Point inside 2D axis aligned rectangle, no branches - c

I'm searching for the most optimized method to detect whether a point is inside an axis aligned rectangle.
The easiest solution needs 4 branches (if) which is bad for performance.

Given a segment [x0, x1], a point x is inside the segment when (x0 - x) * (x1 - x) <= 0.
In two dimensions case, you need to do it twice, so it requires two conditionals.

Consider BITWISE-ANDing the values of XMin-X, X-XMax, YMin-Y, Y-YMax and use the resulting sign bit.
Will work with both ints and floats.

I think you will need the four tests no matter what, but if you know if the point is more likely to be in or out of the rectangle, you can make sure those four tests are only run in the worst case.
If the likelihood of the point being inside is higher, you can do
if ((x>Xmax) || (x<Xmin) || (y>Ymax) || (y<Ymin)) {
// point not in rectangle
}
Otherwise, do the opposite:
if ((x<=Xmax) && (x>=Xmin) && (y<=Ymax) && (y>=Ymin)) {
// point in rectangle
}
I am curious if really there would be anything better... (unless you can make some assumption on where the rectangle edges, like they are align to power of 2s or something funky like that)

Many architectures support branchless absolute value operation. If not, it can be simulated by multiplication, or left shifting a signed value and having faith on particular "implementation dependent" behaviour.
Also it's quite possible that in Intel and ARM architectures the operation can be made branchless with
((x0<x) && (x<x1))&((y0<y) && (y<y1))
The reason is that the range check is often optimized to a sequence:
mov ebx, 1 // not needed on arm
sub eax, imm0
sub eax, imm1 // this will cause a carry only when both conditions are met
cmovc eax, ebx // movcs reg, #1 on ARM
The bitwise and between (x) and (y) expressions is also branchless.
EDIT Original idea was:
Given test range: a<=x<=b, first define the middle point. Then both sides can be tested with |(x-mid)| < A; multiplying with a factor B to have A a power of two...
(x-mid)*B < 2^n and squaring
((x-mid)*B)^2 < 2^2n
This value has only bits set at the least significant 2n bits (if the condition is satisfied). Do the same for range y and OR them. In this case the factor C must be chosen so that (y-midy)^2 scales to the same 2^2n.
return (((x-mid)*B)*(((x-mid)*B) | ((y-mid)*C)*((y-mid)*C))) >> (n*2);
The return value is 0 for x,y inside the AABB and non-zero for x,y outside.
(Here the operation is or, as one is interested in the complement of (a&&b) & (c&&d), which is (!(a&&b)) | (!(c&dd));

You don't tell us what you know about the range of possible values and resolution required, nor on what criterion you want to optimize.
A solution is to precompute a 2D array of booleans (if you can affort it) that you look-up for your pair of coordinates. Costs 1 multiply (or shift), 1 add (for address computation) and 1 memory read.
Or two 1D arrays of booleans. Costs 2 adds, two memory reads and 1 AND, with much smaller tables.

Related

Is this how the + operator is implemented in C?

