Better to store data in RAM, text file, or database - database

I am working on a project where I am using words, encoded by vectors, which are about 2000 floats long. Now when I use these with raw text I need to retrieve the vector for each word as it comes across and do some computations with it. Needless to say for a large vocabulary (~100k words) this has a large storage requirement (about 8 GB in a text file).
I initially had a system where I split the large text file into smaller ones and then for a particular word, I read its file, and retrieved its vector. This was too slow as you might imagine.
I next tried reading everything into RAM (takes about ~40GB RAM) figuring once everything was read in, it would be quite fast. However, it takes a long time to read in and a disadvantage is that I have to use only certain machines which have enough free RAM to do this. However, once the data is loaded, it is much faster than the other approach.
I was wondering how a database would compare with these approaches. Retrieval would be slower than the RAM approach, but there wouldn't be the overhead requirement. Also, any other ideas would be welcome and I have had others myself (i.e. caching, using a server that has everything loaded into RAM etc.). I might benchmark a database, but I thought I would post here to see what other had to say.
Thanks!
UPDATE
I used Tyler's suggestion. Although in my case I did not think a BTree was necessary. I just hashed the words and their offset. I then could look up a word and read in its vector at runtime. I cached the words as they occurred in text so at most each vector is read in only once, however this saves the overhead of reading in and storing unneeded words, making it superior to the RAM approach.
Just an FYI, I used Java's RamdomAccessFile class and made use of the readLine(), getFilePointer(), and seek() functions.
Thanks to all who contributed to this thread.
UPDATE 2
For more performance improvement check out buffered RandomAccessFile from:
http://minddumped.blogspot.com/2009/01/buffered-javaiorandomaccessfile.html
Apparently the readLine from RandomAccessFile is very slow because it reads byte by byte. This gave me some nice improvement.

As a rule, anything custom coded should be much faster than a generic database, assuming you have coded it efficiently.
There are specific C-libraries to solve this problem using B-trees. In the old days there was a famous library called "B-trieve" that was very popular because it was fast. In this application a B-tree will be faster and easier than fooling around with a database.
If you want optimal performance you would use a data structure called a suffix tree. There are libraries which are designed to create and use suffix trees. This will give you the fastest word lookup possible.
In either case there is no reason to store the entire dataset in memory, just store the B-tree (or suffix tree) with an offset to the data in memory. This will require about 3 to 5 megabytes of memory. When you query the tree you get an offset back. Then open the file, seek forwards to the offset and read the vector off disk.

You could use a simple text based index file just mapping the words to indices, and another file just containing the raw vector data for each word. Initially you just read the index to a hashmap that maps each word to the datafile index and keep it in memory. If you need the data for a word, you calculate the offset in the data file (2000 * 32 * index) and read it as needed. You probably want to cache this data in RAM (if you are in java perhaps just use a weak map as a starting point).
This is basically implementing your own primitive database, but it may still be preferable because it avoidy database setup / deployment complexity.

Related

What if the db size exceeds memory in sqlite?

I'm working with a heavy dataset, which I chose to store in plain binary format and load into memory in chunks. However, even the smallest chunk is about to exceed my computer memory (16GB), so i'll have to fragment them further or find another solution. The whole dataset is around half a terabyte.
I've seen on wiki that sqlite can work with up to 32TB of data, which is cool. However, I could not figure out whether you have to have 32TB of memory to use it, or you can have smaller memory and store the thing on a hard drive. My understanding is that it should be possible, I need very simple operations like add line, read line, pick all lines with a given value e.t.c
I would appreciate if you folks help me, because I would hate to invest into studying sqlite only to learn that it does not work the way I thought. Also if you have any insight that you think might help, please share.
Most databases, including SQLite, can work on the data in chunks, i.e., they need to load only a single record into memory at once. (But using more memory for caching makes things much faster.) Furthermore, if intermediate data becomes too large, it can be moved into temporary files. This is the default behaviour, so it is not explicitly advertized.
Having the entire database in memory is possible, but would make sense only for temporary data that is not to be saved anyway.

