Post-hoc inventory/queue size query - database

Say you have a list of events/tasks with time stamps for created, completed.
Examples:
Customer entering a queue, then being served
Business process starting and completing
Order received, order dispatched
Also related fill, take events:
Pay goes into bank account, pay bills, buy food, go to the movies
Fuel tanker replenishes gas station, customers purchase fuel
Store receives stock, customers purchase stock
Now say I have a huge list of this data. I don't know the starting inventory levels because I've come in after the beginning and I can't view the current inventory either.
How can I query this data so I can tell current inventory levels, queue size, etc at any given time? Or even start to plot the size of inventory on a time line?
edit: I'll explain my specific requirements in more detail
Our warehouse management sytem contains historical data for each task that occurs. It doesn't capture the state of a pick bin as the event happens, only how much was picked or how much was replenished. We also have cycle count tasks which does show how much stock is in the pick bin. I am trying to find a way of tying these three processes together, replenishment, picking, cycle counts, so I can plot on a time line:
how many tasks are currently waiting
current stock levels
At the moment with the data, I have only figured out how to plot how many tasks were created or completed in period of time, or how much was picked, based off the time stamps for the task.
Now the reason I would like this data is to track performance, under/over allocation of staff and indentifying config issues that could be causing performance issues.

Now say I have a huge list of this data. I don't know the starting inventory levels because I've come in after the beginning and I can't view the current inventory either.
How can I query this data so I can tell current inventory levels, queue size, etc at any given time?
The short answer is: "You can't."
If all you have are the deposits/withdrawals without an opening balance or a closing balance then there is no way to track the actual current balance because you have no reference point from which to start. You could track the relative balance (or inventory level, or whatever) by assuming a starting balance of 0, or 100, or 1000, or any value you like.
As for plotting the data, Excel is the logical place to start for a task like that.

Related

How to model a user's calendar events with firebase

I have users, each user gets assigned 12 events(they can reschedule these events etc) every 2 months. Each event is an object with id, name, description, date, is completed.
I'm currently saving these events in the user's document so that I do only one document read. events:[{events}*12] after a year there will be 72 events in this array, and it would keep growing year after year.
I'm wondering, should I be concerned with the 1mb limit?
I'd like to preserve history, so that the user can also view events of the past.
Given that on the calendar at most you could see one months worth of events, and say I lazy loaded the previous month for speed, doing a subcollection for events would result to 12-24 document reads. I fear this would get expensive very quick.
Any advice would be appreciated, thanks.
Honestly, I wouldn't be too concerned with the 1MB limit, that is still a lot of characters (roughly 1 million, although may be a bit less depending on data types) - so unless the descriptions could be incredibly long I think it's unlikely you will reach anywhere near those limits.
That being said, if it is a concern you could schedule a cloud function to periodically (perhaps every 3 months) to archive or move events to a subcollection that are no longer still of use, storing across more documents (to represent the quarter, or year, or whatever time period you decide on)

Storing and query time interval data in redis

I have to cache program schedule data based on zipcode. Each zipcode can have between 8-20k program schedule entries for a day. Each program schedule entry would look like this,
program_name,
start_time,
end_time,
channel_no,
..
..
There can be upto 10k zipcode entries.
Now, I want to cache this in such a way so that I can query at any instant to get currently running programs. For a particular zipcode, I want to query based on condition below,
start_time < current_time + 2 minutes AND end_time > current_time
So, I was thinking of couple of approaches here.
a) Use a redis list for each zipcode. List would contain all the program schedule entries. Load all the program schedule entries in memory and filter them based on query condition above.
b) Use 2 sorted sets for each zipcode. One set will use start_time as score for each program schedule entry. Another one with end_time as score. Once we have 2 sets, I could use the zrangebyscore for both sets by passing the current_time for the score param. And then do the intersection between the resulting sets.
I was wondering if there are better ways?
The List approach (a) is likely to be less performant since you'll need to get the entire list on every query.
Sorted Sets are more suitable for this purpose, but instead of using two you can probably get away with using just one by setting the score as start_time.length, do a ZRANGEBYSCORE and then filter the result on the fractional part.
Also, whether you're using two Sorted Sets or just one, consider using a Lua script to perform the query to avoid network traffic and to localize data processing.
I did solve this a bit differently a while back. Thought of coming back and adding my answer incase somebody runs into a similar design issue.
Problem was each of 10k zipcodes could have their own schedule because the channel numbers can be different based on zip code. So, the schedule entries for each of these zipcode is different. Here is what I did.
I load schedules for next hour for all channels in USA. There were
about 25k channel numbers. I do this once a hour by loading the schedules from redis into local memory.
I also store the zipcode <-> channel mapping within local memory.
When I need schedules for a particular zipcode, I get the list of channels for that zipcode and then get the schedule entries matching the channel numbers. Because, I do this in local memory the performance was pretty good!

