Related
What is the most efficient algorithm to achieve the following:
0010 0000 => 0000 0100
The conversion is from MSB->LSB to LSB->MSB. All bits must be reversed; that is, this is not endianness-swapping.
NOTE: All algorithms below are in C, but should be portable to your language of choice (just don't look at me when they're not as fast :)
Options
Low Memory (32-bit int, 32-bit machine)(from here):
unsigned int
reverse(register unsigned int x)
{
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
return((x >> 16) | (x << 16));
}
From the famous Bit Twiddling Hacks page:
Fastest (lookup table):
static const unsigned char BitReverseTable256[] =
{
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
unsigned int v; // reverse 32-bit value, 8 bits at time
unsigned int c; // c will get v reversed
// Option 1:
c = (BitReverseTable256[v & 0xff] << 24) |
(BitReverseTable256[(v >> 8) & 0xff] << 16) |
(BitReverseTable256[(v >> 16) & 0xff] << 8) |
(BitReverseTable256[(v >> 24) & 0xff]);
// Option 2:
unsigned char * p = (unsigned char *) &v;
unsigned char * q = (unsigned char *) &c;
q[3] = BitReverseTable256[p[0]];
q[2] = BitReverseTable256[p[1]];
q[1] = BitReverseTable256[p[2]];
q[0] = BitReverseTable256[p[3]];
You can extend this idea to 64-bit ints, or trade off memory for speed (assuming your L1 Data Cache is large enough), and reverse 16 bits at a time with a 64K-entry lookup table.
Others
Simple
unsigned int v; // input bits to be reversed
unsigned int r = v & 1; // r will be reversed bits of v; first get LSB of v
int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end
for (v >>= 1; v; v >>= 1)
{
r <<= 1;
r |= v & 1;
s--;
}
r <<= s; // shift when v's highest bits are zero
Faster (32-bit processor)
unsigned char b = x;
b = ((b * 0x0802LU & 0x22110LU) | (b * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
Faster (64-bit processor)
unsigned char b; // reverse this (8-bit) byte
b = (b * 0x0202020202ULL & 0x010884422010ULL) % 1023;
If you want to do this on a 32-bit int, just reverse the bits in each byte, and reverse the order of the bytes. That is:
unsigned int toReverse;
unsigned int reversed;
unsigned char inByte0 = (toReverse & 0xFF);
unsigned char inByte1 = (toReverse & 0xFF00) >> 8;
unsigned char inByte2 = (toReverse & 0xFF0000) >> 16;
unsigned char inByte3 = (toReverse & 0xFF000000) >> 24;
reversed = (reverseBits(inByte0) << 24) | (reverseBits(inByte1) << 16) | (reverseBits(inByte2) << 8) | (reverseBits(inByte3);
Results
I benchmarked the two most promising solutions, the lookup table, and bitwise-AND (the first one). The test machine is a laptop w/ 4GB of DDR2-800 and a Core 2 Duo T7500 # 2.4GHz, 4MB L2 Cache; YMMV. I used gcc 4.3.2 on 64-bit Linux. OpenMP (and the GCC bindings) were used for high-resolution timers.