Binary Search on Large Disk File in C - Problems

This question recurs frequently on StackOverflow, but I have read all the previous relevant answers, and have a slight twist on the question.
I have a 23Gb file containing 475 million lines of equal size, with each line consisting of a 40-character hash code followed by an identifier (an integer).
I have a stream of incoming hash codes - billions of them in total - and for each incoming hash code I need to locate it and print out corresponding identifier. This job, while large, only needs to be done once.
The file is too large for me to read into memory and so I have been trying to usemmap in the following way:
codes = (char *) mmap(0,statbuf.st_size,PROT_READ,MAP_SHARED,codefile,0);
Then I just do a binary search using address arithmetic based on the address in codes.
This seems to start working beautifully and produces a few million identifiers in a few seconds, using 100% of the cpu, but then after some, seemingly random, amount of time it slows down to a crawl. When I look at the process using ps, it has changed from status "R" using 100% of the cpu, to status "D" (diskbound) using 1% of the cpu.
This is not repeatable - I can start the process off again on the same data, and it might run for 5 seconds or 10 seconds before the "slow to crawl" happens. Once last night, I got nearly a minute out of it before this happened.
Everything is read only, I am not attempting any writes to the file, and I have stopped all other processes (that I control) on the machine. It is a modern Red Hat Enterprise Linux 64-bit machine.
Does anyone know why the process becomes disk-bound and how to stop it?
UPDATE:
Thanks to everyone for answering, and for your ideas; I had not previously tried all the various improvements before because I was wondering if I was somehow using mmap incorrectly. But the gist of the answers seemed to be that unless I could squeeze everything into memory, I would inevitable run into problems. So I squashed the size of the hash code to the size of the leading prefix that did not create any duplicates - the first 15 characters were enough. Then I pulled the resulting file into memory, and ran the incoming hash codes in batches of about 2 billion each.
The first thing to do is split the file.
Make one file with the hash-codes and another with the integer ids. Since the rows are the same then it will line up fine after the result is found. Also you can try an approach that puts every nth hash into another file and then stores the index.
For example, every 1000th hash key put into a new file with the index and then load that into memory. Then binary scan that instead. This will tell you the range of 1000 entries that need to be further scanned in the file. Yes that will do it fine! But probably much less than that. Like probably every 20th record or so will divide that file size down by 20 +- if I am thinking good.
In other words after scanning you only need to touch a few kilobytes of the file on disk.
Another option is to split the file and put it in memory on multiple machines. Then just binary scan each file. This will yield the absolute fastest possible search with zero disk access...
Have you considered hacking a PATRICIA trie algorithm up? It seems to me that if you can build a PATRICIA tree representation of your data file, which refers to the file for the hash and integer values, then you might be able to reduce each item to node pointers (2*64 bits?), bit test offsets (1 byte in this scenario) and file offsets (uint64_t, which might need to correspond to multiple fseek()s).
Does anyone know why the process becomes disk-bound and how to stop it?
Binary search requires a lot of seeking within the file. In the case where the whole file doesn't fit in memory, the page cache doesn't handle the big seeks very well, resulting in the behaviour you're seeing.
The best way to deal with this is to reduce/prevent the big seeks and make the page cache work for you.
Three ideas for you:
If you can sort the input stream, you can search the file in chunks, using something like the following algorithm:
code_block <- mmap the first N entries of the file, where N entries fit in memory
max_code <- code_block[N - 1]
while(input codes remain) {
input_code <- next input code
while(input_code > max_code) {
code_block <- mmap the next N entries of the file
max_code <- code_block[N - 1]
}
binary search for input code in code_block
}
If you can't sort the input stream, you could reduce your disk seeks by building an in-memory index of the data. Pass over the large file, and make a table that is:
record_hash, offset into file where this record starts
Don't store all records in this table - store only every Kth record. Pick a large K, but small enough that this fits in memory.
To search the large file for a given target hash, do a binary search in the in-memory table to find the biggest hash in the table that is smaller than the target hash. Say this is table[h]. Then, mmap the segment starting at table[h].offset and ending at table[h+1].offset, and do a final binary search. This will dramatically reduce the number of disk seeks.
If this isn't enough, you can have multiple layers of indexes:
record_hash, offset into index where the next index starts
Of course, you'll need to know ahead of time how many layers of index there are.
Lastly, if you have extra money available you can always buy more than 23 gb of RAM, and make this a memory bound problem again (I just looked at Dell's website - you pick up a new low-end workstation with 32 GB of RAM for just under $1,400 Australian dollars). Of course, it will take a while to read that much data in from disk, but once it's there, you'll be set.
Instead of using mmap, consider just using plain old lseek+read. You can define some helper functions to read a hash value or its corresponding integer:
void read_hash(int line, char *hashbuf) {
lseek64(fd, ((uint64_t)line) * line_len, SEEK_SET);
read(fd, hashbuf, 40);
}
int read_int(int line) {
lseek64(fd, ((uint64_t)line) * line_len + 40, SEEK_SET);
int ret;
read(fd, &ret, sizeof(int));
return ret;
}
then just do your binary search as usual. It might be a bit slower, but it won't start chewing up your virtual memory.
We don't know the back story. So it is hard to give you definitive advice. How much memory do you have? How sophisticated is your hard drive? Is this a learning project? Who's paying for your time? 32GB of ram doesn't seem so expensive compared to two days of work of person that makes $50/h. How fast does this need to run? How far outside the box are you willing to go? Does your solution need to use advanced OS concepts? Are you married to a program in C? How about making Postgres handle this?
Here's is a low risk alternative. This option isn't as intellectually appealing as the other suggestions but has the potential to give you significant gains. Separate the file into 3 chunks of 8GB or 6 chunks of 4GB (depending on the machines you have around, it needs to comfortably fit in memory). On each machine run the same software, but in memory and put an RPC stub around each. Write an RPC caller to each of your 3 or 6 workers to determine the integer associated with a given hash code.