Large number of entries: how to calculate quickly the total?

I am writing a rather large application that allows people to send text messages and emails. I will charge 7c per SMS and 2c per email sent. I will allow people to "recharge" their account. So, the end result is likely to be a database table with a few small entries like +100 and many, many entries like -0.02 and -0.07.
I need to check a person's balance immediately when they are trying to send an email or a message.
The obvious answer is to have cached "total" somewhere, and update it whenever something is added or taken out. However, as always in programming, there is more to it: what about monthly statements, where the balance needs to be carried forward from the previous month? My "intuitive" solution is to have two levels of cache: one for the current month, and one entry for each month (or billing period) with three entries:
The total added
The total taken out
The balance to that point
Are there better, established ways to deal with this problem?
Largely depends on the RDBMS.
If it were SQL Server, one solution is to create an Indexed view (or views) to automatically incrementally calculate and hold the aggregated values.
Another solution is to use triggers to aggregate whenever a row is inserted at the finest granularity of detail.

Database design - google app engine

I am working with google app engine and using the low leval java api to access Big Table. I'm building a SAAS application with 4 layers:
Client web browser
RESTful resources layer
Business layer
Data access layer
I'm building an application to help manage my mobile auto detailing company (and others like it). I have to represent these four separate concepts, but am unsure if my current plan is a good one:
Appointments
Line Items
Invoices
Payments
Appointment: An "Appointment" is a place and time where employees are expected to be in order to deliver a service.
Line Item: A "Line Item" is a service, fee or discount and its associated information. An example of line items that might go into an appointment:
Name: Price: Commission: Time estimate
Full Detail, Regular Size: 160 75 3.5 hours
$10 Off Full Detail Coupon: -10 0 0 hours
Premium Detail: 220 110 4.5 hours
Derived totals(not a line item): $370 $185 8.0 hours
Invoice: An "Invoice" is a record of one or more line items that a customer has committed to pay for.
Payment: A "Payment" is a record of what payments have come in.
In a previous implementation of this application, life was simpler and I treated all four of these concepts as one table in a SQL database: "Appointment." One "Appointment" could have multiple line items, multiple payments, and one invoice. The invoice was just an e-mail or print out that was produced from the line items and customer record.
9 out of 10 times, this worked fine. When one customer made one appointment for one or a few vehicles and paid for it themselves, all was grand. But this system didn't work under a lot of conditions. For example:
When one customer made one appointment, but the appointment got rained out halfway through resulting in the detailer had to come back the next day, I needed two appointments, but only one line item, one invoice and one payment.
When a group of customers at an office all decided to have their cars done the same day in order to get a discount, I needed one appointment, but multiple invoices and multiple payments.
When one customer paid for two appointments with one check, I needed two appointments, but only one invoice and one payment.
I was able to handle all of these outliers by fudging things a little. For example, if a detailer had to come back the next day, i'd just make another appointment on the second day with a line item that said "Finish Up" and the cost would be $0. Or if I had one customer pay for two appointments with one check, I'd put split payment records in each appointment. The problem with this is that it creates a huge opportunity for data in-congruency. Data in-congruency can be a serious problem especially for cases involving financial information such as the third exmaple where the customer paid for two appointments with one check. Payments must be matched up directly with goods and services rendered in order to properly keep track of accounts receivable.
Proposed structure:
Below, is a normalized structure for organizing and storing this data. Perhaps because of my inexperience, I place a lot of emphasis on data normalization because it seems like a great way to avoid data incongruity errors. With this structure, changes to the data can be done with one operation without having to worry about updating other tables. Reads, however, can require multiple reads coupled with in-memory organization of data. I figure later on, if there are performance issues, I can add some denormalized fields to "Appointment" for faster querying while keeping the "safe" normalized structure intact. Denormalization could potentially slow down writes, but I was thinking that I might be able to make asynchronous calls to other resources or add to the task que so that the client does not have to wait for the extra writes that update the denormalized portions of the data.