When understanding how primitive operators such as +, -, * and / are implemented in C, I found the following snippet from an interesting answer.
// replaces the + operator
int add(int x, int y) {
while(x) {
int t = (x & y) <<1;
y ^= x;
x = t;
}
return y;
}
It seems that this function demonstrates how + actually works in the background. However, it's too confusing for me to understand it. I believed that such operations are done using assembly directives generated by the compiler for a long time!
Is the + operator implemented as the code posted on MOST implementations? Does this take advantage of two's complement or other implementation-dependent features?
To be pedantic, the C specification does not specify how addition is implemented.
But to be realistic, the + operator on integer types smaller than or equal to the word size of your CPU get translated directly into an addition instruction for the CPU, and larger integer types get translated into multiple addition instructions with some extra bits to handle overflow.
The CPU internally uses logic circuits to implement the addition, and does not use loops, bitshifts, or anything that has a close resemblance to how C works.
When you add two bits, following is the result: (truth table)
a | b | sum (a^b) | carry bit (a&b) (goes to next)
--+---+-----------+--------------------------------
0 | 0 | 0 | 0
0 | 1 | 1 | 0
1 | 0 | 1 | 0
1 | 1 | 0 | 1
So if you do bitwise xor, you can get the sum without carry.
And if you do bitwise and you can get the carry bits.
Extending this observation for multibit numbers a and b
a+b = sum_without_carry(a, b) + carry_bits(a, b) shifted by 1 bit left
= a^b + ((a&b) << 1)
Once b is 0:
a+0 = a
So algorithm boils down to:
Add(a, b)
if b == 0
return a;
else
carry_bits = a & b;
sum_bits = a ^ b;
return Add(sum_bits, carry_bits << 1);
If you get rid of recursion and convert it to a loop
Add(a, b)
while(b != 0) {
carry_bits = a & b;
sum_bits = a ^ b;
a = sum_bits;
b = carrry_bits << 1; // In next loop, add carry bits to a
}
return a;
With above algorithm in mind explanation from code should be simpler:
int t = (x & y) << 1;
Carry bits. Carry bit is 1 if 1 bit to the right in both operands is 1.
y ^= x; // x is used now
Addition without carry (Carry bits ignored)
x = t;
Reuse x to set it to carry
while(x)
Repeat while there are more carry bits
A recursive implementation (easier to understand) would be:
int add(int x, int y) {
return (y == 0) ? x : add(x ^ y, (x&y) << 1);
}
Seems that this function demonstrates how + actually works in the
background
No. Usually (almost always) integer addition translates to machine instruction add. This just demonstrate an alternate implementation using bitwise xor and and.
Seems that this function demonstrates how + actually works in the background
No. This is translated to the native add machine instruction, which is actually using the hardware adder, in the ALU.
If you're wondering how does the computer add, here is a basic adder.
Everything in the computer is done using logic gates, which are mostly made of transistors. The full adder has half-adders in it.
For a basic tutorial on logic gates, and adders, see this. The video is extremely helpful, though long.
In that video, a basic half-adder is shown. If you want a brief description, this is it:
The half adder add's two bits given. The possible combinations are:
Add 0 and 0 = 0
Add 1 and 0 = 1
Add 1 and 1 = 10 (binary)
So now how does the half adder work? Well, it is made up of three logic gates, the and, xor and the nand. The nand gives a positive current if both the inputs are negative, so that means this solves the case of 0 and 0. The xor gives a positive output one of the input is positive, and the other negative, so that means that it solves the problem of 1 and 0. The and gives a positive output only if both the inputs are positive, so that solves the problem of 1 and 1. So basically, we have now got our half-adder. But we still can only add bits.
Now we make our full-adder. A full adder consists of calling the half-adder again and again. Now this has a carry. When we add 1 and 1, we get a carry 1. So what the full-adder does is, it takes the carry from the half-adder, stores it, and passes it as another argument to the half-adder.
If you're confused how can you pass the carry, you basically first add the bits using the half-adder, and then add the sum and the carry. So now you've added the carry, with the two bits. So you do this again and again, till the bits you have to add are over, and then you get your result.
Surprised? This is how it actually happens. It looks like a long process, but the computer does it in fractions of a nanosecond, or to be more specific, in half a clock cycle. Sometimes it is performed even in a single clock cycle. Basically, the computer has the ALU (a major part of the CPU), memory, buses, etc..
If you want to learn computer hardware, from logic gates, memory and the ALU, and simulate a computer, you can see this course, from which I learnt all this: Build a Modern Computer from First Principles
It's free if you do not want an e-certificate. The part two of the course is coming up in spring this year
C uses an abstract machine to describe what C code does. So how it works is not specified. There are C "compilers" that actually compile C into a scripting language, for example.
But, in most C implementations, + between two integers smaller than the machine integer size will be translated into an assembly instruction (after many steps). The assembly instruction will be translated into machine code and embedded within your executable. Assembly is a language "one step removed" from machine code, intended to be easier to read than a bunch of packed binary.
That machine code (after many steps) is then interpreted by the target hardware platform, where it is interpreted by the instruction decoder on the CPU. This instruction decoder takes the instruction, and translates it into signals to send along "control lines". These signals route data from registers and memory through the CPU, where the values are added together often in an arithmetic logic unit.
The arithmetic logic unit might have separate adders and multipliers, or might mix them together.
The arithmetic logic unit has a bunch of transistors that perform the addition operation, then produce the output. Said output is routed via the signals generated from the instruction decoder, and stored in memory or registers.
The layout of said transistors in both the arithmetic logic unit and instruction decoder (as well as parts I have glossed over) is etched into the chip at the plant. The etching pattern is often produced by compiling a hardware description language, which takes an abstraction of what is connected to what and how they operate and generates transistors and interconnect lines.
The hardware description language can contain shifts and loops that don't describe things happening in time (like one after another) but rather in space -- it describes the connections between different parts of hardware. Said code may look very vaguely like the code you posted above.
The above glosses over many parts and layers and contains inaccuracies. This is both from my own incompetence (I have written both hardware and compilers, but am an expert in neither) and because full details would take a career or two, and not a SO post.
Here is a SO post about an 8-bit adder. Here is a non-SO post, where you'll note some of the adders just use operator+ in the HDL! (The HDL itself understands + and generates the lower level adder code for you).
