Getting N minimal contiguous blocks in an array of numbers - arrays

I'm currently working on the following problem:
Given an array of M positive numbers, I need to get N blocks of contiguous numbers with some given length. For example, when I have the array:
6 9 3 2 8 1 6 9 7
When I need to find one block of length 3, the solution is [3,2,8] which has a total minimal sum of 13. When I need to find two blocks, the algorithm should give [3,2,8] and [1,6,9] since the sum of all elements in these blocks is minimal (29). It is given that the length of the sequence is always strictly larger than N times the length of a block (so there is always a solution).
I think this problem is solvable by using DP but I currently can't see how. I'm struggling to find a recurrent relation between the subproblems. Could anyone give me a hand here?
Thanks in advance!

Calculate the sum of each block with the given length, and record them with the initial index. This can be done by a complexity of O(n). So you get a list like:
index sum
0 18
1 14
2 13
... ...
Due to the objective blocks could not overlap with each other, so each difference of their indexes can not be less than the given length. So you need to apply a simple dynamic planning algorithm on the list you got.
if the block length is l, list length is n(say the list S[n]), and you want to find m blocks, then the
F(n,m,l) = min { F(n-i-l,m-1,l) + S[n-i] } (for i = 0 ~ n-(m-1)*l)
The complexity of this step is O(nm) where m is how many blocks you want.
Finally the complexity is O(nm). Let me know if you need more details.

Related

Find all possible distances from two arrays

Given two sorted array A and B length N. Each elements may contain natural number less than M. Determine all possible distances for all combinations elements A and B. In this case, if A[i] - B[j] < 0, then the distance is M + (A[i] - B[j]).
Example :
A = {0,2,3}
B = {1,2}
M = 5
Distances = {0,1,2,3,4}
Note: I know O(N^2) solution, but I need faster solution than O(N^2) and O(N x M).
Edit: Array A, B, and Distances contain distinct elements.
You can get a O(MlogM) complexity solution in the following way.
Prepare an array Ax of length M with Ax[i] = 1 if i belongs to A (and 0 otherwise)
Prepare an array Bx of length M with Bx[M-1-i] = 1 if i belongs to B (and 0 otherwise)
Use the Fast Fourier Transform to convolve these 2 sequences together
Inspect the output array, non-zero values correspond to possible distances
Note that the FFT is normally done with floating point numbers, so in step 4 you probably want to test if the output is greater than 0.5 to avoid potential rounding noise issues.
I possible done with optimized N*N.
If convert A to 0 and 1 array where 1 on positions which present in A (in range [0..M].
After convert this array into bitmasks, size of A array will be decreased into 64 times.
This will allow insert results by blocks of size 64.
Complexity still will be N*N but working time will be greatly decreased. As limitation mentioned by author 50000 for A and B sizes and M.
Expected operations count will be N*N/64 ~= 4*10^7. It will passed in 1 sec.
You can use bitvectors to accomplish this. Bitvector operations on large bitvectors is linear in the size of the bitvector, but is fast, easy to implement, and may work well given your 50k size limit.
Initialize two bitvectors of length M. Call these vectA and vectAnswer. Set the bits of vectA that correspond to the elements in A. Leave vectAnswer with all zeroes.
Define a method to rotate a bitvector by k elements (rotate down). I'll call this rotate(vect,k).
Then, for every element b of B, vectAnswer = vectAnswer | rotate(vectA,b).

Minimum Complexity of two lists element summation comparison

I have a question in algorithm design about arrays, which should be implement in C language.
Suppose that we have an array which has n elements. For simplicity n is power of '2' like 1, 2, 4, 8, 16 , etc. I want to separate this to 2 parts with (n/2) elements. Condition of separating is lowest absolute difference between sum of all elements in two arrays for example if I have this array (9,2,5,3,6,1,4,7) it will be separate to these arrays (9,5,1,3) and (6,7,4,2) . summation of first array's elements is 18 and the summation of second array's elements is 19 and the difference is 1 and these two arrays are the answer but two arrays like (9,5,4,2) and (7,6,3,1) isn't the answer because the difference of element summation is 4 and we have found 1 . so 4 isn't the minimum difference. How to solve this?
Thank you.
This is the Partition Problem, which is unfortunately NP-Hard.
However, since your numbers are integers, if they are relatively low, there is a pseudo polynomial O(W*n^2) solution using Dynamic Programming (where W is sum of all elements).
The idea is to create the DP matrix of size (W/2+1)*(n+1)*(n/2+1), based on the following recursive formula:
D(0,i,0) = true
D(0,i,k) = false k != 0
D(x,i,k) = false x < 0
D(x,0,k) = false x > 0
D(x,i,0) = false x > 0
D(x,i,k) = D(x,i-1,k) OR D(x-arr[i], i-1,k-1)
The above gives a 3d matrix, where each entry D(x,i,k) says if there is a subset containing exactly k elements, that sums to x, and uses the first i elements as candidates.
Once you have this matrix, you just need to find the highest x (that is smaller than SUM/2) such that D(x,n,n/2) = true
Later, you can get the relevant subset by going back on the table and "retracing" your choices at each step. This thread deals with how it is done on a very similar problem.
For small sets, there is also the alternative of a naive brute force solution, which basically splits the array to all possible halves ((2n)!/(n!*n!) of those), and picks the best one out of them.