reverse.c
#include <stdlib.h>
#include <stdio.h>
#include <omp.h>
unsigned int
reverse(register unsigned int x)
{
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
return((x >> 16) | (x << 16));
}
int main()
{
unsigned int *ints = malloc(100000000*sizeof(unsigned int));
unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
for(unsigned int i = 0; i < 100000000; i++)
ints[i] = rand();
unsigned int *inptr = ints;
unsigned int *outptr = ints2;
unsigned int *endptr = ints + 100000000;
// Starting the time measurement
double start = omp_get_wtime();
// Computations to be measured
while(inptr != endptr)
{
(*outptr) = reverse(*inptr);
inptr++;
outptr++;
}
// Measuring the elapsed time
double end = omp_get_wtime();
// Time calculation (in seconds)
printf("Time: %f seconds\n", end-start);
free(ints);
free(ints2);
return 0;
}
reverse_lookup.c
#include <stdlib.h>
#include <stdio.h>
#include <omp.h>
static const unsigned char BitReverseTable256[] =
{
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
int main()
{
unsigned int *ints = malloc(100000000*sizeof(unsigned int));
unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
for(unsigned int i = 0; i < 100000000; i++)
ints[i] = rand();
unsigned int *inptr = ints;
unsigned int *outptr = ints2;
unsigned int *endptr = ints + 100000000;
// Starting the time measurement
double start = omp_get_wtime();
// Computations to be measured
while(inptr != endptr)
{
unsigned int in = *inptr;
// Option 1:
//*outptr = (BitReverseTable256[in & 0xff] << 24) |
// (BitReverseTable256[(in >> 8) & 0xff] << 16) |
// (BitReverseTable256[(in >> 16) & 0xff] << 8) |
// (BitReverseTable256[(in >> 24) & 0xff]);
// Option 2:
unsigned char * p = (unsigned char *) &(*inptr);
unsigned char * q = (unsigned char *) &(*outptr);
q[3] = BitReverseTable256[p[0]];
q[2] = BitReverseTable256[p[1]];
q[1] = BitReverseTable256[p[2]];
q[0] = BitReverseTable256[p[3]];
inptr++;
outptr++;
}
// Measuring the elapsed time
double end = omp_get_wtime();
// Time calculation (in seconds)
printf("Time: %f seconds\n", end-start);
free(ints);
free(ints2);
return 0;
}
I tried both approaches at several different optimizations, ran 3 trials at each level, and each trial reversed 100 million random unsigned ints. For the lookup table option, I tried both schemes (options 1 and 2) given on the bitwise hacks page. Results are shown below.
Bitwise AND
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse reverse.c
mrj10#mjlap:~/code$ ./reverse
Time: 2.000593 seconds
mrj10#mjlap:~/code$ ./reverse
Time: 1.938893 seconds
mrj10#mjlap:~/code$ ./reverse
Time: 1.936365 seconds
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse reverse.c
mrj10#mjlap:~/code$ ./reverse
Time: 0.942709 seconds
mrj10#mjlap:~/code$ ./reverse
Time: 0.991104 seconds
mrj10#mjlap:~/code$ ./reverse
Time: 0.947203 seconds
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse reverse.c
mrj10#mjlap:~/code$ ./reverse
Time: 0.922639 seconds
mrj10#mjlap:~/code$ ./reverse
Time: 0.892372 seconds
mrj10#mjlap:~/code$ ./reverse
Time: 0.891688 seconds
Lookup Table (option 1)
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.201127 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.196129 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.235972 seconds
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 0.633042 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 0.655880 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 0.633390 seconds
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 0.652322 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 0.631739 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 0.652431 seconds
Lookup Table (option 2)
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.671537 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.688173 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.664662 seconds
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.049851 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.048403 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.085086 seconds
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.082223 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.053431 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.081224 seconds
Conclusion
Use the lookup table, with option 1 (byte addressing is unsurprisingly slow) if you're concerned about performance. If you need to squeeze every last byte of memory out of your system (and you might, if you care about the performance of bit reversal), the optimized versions of the bitwise-AND approach aren't too shabby either.
Caveat
Yes, I know the benchmark code is a complete hack. Suggestions on how to improve it are more than welcome. Things I know about:
I don't have access to ICC. This may be faster (please respond in a comment if you can test this out).
A 64K lookup table may do well on some modern microarchitectures with large L1D.
-mtune=native didn't work for -O2/-O3 (ld blew up with some crazy symbol redefinition error), so I don't believe the generated code is tuned for my microarchitecture.
There may be a way to do this slightly faster with SSE. I have no idea how, but with fast replication, packed bitwise AND, and swizzling instructions, there's got to be something there.