Almost any modern processor that can run compiled C code will have builtin support for integer addition. The code you posted is a clever way to perform integer addition without executing an integer add opcode, but it is not how integer addition is normally performed. In fact, the function linkage probably uses some form of integer addition to adjust the stack pointer.
The code you posted relies on the observation that when adding x and y, you can decompose it into the bits they have in common and the bits that are unique to one of x or y.
The expression x & y (bitwise AND) gives the bits common to x and y. The expression x ^ y (bitwise exclusive OR) gives the bits that are unique to one of x or y.
The sum x + y can be rewritten as the sum of two times the bits they have in common (since both x and y contribute those bits) plus the bits that are unique to x or y.
(x & y) << 1 is twice the bits they have in common (the left shift by 1 effectively multiplies by two).
x ^ y is the bits that are unique to one of x or y.
So if we replace x by the first value and y by the second, the sum should be unchanged. You can think of the first value as the carries of the bitwise additions, and the second as the low-order bit of the bitwise additions.
This process continues until x is zero, at which point y holds the sum.
The code that you found tries to explain how very primitive computer hardware might implement an "add" instruction. I say "might" because I can guarantee that this method isn't used by any CPU, and I'll explain why.
In normal life, you use decimal numbers and you have learned how to add them: To add two numbers, you add the lowest two digits. If the result is less than 10, you write down the result and proceed to the next digit position. If the result is 10 or more, you write down the result minus 10, proceed to the next digit, buy you remember to add 1 more. For example: 23 + 37, you add 3+7 = 10, you write down 0 and remember to add 1 more for the next position. At the 10s position, you add (2+3) + 1 = 6 and write that down. Result is 60.
You can do the exact same thing with binary numbers. The difference is that the only digits are 0 and 1, so the only possible sums are 0, 1, 2. For a 32 bit number, you would handle one digit position after the other. And that is how really primitive computer hardware would do it.
This code works differently. You know the sum of two binary digits is 2 if both digits are 1. So if both digits are 1 then you would add 1 more at the next binary position and write down 0. That's what the calculation of t does: It finds all places where both binary digits are 1 (that's the &) and moves them to the next digit position (<< 1). Then it does the addition: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 is 2, but we write down 0. That's what the excludive or operator does.
But all the 1's that you had to handle in the next digit position haven't been handled. They still need to be added. That's why the code does a loop: In the next iteration, all the extra 1's are added.
Why does no processor do it that way? Because it's a loop, and processors don't like loops, and it is slow. It's slow, because in the worst case, 32 iterations are needed: If you add 1 to the number 0xffffffff (32 1-bits), then the first iteration clears bit 0 of y and sets x to 2. The second iteration clears bit 1 of y and sets x to 4. And so on. It takes 32 iterations to get the result. However, each iteration has to process all bits of x and y, which takes a lot of hardware.
A primitive processor would do things just as quick in the way you do decimal arithmetic, from the lowest position to the highest. It also takes 32 steps, but each step processes only two bits plus one value from the previous bit position, so it is much easier to implement. And even in a primitive computer, one can afford to do this without having to implement loops.
A modern, fast and complex CPU will use a "conditional sum adder". Especially if the number of bits is high, for example a 64 bit adder, it saves a lot of time.
A 64 bit adder consists of two parts: First, a 32 bit adder for the lowest 32 bit. That 32 bit adder produces a sum, and a "carry" (an indicator that a 1 must be added to the next bit position). Second, two 32 bit adders for the higher 32 bits: One adds x + y, the other adds x + y + 1. All three adders work in parallel. Then when the first adder has produced its carry, the CPU just picks which one of the two results x + y or x + y + 1 is the correct one, and you have the complete result. So a 64 bit adder only takes a tiny bit longer than a 32 bit adder, not twice as long.
The 32 bit adder parts are again implemented as conditional sum adders, using multiple 16 bit adders, and the 16 bit adders are conditional sum adders, and so on.
My question is: Is the + operator implemented as the code posted on MOST implementations?
Let's answer the actual question. All operators are implemented by the compiler as some internal data structure that eventually gets translated into code after some transformations. You can't say what code will be generated by a single addition because almost no real world compiler generates code for individual statements.
The compiler is free to generate any code as long as it behaves as if the actual operations were performed according to the standard. But what actually happens can be something completely different.
A simple example:
static int
foo(int a, int b)
{
return a + b;
}
[...]
int a = foo(1, 17);
int b = foo(x, x);
some_other_function(a, b);
There's no need to generate any addition instructions here. It's perfectly legal for the compiler to translate this into:
some_other_function(18, x * 2);
Or maybe the compiler notices that you call the function foo a few times in a row and that it is a simple arithmetic and it will generate vector instructions for it. Or that the result of the addition is used for array indexing later and the lea instruction will be used.
You simply can't talk about how an operator is implemented because it is almost never used alone.
In case a breakdown of the code helps anyone else, take the example x=2, y=6:
x isn't zero, so commence adding to y:
while(2) {
x & y = 2 because
x: 0 0 1 0 //2
y: 0 1 1 0 //6
x&y: 0 0 1 0 //2
2 <<1 = 4 because << 1 shifts all bits to the left:
x&y: 0 0 1 0 //2
(x&y) <<1: 0 1 0 0 //4
In summary, stash that result, 4, in t with
int t = (x & y) <<1;
Now apply the bitwise XOR y^=x:
x: 0 0 1 0 //2
y: 0 1 1 0 //6
y^=x: 0 1 0 0 //4
So x=2, y=4. Finally, sum t+y by resetting x=t and going back to the beginning of the while loop:
x = t;
When t=0 (or, at the beginning of the loop, x=0), finish with
return y;
Just out of interest, on the Atmega328P processor, with the avr-g++ compiler, the following code implements adding one by subtracting -1 :
volatile char x;
int main ()
{
x = x + 1;
}
Generated code:
00000090 <main>:
volatile char x;
int main ()
{
x = x + 1;
90: 80 91 00 01 lds r24, 0x0100
94: 8f 5f subi r24, 0xFF ; 255
96: 80 93 00 01 sts 0x0100, r24
}
9a: 80 e0 ldi r24, 0x00 ; 0
9c: 90 e0 ldi r25, 0x00 ; 0
9e: 08 95 ret
Notice in particular that the add is done by the subi instruction (subtract constant from register) where 0xFF is effectively -1 in this case.
Also of interest is that this particular processor does not have a addi instruction, which implies that the designers thought that doing a subtract of the complement would be adequately handled by the compiler-writers.
Does this take advantage of two's complement or other implementation-dependent features?
It would probably be fair to say that compiler-writers would attempt to implement the wanted effect (adding one number to another) in the most efficient way possible for that particularly architecture. If that requires subtracting the complement, so be it.