Tables:
Appointment
start_time
etc...
Invoice
due_date
etc...
Payment
invoice_Key_List
amount_paid
etc...
Line_Item
appointment_Key_List
invoice_Key
name
price
etc...
The following is the series of queries and operations required to tie all four entities (tables) together for a given list of appointments. This would include information on what services were scheduled for each appointment, the total cost of each appointment and weather or not payment as been received for each appointment. This would be a common query when loading the calendar for appointment scheduling or for a manager to get an overall view of operations.
QUERY for the list of "Appointments" who's "start_time" field lies between the given range.
Add each key from the returned appointments into a List.
QUERY for all "Line_Items" who's appointment_key_List field includes any of the returns appointments
Add each invoice_key from all of the line items into a Set collection.
QUERY for all "Invoices" in the invoice ket set (this can be done in one asynchronous operation using app engine)
Add each key from the returned invoices into a List
QUERY for all "Payments" who's invoice_key_list field contains a key matching any of the returned invoices
Reorganize in memory so that each appointment reflects the line_items that are scheduled for it, the total price, total estimated time, and weather or not it has been paid for.
...As you can see, this operation requires 4 datastore queries as well as some in-memory organization (hopefully the in-memory will be pretty fast)
Can anyone comment on this design? This is the best I could come up with, but I suspect there might be better options or completely different designs that I'm not thinking of that might work better in general or specifically under GAE's (google app engine) strengths, weaknesses, and capabilities.
Thanks!
Usage clarification
Most applications are more read-intensive, some are more write intensive. Below, I describe a typical use-case and break down operations that the user would want to perform:
Manager gets a call from a customer:
Read - Manager loads the calendar and looks for a time that is available
Write - Manager queries customer for their information, I pictured this to be a succession of asynchronous reads as the manager enters each piece of information such as phone number, name, e-mail, address, etc... Or if necessary, perhaps one write at the end after the client application has gathered all of the information and it is then submitted.
Write - Manager takes down customer's credit card info and adds it to their record as a separate operation
Write - Manager charges credit card and verifies that the payment went through
Manager makes an outgoing phone call:
Read Manager loads the calendar
Read Manager loads the appointment for the customer he wants to call
Write Manager clicks "Call" button, a call is initiated and a new CallReacord entity is written
Read Call server responds to call request and reads CallRecord to find out how to handle the call
Write Call server writes updated information to the CallRecord
Write when call is closed, call server makes another request to the server to update the CallRecord resource (note: this request is not time-critical)
Accepted answer::
Both of the top two answers were very thoughtful and appreciated. I accepted the one with few votes in order to imperfectly equalize their exposure as much as possible.
You specified two specific "views" your website needs to provide:
Scheduling an appointment. Your current scheme should work just fine for this - you'll just need to do the first query you mentioned.
Overall view of operations. I'm not really sure what this entails, but if you need to do the string of four queries you mentioned above to get this, then your design could use some improvement. Details below.
Four datastore queries in and of itself isn't necessarily overboard. The problem in your case is that two of the queries are expensive and probably even impossible. I'll go through each query:
Getting a list of appointments - no problem. This query will be able to scan an index to efficiently retrieve the appointments in the date range you specify.
Get all line items for each of appointment from #1 - this is a problem. This query requires that you do an IN query. IN queries are transformed into N sub-queries behind the scenes - so you'll end up with one query per appointment key from #1! These will be executed in parallel so that isn't so bad. The main problem is that IN queries are limited to only a small list of values (up to just 30 values). If you have more than 30 appointment keys returned by #1 then this query will fail to execute!