How do I check to see if two (or more) elements of an array/vector are the same?

For one of my homework problems, we had to write a function that creates an array containing n random numbers between 1 and 365. (Done). Then, check if any of these n birthdays are identical. Is there a shorter way to do this than doing several loops or several logical expressions?
Thank you!
CODE SO FAR, NOT DONE YET!!
function = [prob] bdayprob(N,n)
N = input('Please enter the number of experiments performed: N = ');
n = input('Please enter the sample size: n = ');
count = 0;
for(i=1:n)
x(i) = randi(365);
if(x(i)== x)
count = count + 1
end
return
If I'm interpreting your question properly, you want to check to see if generating n integers or days results in n unique numbers. Given your current knowledge in MATLAB, it's as simple as doing:
n = 30; %// Define sample size
N = 10; %// Define number of trials
%// Define logical array where each location tells you whether
%// birthdays were repeated for a trial
check = false(1, N);
%// For each trial...
for idx = 1 : N
%// Generate sample size random numbers
days = randi(365, n, 1);
%// Check to see if the total number of unique birthdays
%// are equal to the sample size
check(idx) = numel(unique(days)) == n;
end
Woah! Let's go through the code slowly shall we? We first define the sample size and the number of trials. We then specify a logical array where each location tells you whether or not there were repeated birthdays generated for that trial. Now, we start with a loop where for each trial, we generate random numbers from 1 to 365 that is of n or sample size long. We then use unique and figure out all unique integers that were generated from this random generation. If all of the birthdays are unique, then the total number of unique birthdays generated should equal the sample size. If we don't, then we have repeats. For example, if we generated a sample of [1 1 1 2 2], the output of unique would be [1 2], and the total number of unique elements is 2. Since this doesn't equal 5 or the sample size, then we know that the birthdays generated weren't unique. However, if we had [1 3 4 6 7], unique would give the same output, and since the output length is the same as the sample size, we know that all of the days are unique.
So, we check to see if this number is equal to the sample size for each iteration. If it is, then we output true. If not, we output false. When I run this code on my end, this is what I get for check. I set the sample size to 30 and the number of trials to be 10.
check =
0 0 1 1 0 0 0 0 1 0
Take note that if you increase the sample size, there is a higher probability that you will get duplicates, because randi can be considered as sampling with replacement. Therefore, the larger the sample size, the higher the chance of getting duplicate values. I made the sample size small on purpose so that we can see that it's possible to get unique days. However, if you set it to something like 100, or 200, you will most likely get check to be all false as there will most likely be duplicates per trial.
Here are some more approaches that avoid loops. Let
n = 20; %// define sample size
x = randi(365,n,1); %// generate n values between 1 and 365
Any of the following code snippets returns true (or 1) if there are two identical values in x, and false (or 0) otherwise:
Sort and then check if any two consecutive elements are the same:
result = any(diff(sort(x))==0);
Do all pairwise comparisons manually; remove self-pairs and duplicate pairs; and check if any of the remaining comparisons is true:
result = nnz(tril(bsxfun(#eq, x, x.'),-1))>0;
Compute the distance between distinct values, considering each pair just once, and then check if any distance is 0:
result = any(pdist(x(:))==0);
Find the number of occurrences of the most common value (mode):
[~, occurs] = mode(x);
result = occurs>1;
I don't know if I'm supposed to solve the problem for you, but perhaps a few hints may lead you in the right direction (besides I'm not a matlab expert so it will be in general terms):
Maybe not, but you have to ask yourself what they expect of you. The solution you propose requires you to loop through the array in two nested loops which will mean n*(n-1)/2 times through the loop (ie quadratic time complexity).
There are a number of ways you can improve the time complexity of the problem. The most straightforward would be to have a 365 element table where you can keep track if a particular number has been seen yet - which would require only a single loop (ie linear time complexity), but perhaps that's not what they're looking for either. But maybe that solution is a little bit ad-hoc? What we're basically looking for is a fast lookup if a particular number has been seen before - there exists more memory efficient structures that allows look up in O(1) time and O(log n) time (if you know these you have an arsenal of tools to use).
Then of course you could use the pidgeonhole principle to provide the answer much faster in some special cases (remember that you only asked to determine whether two or more numbers are equal or not).