How to generate a logarithmic spaced array in C

I am trying to generate an logarithmic spaced array in C.
For example, starting at 100 and ending at 500, with 40 logarithmic spaced points.
Can anyone help me? Are there any logspace() functions available?
With no further constraints, simply divide the linear interval [ln(100)..ln(500)] into as much subintervals (equidistant) as you need. Then take the exp() of each point.
Arrays always use linear, integer and n+1 stepping. So you have to map the logarithmic scale to the linear index. This can be done either by simply taking log(log_index) or a table of ranges and a linear search in that. For log(), there might be approximations which suit your needs better and are faster than a full-grown (float) logarithm function.
You might for instance take the number of the uppermost 1-bit in the log-index and use the next n lower bits as range-index:
// all vars are size_t (unsigned at least!)
base_index = get_number_of_uppermost_bit(log_index);
shift = (base_index > 3U) ? (base_index - 3U) : 0;
lin_index = base_index * 8U + ((log_index >> shift) & (8U-1U);
The values of 8 and 3 (ld(8)) are the number of entries per log-range. Note these are linear (sometimes an acceptable approximation). You can also apply the algorithm to the lower bits, however getting an integer log function. But the above is faster and might be sufficient. Alternatively, you can use a lookup table for the lower 3 bits.
A decimal stepping would be more difficult that way and pretty inefficient.