Get all invoices referenced by line items - no problem. You are correct that this query is cheap because you can simply fetch all of the relevant invoices directly by key. (Note: this query is still synchronous - I don't think asynchronous was the word you were looking for).
Get all payments for all invoices returned by #3 - this is a problem. Like #2, this query will be an IN query and will fail if #3 returns even a moderate number of invoices which you need to fetch payments for.
If the number of items returned by #1 and #3 are small enough, then GAE will almost certainly be able to do this within the allowed limits. And that should be good enough for your personal needs - it sounds like you mostly need it to work, and don't need to it to scale to huge numbers of users (it won't).
Suggestions for improvement:
Denormalization! Try storing the keys for Line_Item, Invoice, and Payment entities relevant to a given appointment in lists on the appointment itself. Then you can eliminate your IN queries. Make sure these new ListProperty are not indexed to avoid problems with exploding indices
Other less specific ideas for improvement:
Depending on what your "overall view of operations" is going to show, you might be able to split up the retrieval of all this information. For example, perhaps you start by showing a list of appointments, and then when the manager wants more information about a particular appointment you go ahead and fetch the information relevant to that appointment. You could even do this via AJAX if you this interaction to take place on a single page.
Memcache is your friend - use it to cache the results of datastore queries (or even higher level results) so that you don't have to recompute it from scratch on every access.
As you've noticed, this design doesn't scale. It requires 4 (!!!) DB queries to render the page. That's 3 too many :)
The prevailing notion of working with the App Engine Datastore is that you want to do as much work as you possibly can when something is written, so that almost nothing needs to be done when something is retrieved and rendered. You presumably write the data very few times, compared to how many times it's rendered.
Normalization is similarly something that you seem to be striving for. The Datastore doesn't place any value in normalization -- it may mean less data incongruity, but it also means reading data is muuuuuch slower (4 reads?!!). Since your data is read much more often than it's written, optimize for reads, even if that means your data will occasionally be duplicated or out of sync for a short amount of time.
Instead of thinking about how the data looks when it's stored, think about how you want the data to look when it's displayed to the user. Store as close to that format as you can, even if that means literally storing pre-rendered HTML in the datastore. Reads will be lightning-fast, and that's a good thing.
So since you should optimize for reads, oftentimes your writes will grow to gigantic proportions. So gigantic that you can't fit it in the 30 second time limit for requests. Well, that's what the task queue is for. Store what you consider the "bare necessities" of your model in the datastore, then fire off a task queue to pull it back out, generate the HTML to be rendered, and put it in there in the background. This might mean your model is immediately ready to display until the task has finished with it, so you'll need a graceful degradation in this case, even if that means rendering it "the slow way" until the data is fully populated. Any further reads will be lightning-quick.
In summary, I don't have any specific advice directly related to your database -- that's dependent on what you want the data to look like when the user sees it.
What I can give you are some links to some super helpful videos about the datastore:
Brett Slatkin's 2008 and 2009 talks on building scalable, complex apps on App Engine, and a great one from this year about data pipelines (which isn't directly applicable I think, but really useful in general)
App Engine Under the Covers: How App Engine does what it does, behind the scenes
AppStats: a great way to see how many datastore reads you're performing, and some tips on reducing that number
Here are a few app-engine specific factors that I think you'll have to contend with:
When querying using an inequality, you can only use an inequality on one property. for example, if you are filtering on an appt date being between July 1st and July 4th, you couldn't also filter by price > 200
Transactions on app engine are a bit tricky compared to the SQL database you are probably used to. You can only do transactions on entities that are in the same "entity group".

