How do I arrange an array as table rows? - arrays

I am trying to learn the Ruby way of array processing. What is a succinct way to write the following function?
def columnize(items, n_cols)
Items is a 1D array of arbitrary length. I want to return an array of rows, each having a length of n_cols, that includes all of the items column-wise, possibly with nils padding the last column. For example:
items = [1, 2, 3, 4, 5, 6, 7]
table = columnize items, 3
This should produce a table of:
[[1, 4, 7],
[2, 5, nil],
[3, 6, nil]]
Note that it's possible for the last column to be all nils as in:
columnize [1, 2, 3, 4, 5, 6, 7, 8, 9], 4
This is a real problem I need to solve for report generation. I have a Ruby newbie solution that is not very satisfying and can post it if desired.

You want to use Matrix class.
items = [1, 2, 3, 4, 5, 6, 7]
require 'matrix'
# ⇒ true
m = Matrix.build(3) { |row, col| items[row+col*3] }
# ⇒ Matrix[[1, 4, 7], [2, 5, nil], [3, 6, nil]]

Ruby's Array class has transpose which is designed to convert rows into columns. Using it in conjunction with fill and Enumerable's each_slice gives:
require 'pp'
def columnize(items, cols)
ary = items.dup.fill(nil, items.size, cols - items.size % cols )
ary.each_slice(ary.size / cols).to_a.transpose
end
items = [1, 2, 3, 4, 5, 6, 7]
pp columnize(items, 3)
pp columnize [1, 2, 3, 4, 5, 6, 7, 8, 9], 4
Which outputs:
[[1, 4, 7], [2, 5, nil], [3, 6, nil]]
[[1, 4, 7, nil], [2, 5, 8, nil], [3, 6, 9, nil]]

Except for filling rows that only have nil elements, this will do:
first, *rest = items.each_slice((items.length/n_cols).ceil).to_a
first.zip(*rest)

Related

Slicing the last 2 columns of a numpy array

How can I slice the last 2 columns of a numpy array?
for example:
A = np.array([[1, 2, 3], [4, 5, 6]])
and I want to get B as the last 2 columns of A which is [[2, 3], [5, 6]]
I know that I can index it from start of the array such as B = A[:, 1:3]. But I am looking for a general form to slice A by indexing from the end as the number of columns for A changes in my case.
Here you go
>>> A = np.array([[1, 2, 3],[4, 5, 6]])
>>> A[:,[-2,-1]]
array([[2, 3],
[5, 6]])
A generalised method to get the last n rows can be
>>> A = np.array([[1, 2, 3,4],[4, 5, 6,7]])
>>> A[:,-3:]
array([[2, 3, 4],
[5, 6, 7]])

concatenate multiple numpy arrays in one array?

Assume I have many numpy array:
a = ([1,2,3,4,5])
b = ([2,3,4,5,6])
c = ([3,4,5,6,7])
and I want to generate a new 2-D array:
d = ([[1,2,3,4,5],[2,3,4,5,6],[3,4,5,6,7]])
What should I code?
I tried used:
d = np.concatenate((a,b),axis=0)
d = np.concatenate((d,c),axis=0)
It returns:
d = ([1,2,3,4,5,2,3,4,5,6,3,4,5,6,7])
As mentioned in the comments you could just use the np.array function:
>>> import numpy as np
>>> a = ([1,2,3,4,5])
>>> b = ([2,3,4,5,6])
>>> c = ([3,4,5,6,7])
>>> np.array([a, b, c])
array([[1, 2, 3, 4, 5],
[2, 3, 4, 5, 6],
[3, 4, 5, 6, 7]])
In the general case that you want to stack based on a "not-yet-existing" dimension, you can also use np.stack:
>>> np.stack([a, b, c], axis=0)
array([[1, 2, 3, 4, 5],
[2, 3, 4, 5, 6],
[3, 4, 5, 6, 7]])
>>> np.stack([a, b, c], axis=1) # not what you want, this is only to show what is possible
array([[1, 2, 3],
[2, 3, 4],
[3, 4, 5],
[4, 5, 6],
[5, 6, 7]])