How do you use bitwise operators, masks, to find if a number is a multiple of another number?

So I have been told that this can be done and that bitwise operations and masks can be very useful but I must be missing something in how they work.
I am trying to calculate whether a number, say x, is a multiple of y. If x is a multiple of y great end of story, otherwise I want to increase x to reach the closest multiple of y that is greater than x (so that all of x fits in the result). I have just started learning C and am having difficulty understanding some of these tasks.
Here is what I have tried but when I input numbers such as 5, 9, or 24 I get the following respectively: 0, 4, 4.
if(x&(y-1)){ //if not 0 then multiple of y
x = x&~(y-1) + y;
}
Any explanations, examples of the math that is occurring behind the scenes, are greatly appreciated.
EDIT: So to clarify, I somewhat understand the shifting of bits to get whether an item is a multiple. (As was explained in a reply 10100 is a multiple of 101 as it is just shifted over). If I have the number 16, which is 10000, its complement is 01111. How would I use this complement to see if an item is a multiple of 16? Also can someone give a numerical explanation of the code given above? Showing this may help me understand why it does not work. Once I understand why it does not work I will be able to problem solve on my own I believe.
Why would you even think about using bit-wise operations for this? They certainly have their place but this isn't it.
A better method is to simply use something like:
unsigned multGreaterOrEqual(unsigned x, unsigned y) {
if ((x % y) == 0)
return x;
return (x / y + 1) * y;
}
In the trivial cases, every number that is an even multiple of a power of 2 is just shifted to the left (this doesn't apply when possibly altering the sign bit)
For example
10100
is 4 times
101
and
10100
is 2 time
1010
As for other multiples, they would have to be found by combining the outputs of two shifts. You might want to look up some primitive means of computer division, where division looks roughly like
x = a / b
implemented like
buffer = a
while a is bigger than b; do
yes: subtract a from b
add 1 to x
done
faster routines try to figure out higher level place values first, skipping lots of subtractions. All of these routine can be done bitwise; but it is a big pain. In the ALU these routines are done bitwise. Might want to look up a digital logic design book for more ideas.
Ok, so I have discovered what the error was in my code and since the majority say that it is impossible to calculate whether a number is a multiple of another number using masks I figured I would share what I have learned.
It is possible! - if you are using the correct data types that is.
The code given above works if y is declared as a constant unsigned long as x which was being passed in was also an unsigned long. The key point is not the long or constant part but that the number is unsigned. This sign bit causes miscalculation as the first place in the number indicates sign and when performing bitwise operations signs can get muddled.
So here is my code if we are looking for multiples of 16:
const unsigned long y = 16; //declared globally in my case
Then an unsigned long is passed to the function which runs the following code:
if(x&(y-1)){ //if not 0 then multiple of y
x = x&~(y-1) + y;
}
x will now be the size of the nearest multiple of 16.