I know only enough x86 assembly to be dangerous; here's the code GCC generated on -O3 for option 1, so somebody more knowledgable than myself can check it out:
32-bit
.L3:
movl (%r12,%rsi), %ecx
movzbl %cl, %eax
movzbl BitReverseTable256(%rax), %edx
movl %ecx, %eax
shrl $24, %eax
mov %eax, %eax
movzbl BitReverseTable256(%rax), %eax
sall $24, %edx
orl %eax, %edx
movzbl %ch, %eax
shrl $16, %ecx
movzbl BitReverseTable256(%rax), %eax
movzbl %cl, %ecx
sall $16, %eax
orl %eax, %edx
movzbl BitReverseTable256(%rcx), %eax
sall $8, %eax
orl %eax, %edx
movl %edx, (%r13,%rsi)
addq $4, %rsi
cmpq $400000000, %rsi
jne .L3
EDIT: I also tried using uint64_t types on my machine to see if there was any performance boost. Performance was about 10% faster than 32-bit, and was nearly identical whether you were just using 64-bit types to reverse bits on two 32-bit int types at a time, or whether you were actually reversing bits in half as many 64-bit values. The assembly code is shown below (for the former case, reversing bits for two 32-bit int types at a time):
.L3:
movq (%r12,%rsi), %rdx
movq %rdx, %rax
shrq $24, %rax
andl $255, %eax
movzbl BitReverseTable256(%rax), %ecx
movzbq %dl,%rax
movzbl BitReverseTable256(%rax), %eax
salq $24, %rax
orq %rax, %rcx
movq %rdx, %rax
shrq $56, %rax
movzbl BitReverseTable256(%rax), %eax
salq $32, %rax
orq %rax, %rcx
movzbl %dh, %eax
shrq $16, %rdx
movzbl BitReverseTable256(%rax), %eax
salq $16, %rax
orq %rax, %rcx
movzbq %dl,%rax
shrq $16, %rdx
movzbl BitReverseTable256(%rax), %eax
salq $8, %rax
orq %rax, %rcx
movzbq %dl,%rax
shrq $8, %rdx
movzbl BitReverseTable256(%rax), %eax
salq $56, %rax
orq %rax, %rcx
movzbq %dl,%rax
shrq $8, %rdx
movzbl BitReverseTable256(%rax), %eax
andl $255, %edx
salq $48, %rax
orq %rax, %rcx
movzbl BitReverseTable256(%rdx), %eax
salq $40, %rax
orq %rax, %rcx
movq %rcx, (%r13,%rsi)
addq $8, %rsi
cmpq $400000000, %rsi
jne .L3
This thread caught my attention since it deals with a simple problem that requires a lot of work (CPU cycles) even for a modern CPU. And one day I also stood there with the same ¤#%"#" problem. I had to flip millions of bytes. However I know all my target systems are modern Intel-based so let's start optimizing to the extreme!!!
So I used Matt J's lookup code as the base. the system I'm benchmarking on is a i7 haswell 4700eq.
Matt J's lookup bitflipping 400 000 000 bytes: Around 0.272 seconds.
I then went ahead and tried to see if Intel's ISPC compiler could vectorise the arithmetics in the reverse.c.
I'm not going to bore you with my findings here since I tried a lot to help the compiler find stuff, anyhow I ended up with performance of around 0.15 seconds to bitflip 400 000 000 bytes. It's a great reduction but for my application that's still way way too slow..
So people let me present the fastest Intel based bitflipper in the world. Clocked at:
Time to bitflip 400000000 bytes: 0.050082 seconds !!!!!
// Bitflip using AVX2 - The fastest Intel based bitflip in the world!!
// Made by Anders Cedronius 2014 (anders.cedronius (you know what) gmail.com)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <omp.h>
using namespace std;
#define DISPLAY_HEIGHT 4
#define DISPLAY_WIDTH 32
#define NUM_DATA_BYTES 400000000
// Constants (first we got the mask, then the high order nibble look up table and last we got the low order nibble lookup table)
__attribute__ ((aligned(32))) static unsigned char k1[32*3]={
0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,
0x00,0x08,0x04,0x0c,0x02,0x0a,0x06,0x0e,0x01,0x09,0x05,0x0d,0x03,0x0b,0x07,0x0f,0x00,0x08,0x04,0x0c,0x02,0x0a,0x06,0x0e,0x01,0x09,0x05,0x0d,0x03,0x0b,0x07,0x0f,
0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0,0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0,0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0,0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0
};
// The data to be bitflipped (+32 to avoid the quantization out of memory problem)
__attribute__ ((aligned(32))) static unsigned char data[NUM_DATA_BYTES+32]={};
extern "C" {
void bitflipbyte(unsigned char[],unsigned int,unsigned char[]);
}
int main()
{
for(unsigned int i = 0; i < NUM_DATA_BYTES; i++)
{
data[i] = rand();
}
printf ("\r\nData in(start):\r\n");
for (unsigned int j = 0; j < 4; j++)
{
for (unsigned int i = 0; i < DISPLAY_WIDTH; i++)
{
printf ("0x%02x,",data[i+(j*DISPLAY_WIDTH)]);
}
printf ("\r\n");
}
printf ("\r\nNumber of 32-byte chunks to convert: %d\r\n",(unsigned int)ceil(NUM_DATA_BYTES/32.0));
double start_time = omp_get_wtime();
bitflipbyte(data,(unsigned int)ceil(NUM_DATA_BYTES/32.0),k1);
double end_time = omp_get_wtime();
printf ("\r\nData out:\r\n");
for (unsigned int j = 0; j < 4; j++)
{
for (unsigned int i = 0; i < DISPLAY_WIDTH; i++)
{
printf ("0x%02x,",data[i+(j*DISPLAY_WIDTH)]);
}
printf ("\r\n");
}
printf("\r\n\r\nTime to bitflip %d bytes: %f seconds\r\n\r\n",NUM_DATA_BYTES, end_time-start_time);
// return with no errors
return 0;
}
The printf's are for debugging..
