it here

Big-O notation for a pairing operation

I'm having a hard time wrapping my head around the big-O notation for a pairing operation. The question is pretty simple- Generate all possible pairs for a given list of numbers in an array.
My first guess is to have a nested for/foreach loop and generate the pairs. This is easy enough and I get that for every n, I analyze n other numbers and this gives me a complexity of n^2.
Now, if I try to optimize this further and say that (1,4) is the same as (4,1), then for a sorted array like 1,2,3,4,5. I only run the pairing operation in a nested for loop this way
for (i =0; i < count; i++) {
for (j = i + 1; j < count - 1; j++)
}
}
In this case, I only run through the array < n^2 times. For a sample size of 7 numbers, i ran through the loop 21 times to generate the pairs. I know that this cannot be a log-n operation and I'm tempted to say that this operation converges to n^2 but I don't remember enough from my math or theory classes to answer this definitively. How do I go about this problem?
Context: I had an interview with a similar question and this was born out of an argument I had with my friend if a pairing operation from a list can ever be better than n^2.
You are correct that you're doing fewer than n2 operations. The question is how many fewer operations you are doing.
Let's think about how many pairs there are in the array. If each of the n numbers can be paired with (n - 1) other numbers, the total number of pairs possible is n(n - 1). Each iteration of the original for loop generates one of these pairs, so the total number of pairs you generate is n2 - n, which is O(n2).
Now, what about if you eliminate duplicate pairs by saying that (1, 4) and (4, 1) are the same? In this case, note that half of the pairs you generate are going to be extraneous - you'll generate each pair twice. This means that the number of pairs is (n2 - n) / 2. This expression is less than n2, but notice that it is still O(n2) because big-O notation ignores constants.
In other words - you are right that you are generating fewer than n2 pairs, but the total number of pairs you're creating is still O(n2).
More generally - if you ever decrease the total amount of work that an algorithm does by some constant factor (say, you cut the work in half, or cut the work by a factor of 100), you have not changed the big-O runtime of the algorithm. Big-O completely ignores constants. In order to decrease the big-O runtime, you need to decrease the total amount of work by an amount that is more than a constant; say, by a factor of n, log n, etc.
Hope this helps!
Remember that big-O notation involves an implied multiplicative constant. So your complexity is still O(n^2) if your run-time is <= k.n^2 as n -> infinity.
It's still O(n^2) since now you have exactly half the pairs that you had before introducing the order requirement. Dividing by two does not change the Big O.

What is the time complexity of this multiplication algorithm?

For the classic interview question "How do you perform integer multiplication without the multiplication operator?", the easiest answer is, of course, the following linear-time algorithm in C:
int mult(int multiplicand, int multiplier)
{
for (int i = 1; i < multiplier; i++)
{
multiplicand += multiplicand;
}
return multiplicand;
}
Of course, there is a faster algorithm. If we take advantage of the property that bit shifting to the left is equivalent to multiplying by 2 to the power of the number of bits shifted, we can bit-shift up to the nearest power of 2, and use our previous algorithm to add up from there. So, our code would now look something like this:
#include <math.h>
int log2( double n )
{
return log(n) / log(2);
}
int mult(int multiplicand, int multiplier)
{
int nearest_power = 2 ^ (floor(log2(multiplier)));
multiplicand << nearest_power;
for (int i = nearest_power; i < multiplier; i++)
{
multiplicand += multiplicand;
}
return multiplicand;
}
I'm having trouble determining what the time complexity of this algorithm is. I don't believe that O(n - 2^(floor(log2(n)))) is the correct way to express this, although (I think?) it's technically correct. Can anyone provide some insight on this?
mulitplier - nearest_power can be as large as half of multiplier, and as it tends towards infinity the constant 0.5 there doesn't matter (not to mention we get rid of constants in Big O). The loop is therefore O(multiplier). I'm not sure about the bit-shifting.
Edit: I took more of a look around on the bit-shifting. As gbulmer says, it can be O(n), where n is the number of bits shifted. However, it can also be O(1) on certain architectures. See: Is bit shifting O(1) or O(n)?
However, it doesn't matter in this case! n > log2(n) for all valid n. So we have O(n) + O(multiplier) which is a subset of O(2*multiplier) due to the aforementioned relationship, and thus the whole algorithm is O(multiplier).
The point of finding the nearest power is so that your function runtime could get close to runtime O(1). This happens when 2^nearest_power is very close to the result of your addition.
Behind the scenes the whole "to the power of 2" is done with bit shifting.
So, to answer your question, the second version of your code is still worse case linear time: O(multiplier).
Your answer, O(n - 2^(floor(log2(n)))), is also not incorrect; it's just very precise and might be hard to do in your head quickly to find the bounds.
Edit
Let's look at the second posted algorithm, starting with:
int nearest_power = 2 ^ (floor(log2(multiplier)));
I believe calculating log2, is, rather pleasingly, O(log2(multiplier))
then nearest_power gets to the interval [multiplier/2 to multiplier], the magnitude of this is multiplier/2. This is the same as finding the highest set-bit for a positive number.
So the for loop is O(multiplier/2), the constant of 1/2 comes out, so it is O(n)
On average, it is half the interval away, which would be O(multiplier/4). But that is just the constant 1/4 * n, so it is still O(n), the constant is smaller but it is still O(n).
A faster algorithm.
Our intuitiion is we can multiply by an n digit number in n steps
In binary this is using 1-bit shift, 1-bit test and binary add to construct the whole answer. Each of those operations is O(1). This is long-multiplication, one digit at a time.
If we use O(1) operations for n, an x bit number, it is O(log2(n)) or O(x), where x is the number of bits in the number
This is an O(log2(n)) algorithm:
int mult(int multiplicand, int multiplier) {
int product = 0;
while (multiplier) {
if (multiplier & 1) product += multiplicand;
multiplicand <<= 1;
multiplier >>= 1;
}
return product;
}
It is essentially how we do long multiplication.
Of course, the wise thing to do is use the smaller number as the multiplier. (I'll leave that as an exercise for the reader :-)
This only works for positive values, but by testing and remembering the signs of the input, operating on positive values, and then adjusting the sign, it works for all numbers.

Resources