Fast and efficient array lookup and modification

I have been wondering for a while which of the two following methods are faster or better.
MY CURRENT METHOD
I'm developing a chess game and the pieces are stored as numbers (really bytes to preserve memory) into a one-dimensional array. There is a position for the cursor corresponding to the index in the array. To access the piece at the current position in the array is easy (piece = pieces[cursorPosition]).
The problem is that to get the x and y values for checking if the move is a valid move requires the division and a modulo operators (x = cursorPosition % 8; y = cursorPosition / 8).
Likewise when using x and y to check if moves are valid (you have to do it this way for reasons that would fill the entire page), you have to do something like - purely as an example - if pieces[y * 8 + x] != 0: movePiece = False. The obvious problem is having to do y * 8 + x a bunch of times to access the array.
Ultimately, this means that getting a piece is trivial but then getting the x and y requires another bit of memory and a very small amount of time to compute it each round.
A MORE TRADITIONAL METHOD
Using a two-dimensional array, one can implement the above process a little easier except for the fact that piece lookup is now a little harder and more memory is used. (I.e. piece = pieces[cursorPosition[0]][cursorPosition[1]] or piece = pieces[x][y]).
I don't think this is faster and it definitely doesn't look less memory intensive.
GOAL
My end goal is to have the fastest possible code that uses the least amount of memory. This will be developed for the unix terminal (and potentially Windows CMD if I can figure out how to represent the pieces without color using Ansi escape sequences) and I will either be using a secure (encrypted with protocol and structure) TCP connection to connect people p2p to play chess or something else and I don't know how much memory people will have or how fast their computer will be or how strong of an internet connection they will have.
I also just want to learn to do this the best way possible and see if it can be done.
-
I suppose my question is one of the following:
Which of the above methods is better assuming that there are slightly more computations involving move validation (which means that the y * 8 + x has to be used a lot)?
or
Is there perhaps a method that includes both of the benefits of 1d and 2d arrays with not as many draw backs as I described?
First, you should profile your code to make sure that this is really a bottleneck worth spending time on.
Second, if you're representing your position as an unsigned byte decomposing it into X and Y coordinates will be very fast. If we use the following C code:
int getX(unsigned char pos) {
return pos%8;
}
We get the following assembly with gcc 4.8 -O2:
getX(unsigned char):
shrb $3, %dil
movzbl %dil, %eax
ret
If we get the Y coordinate with:
int getY(unsigned char pos) {
return pos/8;
}
We get the following assembly with gcc 4.8 -O2:
getY(unsigned char):
movl %edi, %eax
andl $7, %eax
ret
There is no short answer to this question; it all depends on how much time you spend optimizing.
On some architectures, two-dimensional arrays might work better than one-dimensional. On other architectures, bitmapped integers might be the best.
Do not worry about division and multiplication.
You're dividing, modulating and multiplying by 8.
This number is in the power of two, thus any computer can use bitwise operations in order to achieve the result.
(x * 8) is the same as (x << 3)
(x % 8) is the same as (x & (8 - 1))
(x / 8) is the same as (x >> 3)
Those operations are normally performed in a single clock cycle. On many modern architectures, they can be performed in less than a single clock cycle (including ARM architectures).
Do not worry about using bitwise operators instead of *, % and /. If you're using a compiler that's less than a decade old, it'll optimize it for you and use bitwise operations.
What you should focus on instead, is how easy it will be for you to find out whether or not a move is legal, for instance. This will help your computer-player to "think quickly".
If you're using an 8*8 array, then it's easy for you to see where a castle can move by checking if only x or y is changed. If checking the queen, then X must either be the same or move the same number of steps as the Y position.
If you use a one-dimensional array, you also have advantages.
But performance-wise, it might be a real good idea to use a 16x16 array or a 1x256 array.
Fill the entire array with 0x80 values (eg. "illegal position"). Then fill the legal fields with 0x00.
If using a 1x256 array, you can check bit 3 and 7 of the index. If any of those are set, then the position is outside the board.
Testing can be done this way:
if(position & 0x88)
{
/* move is illegal */
}
else
{
/* move is legal */
}
... or ...
if(0 == (position & 0x88))
{
/* move is legal */
}
'position' (the index) should be an unsigned byte (uint8_t in C). This way, you'll never have to worry about pointing outside the buffer.
Some people optimize their chess-engines by using 64-bit bitmapped integers.
While this is good for quickly comparing the positions, it has other disadvantages; for instance checking if the knight's move is legal.
It's not easy to say which is better, though.
Personally, I think the one-dimensional array in general might be the best way to do it.
I recommend getting familiar (very familiar) with AND, OR, XOR, bit-shifting and rotating.
See Bit Twiddling Hacks for more information.

How to map a long integer number to a N-dimensional vector of smaller integers (and fast inverse)?