Here is the workhorse:
bits 64
global bitflipbyte
bitflipbyte:
vmovdqa ymm2, [rdx]
add rdx, 20h
vmovdqa ymm3, [rdx]
add rdx, 20h
vmovdqa ymm4, [rdx]
bitflipp_loop:
vmovdqa ymm0, [rdi]
vpand ymm1, ymm2, ymm0
vpandn ymm0, ymm2, ymm0
vpsrld ymm0, ymm0, 4h
vpshufb ymm1, ymm4, ymm1
vpshufb ymm0, ymm3, ymm0
vpor ymm0, ymm0, ymm1
vmovdqa [rdi], ymm0
add rdi, 20h
dec rsi
jnz bitflipp_loop
ret
The code takes 32 bytes then masks out the nibbles. The high nibble gets shifted right by 4. Then I use vpshufb and ymm4 / ymm3 as lookup tables. I could use a single lookup table but then I would have to shift left before ORing the nibbles together again.
There are even faster ways of flipping the bits. But I'm bound to single thread and CPU so this was the fastest I could achieve. Can you make a faster version?
Please make no comments about using the Intel C/C++ Compiler Intrinsic Equivalent commands...
This is another solution for folks who love recursion.
The idea is simple.
Divide up input by half and swap the two halves, continue until it reaches single bit.
Illustrated in the example below.
Ex : If Input is 00101010 ==> Expected output is 01010100
1. Divide the input into 2 halves
0010 --- 1010
2. Swap the 2 Halves
1010 0010
3. Repeat the same for each half.
10 -- 10 --- 00 -- 10
10 10 10 00
1-0 -- 1-0 --- 1-0 -- 0-0
0 1 0 1 0 1 0 0
Done! Output is 01010100
Here is a recursive function to solve it. (Note I have used unsigned ints, so it can work for inputs up to sizeof(unsigned int)*8 bits.
The recursive function takes 2 parameters - The value whose bits need
to be reversed and the number of bits in the value.
int reverse_bits_recursive(unsigned int num, unsigned int numBits)
{
unsigned int reversedNum;;
unsigned int mask = 0;
mask = (0x1 << (numBits/2)) - 1;
if (numBits == 1) return num;
reversedNum = reverse_bits_recursive(num >> numBits/2, numBits/2) |
reverse_bits_recursive((num & mask), numBits/2) << numBits/2;
return reversedNum;
}
int main()
{
unsigned int reversedNum;
unsigned int num;
num = 0x55;
reversedNum = reverse_bits_recursive(num, 8);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
num = 0xabcd;
reversedNum = reverse_bits_recursive(num, 16);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
num = 0x123456;
reversedNum = reverse_bits_recursive(num, 24);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
num = 0x11223344;
reversedNum = reverse_bits_recursive(num,32);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
}
This is the output:
Bit Reversal Input = 0x55 Output = 0xaa
Bit Reversal Input = 0xabcd Output = 0xb3d5
Bit Reversal Input = 0x123456 Output = 0x651690
Bit Reversal Input = 0x11223344 Output = 0x22cc4488
Well this certainly won't be an answer like Matt J's but hopefully it will still be useful.
size_t reverse(size_t n, unsigned int bytes)
{
__asm__("BSWAP %0" : "=r"(n) : "0"(n));
n >>= ((sizeof(size_t) - bytes) * 8);
n = ((n & 0xaaaaaaaaaaaaaaaa) >> 1) | ((n & 0x5555555555555555) << 1);
n = ((n & 0xcccccccccccccccc) >> 2) | ((n & 0x3333333333333333) << 2);
n = ((n & 0xf0f0f0f0f0f0f0f0) >> 4) | ((n & 0x0f0f0f0f0f0f0f0f) << 4);
return n;
}
This is exactly the same idea as Matt's best algorithm except that there's this little instruction called BSWAP which swaps the bytes (not the bits) of a 64-bit number. So b7,b6,b5,b4,b3,b2,b1,b0 becomes b0,b1,b2,b3,b4,b5,b6,b7. Since we are working with a 32-bit number we need to shift our byte-swapped number down 32 bits. This just leaves us with the task of swapping the 8 bits of each byte which is done and voila! we're done.