How do I split a 9x9 array into 9 3x3 components

I have a 9x9 multidimensional array that represents a sudoku game. I need to break it into it's 9 3x3 many components. How would this be done? I have absolutely no idea where to begin, here.
game = [
[1, 3, 2, 5, 7, 9, 4, 6, 8],
[4, 9, 8, 2, 6, 1, 3, 7, 5],
[7, 5, 6, 3, 8, 4, 2, 1, 9],
[6, 4, 3, 1, 5, 8, 7, 9, 2],
[5, 2, 1, 7, 9, 3, 8, 4, 6],
[9, 8, 7, 4, 2, 6, 5, 3, 1],
[2, 1, 4, 9, 3, 5, 6, 8, 7],
[3, 6, 5, 8, 1, 7, 9, 2, 4],
[8, 7, 9, 6, 4, 2, 1, 5, 3]
]
Split into chunks, it becomes
chunk_1 = [
[1, 3, 2],
[4, 9, 8],
[7, 5, 6]
]
chunk_2 = [
[5, 7, 9],
[2, 6, 1],
[3, 8, 4]
]
...and so on
That was a fun exercise!
Answer
game.each_slice(3).map{|stripe| stripe.transpose.each_slice(3).map{|chunk| chunk.transpose}}.flatten(1)
It would be cumbersome and not needed to define every chunk_1, chunk_2, ....
If you want chunk_2, you can use extract_chunks(game)[1]
It outputs [chunk_1, chunk_2, chunk_3, ..., chunk_9], so it's an Array of Arrays of Arrays :
1 3 2
4 9 8
7 5 6
5 7 9
2 6 1
3 8 4
4 6 8
3 7 5
2 1 9
6 4 3
5 2 1
...
You can define a method to check if this grid is valid (it is) :
def extract_chunks(game)
game.each_slice(3).map{|stripe| stripe.transpose.each_slice(3).map{|chunk| chunk.transpose}}.flatten(1)
end
class Array # NOTE: Use refinements if you don't want to patch Array
def has_nine_unique_elements?
self.flatten(1).uniq.size == 9
end
end
def valid?(game)
game.has_nine_unique_elements? &&
game.all?{|row| row.has_nine_unique_elements? } &&
game.all?{|column| column.has_nine_unique_elements? } &&
extract_chunks(game).all?{|chunk| chunk.has_nine_unique_elements? }
end
puts valid?(game) #=> true
Theory
The big grid can be sliced in 3 stripes, each containing 3 rows of 9 cells.
The first stripe will contain chunk_1, chunk_2 and chunk_3.
We need to cut the strip vertically into 3 chunks. To do so :
We transpose the strip,
Cut it horizontally with each_slice,
transpose back again.
We do the same for stripes #2 and #3.
To avoid returning an Array of Stripes of Chunks of Rows of Cells, we use flatten(1) to remove one level and return an Array of Chunks of Rows of Cells. :)
The method Matrix#minor is tailor-made for this:
require 'matrix'
def sub3x3(game, i, j)
Matrix[*game].minor(3*i, 3, 3*j, 3).to_a
end
chunk1 = sub3x3(game, 0, 0)
#=> [[1, 3, 2], [4, 9, 8], [7, 5, 6]]
chunk2 = sub3x3(game, 0, 1)
#=> [[5, 7, 9], [2, 6, 1], [3, 8, 4]]
chunk3 = sub3x3(game, 0, 2)
#=> [[4, 6, 8], [3, 7, 5], [2, 1, 9]]
chunk4 = sub3x3(game, 1, 0)
#=> [[6, 4, 3], [5, 2, 1], [9, 8, 7]]
...
chunk9 = sub3x3(game, 2, 2)
#=> [[6, 8, 7], [9, 2, 4], [1, 5, 3]]
Ruby has not concept of "rows" and "columns" of arrays. For convenience, therefore, I will refer to the 3x3 "subarray" of game, at offsets i and j (i = 0,1,2, j = 0,1,2), as the 3x3 submatrix of m = Matrix[*game] whose upper left value is at row offset 3*i and column offset 3*j of m, converted to an array.