Given a N-dimensional vector of small integers is there any simple way to map it with one-to-one correspondence to a large integer number?
Say, we have N=3 vector space. Can we represent a vector X=[(int16)x1,(int16)x2,(int16)x3] using an integer (int48)y? The obvious answer is "Yes, we can". But the question is: "What is the fastest way to do this and its inverse operation?"
Will this new 1-dimensional space possess some very special useful properties?
For the above example you have 3 * 32 = 96 bits of information, so without any a priori knowledge you need 96 bits for the equivalent long integer.
However, if you know that your x1, x2, x3, values will always fit within, say, 16 bits each, then you can pack them all into a 48 bit integer.
In either case the technique is very simple you just use shift, mask and bitwise or operations to pack/unpack the values.
Just to make this concrete, if you have a 3-dimensional vector of 8-bit numbers, like this:
uint8_t vector[3] = { 1, 2, 3 };
then you can join them into a single (24-bit number) like so:
uint32_t all = (vector[0] << 16) | (vector[1] << 8) | vector[2];
This number would, if printed using this statement:
printf("the vector was packed into %06x", (unsigned int) all);
produce the output
the vector was packed into 010203
The reverse operation would look like this:
uint8_t v2[3];
v2[0] = (all >> 16) & 0xff;
v2[1] = (all >> 8) & 0xff;
v2[2] = all & 0xff;
Of course this all depends on the size of the individual numbers in the vector and the length of the vector together not exceeding the size of an available integer type, otherwise you can't represent the "packed" vector as a single number.
If you have sets Si, i=1..n of size Ci = |Si|, then the cartesian product set S = S1 x S2 x ... x Sn has size C = C1 * C2 * ... * Cn.
This motivates an obvious way to do the packing one-to-one. If you have elements e1,...,en from each set, each in the range 0 to Ci-1, then you give the element e=(e1,...,en) the value e1+C1*(e2 + C2*(e3 + C3*(...Cn*en...))).
You can do any permutation of this packing if you feel like it, but unless the values are perfectly correlated, the size of the full set must be the product of the sizes of the component sets.
In the particular case of three 32 bit integers, if they can take on any value, you should treat them as one 96 bit integer.
If you particularly want to, you can map small values to small values through any number of means (e.g. filling out spheres with the L1 norm), but you have to specify what properties you want to have.
(For example, one can map (n,m) to (max(n,m)-1)^2 + k where k=n if n<=m and k=n+m if n>m--you can draw this as a picture of filling in a square like so:
1 2 5 | draw along the edge of the square this way
4 3 6 v
8 7
if you start counting from 1 and only worry about positive values; for integers, you can spiral around the origin.)
I'm writing this without having time to check details, but I suspect the best way is to represent your long integer via modular arithmetic, using k different integers which are mutually prime. The original integer can then be reconstructed using the Chinese remainder theorem. Sorry this is a bit sketchy, but hope it helps.
To expand on Rex Kerr's generalised form, in C you can pack the numbers like so:
X = e[n];
X *= MAX_E[n-1] + 1;
X += e[n-1];
/* ... */
X *= MAX_E[0] + 1;
X += e[0];
And unpack them with:
e[0] = X % (MAX_E[0] + 1);
X /= (MAX_E[0] + 1);
e[1] = X % (MAX_E[1] + 1);
X /= (MAX_E[1] + 1);
/* ... */
e[n] = X;
(Where MAX_E[n] is the greatest value that e[n] can have). Note that these maximum values are likely to be constants, and may be the same for every e, which will simplify things a little.
The shifting / masking implementations given in the other answers are a generalisation of this, for cases where the MAX_E + 1 values are powers of 2 (and thus the multiplication and division can be done with a shift, the addition with a bitwise-or and the modulus with a bitwise-and).
There is some totally non portable ways to make this real fast using packed unions and direct accesses to memory. That you really need this kind of speed is suspicious. Methods using shifts and masks should be fast enough for most purposes. If not, consider using specialized processors like GPU for wich vector support is optimized (parallel).
This naive storage does not possess any usefull property than I can foresee, except you can perform some computations (add, sub, logical bitwise operators) on the three coordinates at once as long as you use positive integers only and you don't overflow for add and sub.
You'd better be quite sure you won't overflow (or won't go negative for sub) or the vector will become garbage.
#include <stdint.h> // for uint8_t
long x;
uint8_t * p = &x;
or
union X {
long L;
uint8_t A[sizeof(long)/sizeof(uint8_t)];
};
works if you don't care about the endian. In my experience compilers generate better code with the union because it doesn't set of their "you took the address of this, so I must keep it in RAM" rules as quick. These rules will get set off if you try to index the array with stuff that the compiler can't optimize away.
If you do care about the endian then you need to mask and shift.
I think what you want can be solved using multi-dimensional space filling curves. The link gives a lot of references on this, which in turn give different methods and insights. Here's a specific example of an invertible mapping. It works for any dimension N.
As for useful properties, these mappings are related to Gray codes.
Hard to say whether this was what you were looking for, or whether the "pack 3 16-bit ints into a 48-bit int" does the trick for you.

Resources