Timing: on my machine, Matt's algorithm ran in ~0.52 seconds per trial. Mine ran in about 0.42 seconds per trial. 20% faster is not bad I think.
If you're worried about the availability of the instruction BSWAP Wikipedia lists the instruction BSWAP as being added with 80846 which came out in 1989. It should be noted that Wikipedia also states that this instruction only works on 32 bit registers which is clearly not the case on my machine, it very much works only on 64-bit registers.
This method will work equally well for any integral datatype so the method can be generalized trivially by passing the number of bytes desired:
size_t reverse(size_t n, unsigned int bytes)
{
__asm__("BSWAP %0" : "=r"(n) : "0"(n));
n >>= ((sizeof(size_t) - bytes) * 8);
n = ((n & 0xaaaaaaaaaaaaaaaa) >> 1) | ((n & 0x5555555555555555) << 1);
n = ((n & 0xcccccccccccccccc) >> 2) | ((n & 0x3333333333333333) << 2);
n = ((n & 0xf0f0f0f0f0f0f0f0) >> 4) | ((n & 0x0f0f0f0f0f0f0f0f) << 4);
return n;
}
which can then be called like:
n = reverse(n, sizeof(char));//only reverse 8 bits
n = reverse(n, sizeof(short));//reverse 16 bits
n = reverse(n, sizeof(int));//reverse 32 bits
n = reverse(n, sizeof(size_t));//reverse 64 bits
The compiler should be able to optimize the extra parameter away (assuming the compiler inlines the function) and for the sizeof(size_t) case the right-shift would be removed completely. Note that GCC at least is not able to remove the BSWAP and right-shift if passed sizeof(char).
Anders Cedronius's answer provides a great solution for people that have an x86 CPU with AVX2 support. For x86 platforms without AVX support or non-x86 platforms, either of the following implementations should work well.
The first code is a variant of the classic binary partitioning method, coded to maximize the use of the shift-plus-logic idiom useful on various ARM processors. In addition, it uses on-the-fly mask generation which could be beneficial for RISC processors that otherwise require multiple instructions to load each 32-bit mask value. Compilers for x86 platforms should use constant propagation to compute all masks at compile time rather than run time.
/* Classic binary partitioning algorithm */
inline uint32_t brev_classic (uint32_t a)
{
uint32_t m;
a = (a >> 16) | (a << 16); // swap halfwords
m = 0x00ff00ff; a = ((a >> 8) & m) | ((a << 8) & ~m); // swap bytes
m = m^(m << 4); a = ((a >> 4) & m) | ((a << 4) & ~m); // swap nibbles
m = m^(m << 2); a = ((a >> 2) & m) | ((a << 2) & ~m);
m = m^(m << 1); a = ((a >> 1) & m) | ((a << 1) & ~m);
return a;
}
In volume 4A of "The Art of Computer Programming", D. Knuth shows clever ways of reversing bits that somewhat surprisingly require fewer operations than the classical binary partitioning algorithms. One such algorithm for 32-bit operands, that I cannot find in TAOCP, is shown in this document on the Hacker's Delight website.
/* Knuth's algorithm from http://www.hackersdelight.org/revisions.pdf. Retrieved 8/19/2015 */
inline uint32_t brev_knuth (uint32_t a)
{
uint32_t t;
a = (a << 15) | (a >> 17);
t = (a ^ (a >> 10)) & 0x003f801f;
a = (t + (t << 10)) ^ a;
t = (a ^ (a >> 4)) & 0x0e038421;
a = (t + (t << 4)) ^ a;
t = (a ^ (a >> 2)) & 0x22488842;
a = (t + (t << 2)) ^ a;
return a;
}
Using the Intel compiler C/C++ compiler 13.1.3.198, both of the above functions auto-vectorize nicely targetting XMM registers. They could also be vectorized manually without a lot of effort.