This is relatively inefficient as a new matrix is created for the calculation of each "chunk". Considering the size of the array, this is not a problem, but rather than making that more efficient you really need to rethink the overall design. Creating nine local variables (rather than, say, an array of nine arrays) is not the way to go.
Here's a suggestion for checking the validity of game (that uses the method sub3x3 above) once all the open cells have been filled. Note that I've used the Wiki description of the game, in which the only valid entries are the digits 1-9, and I have assumed the code enforces that requirement when players enter values into cells.
def invalid_vector_index(game)
game.index { |vector| vector.uniq.size < 9 }
end
def sub3x3_invalid?(game, i, j)
sub3x3(game, i, j).flatten.uniq.size < 9
end
def valid?(game)
i = invalid_vector_index(game)
return [:ROW_ERR, i] if i
j = invalid_vector_index(game.transpose)
return [:COL_ERR, j] if j
m = Matrix[*game]
(0..2).each do |i|
(0..2).each do |j|
return [:SUB_ERR, i, j] if sub3x3_invalid?(game, i, j)
end
end
true
end
valid?(game)
#=> true
Notice this either returns true, meaning game is valid, or an array that both signifies that the solution is not valid and contains information that can be used to inform the player of the reason.
Now try
game[5], game[6] = game[6], game[5]
so
game
#=> [[1, 3, 2, 5, 7, 9, 4, 6, 8],
# [4, 9, 8, 2, 6, 1, 3, 7, 5],
# [7, 5, 6, 3, 8, 4, 2, 1, 9],
# [6, 4, 3, 1, 5, 8, 7, 9, 2],
# [5, 2, 1, 7, 9, 3, 8, 4, 6],
# [2, 1, 4, 9, 3, 5, 6, 8, 7],
# [9, 8, 7, 4, 2, 6, 5, 3, 1],
# [3, 6, 5, 8, 1, 7, 9, 2, 4],
# [8, 7, 9, 6, 4, 2, 1, 5, 3]]
valid?(game)
#=> [:SUB_ERR, 1, 0]
The rows and columns are obviously still valid, but this return value indicates that at least one 3x3 subarray is invalid and the array
[[6, 4, 3],
[5, 2, 1],
[2, 1, 4]]
was the first found to be invalid.
You could create a method that generates a single 3X3 chunk from a given index. since the sudoku board is of length 9, that will produce 9 3X3 chunks for you. see below.
#steps
#you'll loop through each index of the board
#to get the x value
#you divide the index by 3 and multiply by 3
#to get the y value
#you divide the index by 3, take remainder and multiply by 3
#for each x value, you can get 3 y values
#this will give you a single 3X3 box from one index so
def three_by3(index, sudoku)
#to get x value
x=(index/3)*3
#to get y value
y=(index%3)*3
(x...x+3).each_with_object([]) do |x,arr|
(y...y+3).each do |y|
arr<<sudoku[x][y]
end
end
end
sudoku = [ [1,2,3,4,5,6,7,8,9],
[2,3,4,5,6,7,8,9,1],
[3,4,5,6,7,8,9,1,2],
[1,2,3,4,5,6,7,8,9],
[2,3,4,5,6,7,8,9,1],
[3,4,5,6,7,8,9,1,2],
[1,2,3,4,5,6,7,8,9],
[2,3,4,5,6,7,8,9,1],
[3,4,5,6,7,8,9,1,2]]
p (0...sudoku.length).map {|i| three_by3(i,sudoku)}
#output:
#[[1, 2, 3, 2, 3, 4, 3, 4, 5],
# [4, 5, 6, 5, 6, 7, 6, 7, 8],
# [7, 8, 9, 8, 9, 1, 9, 1, 2],
# [1, 2, 3, 2, 3, 4, 3, 4, 5],
# [4, 5, 6, 5, 6, 7, 6, 7, 8],
# [7, 8, 9, 8, 9, 1, 9, 1, 2],
# [1, 2, 3, 2, 3, 4, 3, 4, 5],
# [4, 5, 6, 5, 6, 7, 6, 7, 8],
# [7, 8, 9, 8, 9, 1, 9, 1, 2]]