Inspiration needed: Selecting large amounts of data for a highscore

I need some inspiration for a solution...
We are running an online game with around 80.000 active users - we are hoping to expand this and are therefore setting a target of achieving up to 1-500.000 users.
The game includes a highscore for all the users, which is based on a large set of data. This data needs to be processed in code to calculate the values for each user.
After the values are calculated we need to rank the users, and write the data to a highscore table.
My problem is that in order to generate a highscore for 500.000 users we need to load data from the database in the order of 25-30.000.000 rows totalling around 1.5-2gb of raw data. Also, in order to rank the values we need to have the total set of values.
Also we need to generate the highscore as often as possible - preferably every 30 minutes.
Now we could just use brute force - load the 30 mio records every 30 minutes, calculate the values and rank them, and write them in to the database, but I'm worried about the strain this will cause on the database, the application server and the network - and if it's even possible.
I'm thinking the solution to this might be to break up the problem some how, but I can't see how. So I'm seeking for some inspiration on possible alternative solutions based on this information:
We need a complete highscore of all ~500.000 teams - we can't (won't unless absolutely necessary) shard it.
I'm assuming that there is no way to rank users without having a list of all users values.
Calculating the value for each team has to be done in code - we can't do it in SQL alone.
Our current method loads each user's data individually (3 calls to the database) to calculate the value - it takes around 20 minutes to load data and generate the highscore 25.000 users which is too slow if this should scale to 500.000.
I'm assuming that hardware size will not an issue (within reasonable limits)
We are already using memcached to store and retrieve cached data
Any suggestions, links to good articles about similar issues are welcome.
Interesting problem. In my experience, batch processes should only be used as a last resort. You are usually better off having your software calculate values as it inserts/updates the database with the new data. For your scenario, this would mean that it should run the score calculation code every time it inserts or updates any of the data that goes into calculating the team's score. Store the calculated value in the DB with the team's record. Put an index on the calculated value field. You can then ask the database to sort on that field and it will be relatively fast. Even with millions of records, it should be able to return the top n records in O(n) time or better. I don't think you'll even need a high scores table at all, since the query will be fast enough (unless you have some other need for the high scores table other than as a cache). This solution also gives you real-time results.
Assuming that most of your 2GB of data is not changing that frequently you can calculate and cache (in db or elsewhere) the totals each day and then just add the difference based on new records provided since the last calculation.
In postgresql you could cluster the table on the column that represents when the record was inserted and create an index on that column. You can then make calculations on recent data without having to scan the entire table.
First and formost:
The computation has to take place somewhere.
User experience impact should be as low as possible.
One possible solution is:
Replicate (mirror) the database in real time.
Pull the data from the mirrored DB.
Do the analysis on the mirror or on a third, dedicated, machine.
Push the results to the main database.
Results are still going to take a while, but at least performance won't be impacted as much.
How about saving those scores in a database, and then simply query the database for the top scores (so that the computation is done on the server side, not on the client side.. and thus there is no need to move the millions of records).
It sounds pretty straight forward... unless I'm missing your point... let me know.
Calculate and store the score of each active team on a rolling basis. Once you've stored the score, you should be able to do the sorting/ordering/retrieval in the SQL. Why is this not an option?
It might prove fruitless, but I'd at least take a gander at the way sorting is done on a lower level and see if you can't manage to get some inspiration from it. You might be able to grab more manageable amounts of data for processing at a time.
Have you run tests to see whether or not your concerns with the data size are valid? On a mid-range server throwing around 2GB isn't too difficult if the software is optimized for it.
Seems to me this is clearly a job for chacheing, because you should be able to keep the half-million score records semi-local, if not in RAM. Every time you update data in the big DB, make the corresponding adjustment to the local score record.
Sorting the local score records should be trivial. (They are nearly in order to begin with.)
If you only need to know the top 100-or-so scores, then the sorting is even easier. All you have to do is scan the list and insertion-sort each element into a 100-element list. If the element is lower than the first element, which it is 99.98% of the time, you don't have to do anything.
Then run a big update from the whole DB once every day or so, just to eliminate any creeping inconsistencies.

Resources