On my IvyBridge Xeon E3 1270v2, using the auto-vectorized code, 100 million uint32_t words were bit-reversed in 0.070 seconds using brev_classic(), and 0.068 seconds using brev_knuth(). I took care to ensure that my benchmark was not limited by system memory bandwidth.
Native ARM instruction "rbit" can do it with 1 cpu cycle and 1 extra cpu register, impossible to beat.
Presuming that you have an array of bits, how about this:
1. Starting from MSB, push bits into a stack one by one.
2. Pop bits from this stack into another array (or the same array if you want to save space), placing the first popped bit into MSB and going on to less significant bits from there.
Stack stack = new Stack();
Bit[] bits = new Bit[] { 0, 0, 1, 0, 0, 0, 0, 0 };
for (int i = 0; i < bits.Length; i++)
{
stack.push(bits[i]);
}
for (int i = 0; i < bits.Length; i++)
{
bits[i] = stack.pop();
}
This ain't no job for a human! ... but perfect for a machine
This is 2015, 6 years from when this question was first asked. Compilers have since become our masters, and our job as humans is only to help them. So what's the best way to give our intentions to the machine?
Bit-reversal is so common that you have to wonder why the x86's ever growing ISA doesn't include an instruction to do it one go.
The reason: if you give your true concise intent to the compiler, bit reversal should only take ~20 CPU cycles. Let me show you how to craft reverse() and use it:
#include <inttypes.h>
#include <stdio.h>
uint64_t reverse(const uint64_t n,
const uint64_t k)
{
uint64_t r, i;
for (r = 0, i = 0; i < k; ++i)
r |= ((n >> i) & 1) << (k - i - 1);
return r;
}
int main()
{
const uint64_t size = 64;
uint64_t sum = 0;
uint64_t a;
for (a = 0; a < (uint64_t)1 << 30; ++a)
sum += reverse(a, size);
printf("%" PRIu64 "\n", sum);
return 0;
}
Compiling this sample program with Clang version >= 3.6, -O3, -march=native (tested with Haswell), gives artwork-quality code using the new AVX2 instructions, with a runtime of 11 seconds processing ~1 billion reverse()s. That's ~10 ns per reverse(), with .5 ns CPU cycle assuming 2 GHz puts us at the sweet 20 CPU cycles.
You can fit 10 reverse()s in the time it takes to access RAM once for a single large array!
You can fit 1 reverse() in the time it takes to access an L2 cache LUT twice.
Caveat: this sample code should hold as a decent benchmark for a few years, but it will eventually start to show its age once compilers are smart enough to optimize main() to just printf the final result instead of really computing anything. But for now it works in showcasing reverse().
Of course the obvious source of bit-twiddling hacks is here:
http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious
Implementation with low memory and fastest.
private Byte BitReverse(Byte bData)
{
Byte[] lookup = { 0, 8, 4, 12,
2, 10, 6, 14 ,
1, 9, 5, 13,
3, 11, 7, 15 };
Byte ret_val = (Byte)(((lookup[(bData & 0x0F)]) << 4) + lookup[((bData & 0xF0) >> 4)]);
return ret_val;
}
Well, this is basically the same as the first "reverse()" but it is 64 bit and only needs one immediate mask to be loaded from the instruction stream. GCC creates code without jumps, so this should be pretty fast.
#include <stdio.h>
static unsigned long long swap64(unsigned long long val)
{
#define ZZZZ(x,s,m) (((x) >>(s)) & (m)) | (((x) & (m))<<(s));
/* val = (((val) >>16) & 0xFFFF0000FFFF) | (((val) & 0xFFFF0000FFFF)<<16); */
val = ZZZZ(val,32, 0x00000000FFFFFFFFull );
val = ZZZZ(val,16, 0x0000FFFF0000FFFFull );
val = ZZZZ(val,8, 0x00FF00FF00FF00FFull );
val = ZZZZ(val,4, 0x0F0F0F0F0F0F0F0Full );
val = ZZZZ(val,2, 0x3333333333333333ull );
val = ZZZZ(val,1, 0x5555555555555555ull );
return val;
#undef ZZZZ
}
int main(void)
{
unsigned long long val, aaaa[16] =
{ 0xfedcba9876543210,0xedcba9876543210f,0xdcba9876543210fe,0xcba9876543210fed
, 0xba9876543210fedc,0xa9876543210fedcb,0x9876543210fedcba,0x876543210fedcba9
, 0x76543210fedcba98,0x6543210fedcba987,0x543210fedcba9876,0x43210fedcba98765
, 0x3210fedcba987654,0x210fedcba9876543,0x10fedcba98765432,0x0fedcba987654321
};
unsigned iii;
for (iii=0; iii < 16; iii++) {
val = swap64 (aaaa[iii]);
printf("A[]=%016llX Sw=%016llx\n", aaaa[iii], val);
}
return 0;
}
I was curious how fast would be the obvious raw rotation.