Finding the first combination of two integers in an array whose latter element appears the earliest and sum matches a given value

I have array and sum_of_two:
array = [10, 5, 1, 9, 7, 8, 2, 4, 6, 9, 3, 2, 1, 4, 8, 7, 5]
sum_of_two = 10
I'm trying to find the combination of two integers in array whose latter element of the two appears the earliest among those of such combinations whose sum equals sum_of_two. For example, both [5, 5] and [1, 9] are candidates for such combinations, but 9 of [1, 9] (which appears later than 1 in array) appears earlier than the second 5 of [5, 5] (which is the last element in array). So I would like to return [1, 9].
I tried using combination and find:
array.combination(2).find{|x,y| x + y == sum_of_two} #=> [5, 5]
However, it returns a combination of the first integer in the array, 5 , and another integer further along the array, also 5.
If I use find_all instead of find, I get all combinations of two integers that add up to sum_of_two:
array.combination(2).find_all{|x,y| x + y == sum_of_two}
#=> [[5, 5], [1, 9], [1, 9], [9, 1], [7, 3], [8, 2], [8, 2], [2, 8], [4, 6], [6, 4], [9, 1], [3, 7], [2, 8]]
But then I'm not sure how to get the first one.
I would use Set (which would be a bit more efficient than using Array#include?) and do something like this:
array = [10, 5, 1, 9, 7, 8, 2, 4, 6, 9, 3, 2, 1, 4, 8, 7, 5]
sum_of_two = 10
require 'set'
array.each_with_object(Set.new) do |element, set|
if set.include?(sum_of_two - element)
break [sum_of_two - element, element]
else
set << element
end
end
#=> [1, 9]
x = array.find.with_index{|e, i| array.first(i).include?(sum_of_two - e)}
[sum_of_two - x, x] # => [1, 9]
Array#combination(n) does not give the elements in the order you want, so you must build the pairs yourself. It's easy if you begin from the second index. A O(n) lazy implementation, and let's call the input xs:
pairs = (1...xs.size).lazy.flat_map { |j| (0...j).lazy.map { |i| [xs[i], xs[j]] } }
first_matching_pair = pairs.detect { |i, j| i + j == 10 }
#=> [1, 9]

How to transpose an array in Python 3?

I've been scanning the forums and haven't found an answer yet that I can apply to my situation. I need to be able to take an n by n array and transpose it in Python-3. The example given is that I have this list input into the function:
[[4, 2, 1], ["a", "a", "a"], [-1, -2, -3]] and it needs to be transposed to read:
[[4, 'a', -1], [2, 'a', -2], [1, 'a', -3]] So basically reading vertically instead of horizontally.
I CANNOT use things like zip or numpy, I have to make my own function.
Been rattling my brain at this for two nights and it's a huge headache. If anyone could help and then provide an explanation so I can learn it, I'd be grateful.
Edit:
I should add for reference sake that the argument variable is M. The function we're supposed to write is trans(M):
A one-liner:
def trans(M):
return [[M[j][i] for j in range(len(M))] for i in range(len(M[0]))]
result:
>>> M = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> trans(M)
[[1, 4, 7], [2, 5, 8], [3, 6, 9]
# or for a non-square matrix:
>>> N = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
>>> trans(N)
[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
Additional Note: If you look up the tutorial on list comprehension, one of the examples is in fact transposition of a matrix array.
A variant that should work for matrices with irregular row lengths:
m=[[3, 2, 1],
[0, 1],
[2, 1, 0]]
m_T = [ [row[c] for row in m if c < len(row)] for c in range(0, max([len(row) for row in m])) ]
Here is an in place solution that works for square matrices:
def trans(M):
n = len(M)
for i in range(n - 1):
for j in range(i + 1, n):
M[i][j], M[j][i] = M[j][i], M[i][j]
Example Usage:
def print_matrix(M):
for row in M:
for ele in row:
print(ele, end='\t')
print()
M = [[4, 2, 1], ["a", "a", "a"], [-1, -2, -3]]
print('Original Matrix:')
print_matrix(M)
trans(M)
print('Transposed Matrix:')
print_matrix(M)
Output:
Original Matrix:
4 2 1
a a a
-1 -2 -3
Transposed Matrix:
4 a -1
2 a -2
1 a -3
y=([1,2], [3,4], [5,6])
transpose=[[row[i] for row in y] for i in range(len(y[0]))]
the output is
[[1, 3, 5], [2, 4, 6]]
You can also use the function in numpy to transpose - if you need the answer as a list it is straightforward to convert back using tolist:
from numpy import transpose
M = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
transpose(M).tolist()
the output is
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
Haven't timed it (no time!) but I strongly suspect this will be a lot faster than iterators for large arrays, especially if you don't need to convert back to a list.

Resources