Embedded database specialized for tiny size data & almost no writes?

I am looking for a lightweight embedded database to store (and rarely modify) a few kilobytes of data (5kb to 100kb) in Java applications (mostly Android but also other platforms).
Expected characteristics:
fast when reading, but not necessarily fast when writing
almost no size overhead (kilobytes used even when there is no data), but not necessarily very compact (kilobytes used per kilobyte of actual data)
very small database client library JAR file size
Open Source
QUESTION: Is there a database format specialized for those tiny cases?
Text-based solutions acceptable too.
If relevant: it will be this kind of data.
Stuff it in an object and serialize it out to a file. Write the new file on save, rename it on top of the old one to "commit" it so you don't have to worry about corrupting it if the write fails. No DB, no nothing. Simple.
If you can use flat (text) files, you could keep the file on disk and read/seek around. Never read it all in at once. If you need e.g. a faster index, maybe you can build the index and a record number and use the index to find the right "rows" and use the record number to get the rest of the data from a constant size field database or as a line number in a text file.
I don't know about this Java and that static initializer message, but that sounds to me like a code size limit, not data? Why would the runtime data affect bytecode?
Can't suggest specific libraries. Maybe there's some Berkeley DB, DSV or xBase style library around.

how to sort a lot of data in c?

at the moment i am trying to write a unreal amount of data out to files,
basically i generate a new struct of data and write it out to file untill the file becomes 1gb big and this occurs for 6 files of 1gb each, the structs are small. 8 bytes long with two 2 variables id and amount
when i generate my data, the structs are created and written to file in the order of amount.
but i need the data to sorted by id.
remember there is 6gb's of data , how could i sort these structs by there id value and then written to file?
or should i write to file first, and then sort each individual file ,and how would i bring all this data together into one file?
i am kind of stuck , because i would like to hold it in an array , but obviously this amount of data is too big.
i need a good way to sort alot of data? (6gb)
I haven't found a question with a really basic answer on this, so here goes.
If you're on a 64 bit machine, by the way, you should seriously consider writing all the data into a file, memory mapping the file, and just use whatever array sort you like. Quicksort is pretty cache-friendly: it won't thrash badly. The assignment is probably designed to stop you doing this, but might be a bit out of date ;-)
Failing that, you need some kind of external sort. There are other ways to do it, but I think merge sort is probably the simplest. Before you start merging:
work out how much data you can fit into memory (or, again, mmap it). If you're on a PC then 1GB seems like a fair assumption, but it may be a few times more or less.
load this much data (so one of your 6 files, in the example)
quicksort it (since you tagged "quicksort", I guess you know how to do that), or any other sort of your choice.
write it back to disk (if you didn't mmap).
This leaves you with 6 1GB files, each of which individually is sorted. At this point you can either work up gradually, or go for the whole lot in one go. With 6 chunks, going for the whole lot is fine, in what is called a "6-way merge":
open a file for writing
open your 6 files for reading, and read a few million records out of each
examine the 6 records at the start of each of the 6 buffers. One of theses 6 must be the smallest of all. Write this to the output, and move forward one step through that buffer.
as you reach the end of each buffer, refill it from the correct file.
There's some optimization you can do regarding how you work out which of your 6 possibilities is the smallest, but the big performance difference will be to make sure you use large enough read and write buffers.
Obviously there's nothing special about the merge being 6-way. If you'd rather stick to a 2-way merge, which is easier to code, then of course you can. It will take 5 2-way merges to merge 6 files.
I would recommend this tool, it is a light weight database that runs in memory and takes up very little memory. It will hold your information and you can query it to retrieve your information.
http://www.sqlite.org/features.html
I suggest you don't.
If you are to hold such amount of data, why not using a dedicated database format that can have lots of different indexes and a powerful request engine.
But if you still want to use your old fashioned fixed-endian struct, then i would suggest breaking your data into smaller files, sort each one, and merge them. A good merge algorithm runs in nlog(q). Be also sure to pick the right algorithm for your files.
The easiest way (in development time) to do this is to write out the data to separate files according to their ID. You don't have to have a 1 to 1 match between the number of files and the number of IDs (in case there are a lot of IDs), but if you choose a prefix of the ID (so if the key for one particular record is 987 it might go in the 9 file while the record with key 456 would go in the 4 file) you won't have to worry about locating all of the keys across all of the files because sorting each file by itself would result and then looking at the files in their order (by their names) would give you sorted results.
If that is not possible or easy the you need to do an external sort of some type. Since the data is still spread across several files this is a bit of a pain. The easiest thing (by development time) is to first sort each individual file independently and then merge them together into a new set of files sorted by ID. Look up merge sort if you don't know what I'm talking about. At this step you are pretty much starting in the middle of merge sort.
As far as sorting the contents of a file which is too large to fit into RAM you can either use merge sort directly on the file or use replacement selection sort to sort the file in place. This involves making several passes over the file while using some RAM (the more the better) to hold a priority queue (a binary heap) and a set of records that are not possibly of any use in this run (their keys suggest that they should be earlier in the file than the current run position, so you're just holding on to them until the next run).
Searching for replacement selection sort or tournament sort will yield better explanations.
First, sort each file individually. Either load the whole thing into memory, or (better) mmap it, and use the qsort function.
Then, write your own merge sort that takes N FILE * inputs (i.e. N=6 in your case) and outputs to N new files, switching to the next one whenever one fills up.
Check out external sort. Find any of the external mergesort libraries out there and modify them to suit your need.
Well - since the actual assignment is to keep encoded data and later just compare it with decoded-data, I would also say - use a database and just create an hash index on the ID column.
But regarding sort of such hugh number, another very important thing is to do it in parallel. There are many ways to do it. Steve Jessop mentioned a sort-merge approach, it is really easy to sort the first 6 chunks in parallel, the only question is how much cpu cores andd memory you have on your machine. (It is rare to find a computer with only 1 core today and also not so rare to have 4GB memory).
Maybe you could use mmap and use it as a huge array which you could sort with qsort. I'm not sure what the implications would be. Would it grow to much in memory?