On my machine (i7#2600), the average for 1,500,150,000 iterations was 27.28 ns (over a a random set of 131,071 64-bit integers).
Advantages: the amount of memory needed is little and the code is simple. I would say it is not that large, either. The time required is predictable and constant for any input (128 arithmetic SHIFT operations + 64 logical AND operations + 64 logical OR operations).
I compared to the best time obtained by #Matt J - who has the accepted answer. If I read his answer correctly, the best he has got was 0.631739 seconds for 1,000,000 iterations, which leads to an average of 631 ns per rotation.
The code snippet I used is this one below:
unsigned long long reverse_long(unsigned long long x)
{
return (((x >> 0) & 1) << 63) |
(((x >> 1) & 1) << 62) |
(((x >> 2) & 1) << 61) |
(((x >> 3) & 1) << 60) |
(((x >> 4) & 1) << 59) |
(((x >> 5) & 1) << 58) |
(((x >> 6) & 1) << 57) |
(((x >> 7) & 1) << 56) |
(((x >> 8) & 1) << 55) |
(((x >> 9) & 1) << 54) |
(((x >> 10) & 1) << 53) |
(((x >> 11) & 1) << 52) |
(((x >> 12) & 1) << 51) |
(((x >> 13) & 1) << 50) |
(((x >> 14) & 1) << 49) |
(((x >> 15) & 1) << 48) |
(((x >> 16) & 1) << 47) |
(((x >> 17) & 1) << 46) |
(((x >> 18) & 1) << 45) |
(((x >> 19) & 1) << 44) |
(((x >> 20) & 1) << 43) |
(((x >> 21) & 1) << 42) |
(((x >> 22) & 1) << 41) |
(((x >> 23) & 1) << 40) |
(((x >> 24) & 1) << 39) |
(((x >> 25) & 1) << 38) |
(((x >> 26) & 1) << 37) |
(((x >> 27) & 1) << 36) |
(((x >> 28) & 1) << 35) |
(((x >> 29) & 1) << 34) |
(((x >> 30) & 1) << 33) |
(((x >> 31) & 1) << 32) |
(((x >> 32) & 1) << 31) |
(((x >> 33) & 1) << 30) |
(((x >> 34) & 1) << 29) |
(((x >> 35) & 1) << 28) |
(((x >> 36) & 1) << 27) |
(((x >> 37) & 1) << 26) |
(((x >> 38) & 1) << 25) |
(((x >> 39) & 1) << 24) |
(((x >> 40) & 1) << 23) |
(((x >> 41) & 1) << 22) |
(((x >> 42) & 1) << 21) |
(((x >> 43) & 1) << 20) |
(((x >> 44) & 1) << 19) |
(((x >> 45) & 1) << 18) |
(((x >> 46) & 1) << 17) |
(((x >> 47) & 1) << 16) |
(((x >> 48) & 1) << 15) |
(((x >> 49) & 1) << 14) |
(((x >> 50) & 1) << 13) |
(((x >> 51) & 1) << 12) |
(((x >> 52) & 1) << 11) |
(((x >> 53) & 1) << 10) |
(((x >> 54) & 1) << 9) |
(((x >> 55) & 1) << 8) |
(((x >> 56) & 1) << 7) |
(((x >> 57) & 1) << 6) |
(((x >> 58) & 1) << 5) |
(((x >> 59) & 1) << 4) |
(((x >> 60) & 1) << 3) |
(((x >> 61) & 1) << 2) |
(((x >> 62) & 1) << 1) |
(((x >> 63) & 1) << 0);
}
You might want to use the standard template library. It might be slower than the above mentioned code. However, it seems to me clearer and easier to understand.