finding the maximum number in array

there is an array of numbers an this array is irregular and we should find a maximum number (n) that at least n number is bigger than it (this number may be in array and may not be in array )
for example if we give 2 5 7 6 9 number 4 is maximum number that at least 4 number (or more than it ) is bigger than 4 (5 6 7 9 are bigger)
i solve this problem but i think it gives time limit in big array of numbers so i want to resolve this problem in another way
so i use merge sort for sorting that because it take nlog(n) and then i use a counter an it counts from 1 to k if we have k number more than k we count again for example we count from 1 to 4 then in 5 we don't have 5 number more than 5 so we give k-1 = 4 and this is our n .
it's good or it maybe gives time limit ? does anybody have another idea ?
thanks
In c++ there is a function called std::nth_element and it can find the nth element of an array in linear time. Using this function you should find the N - n- th element (where N is the total number of elements in the array) and subtract 1 from it.
As you seek a solution in C you can not make use of this function, but you can implement your solution similarly. nth_element performs something quite similar to qsort, but it only performs partition on the part of the array where the n-th element is.
Now let's assume you have nth_element implemented. We will perform something like combination of binary search and nth_element. First we assume that the answer of the question is the middle element of the array (i.e. the N/2-th element). We use nth_element and we find the N/2th element. If it is more than N/2 we know the answer to your problem is at least N/2, otherwise it will be less. Either way in order to find the answer we will only continue with one of the two partitions created by the N/2th element. If this partition is the right one(elements bigger than N/2) we continue solving the same problem, otherwise we start searching for the max element M on the left of the N/2th element that has at least x bigger elements such that x + N/2 > M. The two subproblems will have the same complexity. You continue performing this operation until the interval you are interested in is of length 1.
Now let's prove the complexity of the above algorithm is linear. First nth_element is linear performing operations in the order of N, second nth_element that only considers one half of the array will perform operations in the order of N/2 the third - in the order of N/4 and so on. All in all you will perform operations in the order of N + N/2 + N/4 + ... + 1. This sum is less than 2 * N thus your complexity is still linear.
Your solution is asymptotically slower than what I propose above as it has a complexity O(n*log(n)), while my solution has complexity of O(n).
I would use a modified variant of a sorting algorithm that uses pivot values.
The reason is that you want to sort as few elements as possible.
So I would use qsort as my base algorithm and let the pivot element control which partition to sort (you will only need to sort one).

Dynamic Programming Problem.. Array Partitioning..

The question says,
That given an array of size n, we have to output/partition the array into subsets which sum to N.
For E,g,
I/p arr{2,4,5,7}, n=4, N(sum) = 7(given)
O/p = {2,5}, {7}
I saw similar kind of problem/explanation in the url Dynamic Programming3
And I have the following queries in the pdf:-
How could we find the subsets which sum to N, as the logic only tells whether the subset exist or not?
Also, if we change the question a bit, can we find two subsets which has equal average using the same ideology?
Can anybody thrown some light on this Dynamic Programming problem.. :)
Thanks in Advance..
You can try to process recursively:
Given a SORTED array X={x1 ... xn} xi !=0 and an intger N.
First find all the possibilities "made" with just one element:
here if N=xp, eliminate all xi s.t i>=p
second find all the possibilities made with 2 elements:
{ (x1,x2) .... (xp-2,xp-1)}
Sort by sum and elminate all the sums >=N
and you had the rules: xi cannot go with xj when xi+xj >= N
Third with 3 elments:
You create all the part that respect the above rule.
And idem step 2
etc...
Example:
X={1,2,4,7,9,10} N=9
step one:
{9}
X'={1,2,4,7,9}
step 2: cannot chose 9 and 10
X={(1,2) (1,4) (2,4) (1,7) (2,7) (4,7)}
{2,7}
X'={(1,2) (1,4) (2,4) (1,7)}
step 3: 4 and 2 cannot go with 7:
X={(1,2,4)}
no sol
{9} {2,7} are the only solutions
This diminishes the total number of comparaison (that would be 2^n = 2^6=64) you only did : 12 comparaisons
hope it helps
Unfortunately, this is a very difficult problem. Even determining if there exists a single subset summing to your target value is NP-Complete.
If the problem is more restricted, you might be able to find a good algorithm. For example:
Do the subsets have to be contiguous?
Can you ignore subsets with more than K values?
Are the array values guaranteed to be positive?
Are the array values guaranteed to be distinct? What about differing from the other values by at least some constant factor?
Is there some bound on the difference between the smallest and largest value?
The proposed algorithm stores only a single bit of information in the temporary array T[N], namely whether it's reachable at all. Obviously, you can store more information at each index [N], such as the values C[i] used to get there. (It's a variation of the "Dealing with Unlimited Copies" chapter in the PDF)

Resources