ANSI C hash table implementation with data in one memory block

I am looking for an open source C implementation of a hash table that keeps all the data in one memory block, so it can be easily send over a network let say.
I can only find ones that allocate small pieces of memory for every key-value pair added to it.
Thank you very much in advance for all the inputs.
EDIT: It doesn't necessarily need to be a hash table, whatever key-value pair table would probably do.
The number of times you would serialize such data structure (and sending over network is serializing as well) vs the number of times you would use such data structure (in your program) is pretty low. So, most implementations focus more on the speed instead of the "maybe easier to serialize" side.
If all the data would be in one allocated memory block a lot of operations on that data structure would be a bit expensive because you would have to:
reallocate memory on add-operations
most likeley compress / vacuum on delete-operations (so that the one block you like so much is dense and has no holes)
Most network operations are buffered anyway, just iterate over the keys and send keys + values.
On a unix system I'd probably utilise a shared memory buffer (see shm_open()), or if that's not available a memory-mapped file with the MAP_SHARED flag, see the OS-specific differences though http://en.wikipedia.org/wiki/Mmap
If both shm_open and mmap aren't available you could still use a file on the disk (to some extent), you'd have to care about the proper locking, I'd send an unlock signal to the next process and maybe the seek of the updated portion of the file, then that process locks the file again, seeks to the interesting part and proceeds as usual (updates/deletes/etc.).
In any case, you could freely design the layout of the hashtable or whatever you want, like having fixed width key/seek pairs. That way you'd have the fast access to the keys of your hashtable and if necessary you seek to the data portion, then copy/delete/modify/etc.
Ideally this file should be on a ram disk, of course.
I agree completely with akira (+1). Just one more comment on data locality. Once the table gets larger, or if the satellite data is large enough, there's most certainly cache pollution which slows down any operation on the table additionally, or in other words you can rely on the level-1/2/3 cache chain to serve the key data promptly whilst putting up with a cache miss when you have to access the satellite data (e.g. for serialisation).
Libraries providing hashtables tend to hide the details and make the thing work efficiently (that is normally what programmers want when they use an hashtabe), so normally the way they handle the memory is hidden from the final programmer's eyes, and programmers shouldn't rely on the particular "memory layout", that may change in following version of the library.
Write your own function to serialize (and unserialize) the hashtable in the most convenient way for your usage. You can keep the serialized content if you need it several times (of course, when the hashtable is changed, you need to update the serialized "version" kept in memory).

Resources