#include<bitset>
#include<iostream>
template<size_t N>
const std::bitset<N> reverse(const std::bitset<N>& ordered)
{
std::bitset<N> reversed;
for(size_t i = 0, j = N - 1; i < N; ++i, --j)
reversed[j] = ordered[i];
return reversed;
};
// test the function
int main()
{
unsigned long num;
const size_t N = sizeof(num)*8;
std::cin >> num;
std::cout << std::showbase << std::hex;
std::cout << "ordered = " << num << std::endl;
std::cout << "reversed = " << reverse<N>(num).to_ulong() << std::endl;
std::cout << "double_reversed = " << reverse<N>(reverse<N>(num)).to_ulong() << std::endl;
}
Efficient can mean throughput or latency.
For throughout, see the answer by Anders Cedronius, it’s a good one.
For lower latency, I would recommend this code:
uint32_t reverseBits( uint32_t x )
{
#if defined(__arm__) || defined(__aarch64__)
__asm__( "rbit %0, %1" : "=r" ( x ) : "r" ( x ) );
return x;
#endif
// Flip pairwise
x = ( ( x & 0x55555555 ) << 1 ) | ( ( x & 0xAAAAAAAA ) >> 1 );
// Flip pairs
x = ( ( x & 0x33333333 ) << 2 ) | ( ( x & 0xCCCCCCCC ) >> 2 );
// Flip nibbles
x = ( ( x & 0x0F0F0F0F ) << 4 ) | ( ( x & 0xF0F0F0F0 ) >> 4 );
// Flip bytes. CPUs have an instruction for that, pretty fast one.
#ifdef _MSC_VER
return _byteswap_ulong( x );
#elif defined(__INTEL_COMPILER)
return (uint32_t)_bswap( (int)x );
#else
// Assuming gcc or clang
return __builtin_bswap32( x );
#endif
}
Compilers output: https://godbolt.org/z/5ehd89
Generic
C code. Using 1 byte input data num as example.
unsigned char num = 0xaa; // 1010 1010 (aa) -> 0101 0101 (55)
int s = sizeof(num) * 8; // get number of bits
int i, x, y, p;
int var = 0; // make var data type to be equal or larger than num
for (i = 0; i < (s / 2); i++) {
// extract bit on the left, from MSB
p = s - i - 1;
x = num & (1 << p);
x = x >> p;
printf("x: %d\n", x);
// extract bit on the right, from LSB
y = num & (1 << i);
y = y >> i;
printf("y: %d\n", y);
var = var | (x << i); // apply x
var = var | (y << p); // apply y
}
printf("new: 0x%x\n", new);
How about the following:
uint reverseMSBToLSB32ui(uint input)
{
uint output = 0x00000000;
uint toANDVar = 0;
int places = 0;
for (int i = 1; i < 32; i++)
{
places = (32 - i);
toANDVar = (uint)(1 << places);
output |= (uint)(input & (toANDVar)) >> places;
}
return output;
}
Small and easy (though, 32 bit only).
I thought this is one of the simplest way to reverse the bit.
please let me know if there is any flaw in this logic.
basically in this logic, we check the value of the bit in position.
set the bit if value is 1 on reversed position.
void bit_reverse(ui32 *data)
{
ui32 temp = 0;
ui32 i, bit_len;
{
for(i = 0, bit_len = 31; i <= bit_len; i++)
{
temp |= (*data & 1 << i)? (1 << bit_len-i) : 0;
}
*data = temp;
}
return;
}
unsigned char ReverseBits(unsigned char data)
{
unsigned char k = 0, rev = 0;
unsigned char n = data;
while(n)
{
k = n & (~(n - 1));
n &= (n - 1);
rev |= (128 / k);
}
return rev;
}
I think the simplest method I know follows. MSB is input and LSB is 'reversed' output:
unsigned char rev(char MSB) {
unsigned char LSB=0; // for output
_FOR(i,0,8) {
LSB= LSB << 1;
if(MSB&1) LSB = LSB | 1;
MSB= MSB >> 1;
}
return LSB;
}
// It works by rotating bytes in opposite directions.
// Just repeat for each byte.
// Purpose: to reverse bits in an unsigned short integer
// Input: an unsigned short integer whose bits are to be reversed
// Output: an unsigned short integer with the reversed bits of the input one
unsigned short ReverseBits( unsigned short a )
{
// declare and initialize number of bits in the unsigned short integer
const char num_bits = sizeof(a) * CHAR_BIT;
// declare and initialize bitset representation of integer a
bitset<num_bits> bitset_a(a);
// declare and initialize bitset representation of integer b (0000000000000000)
bitset<num_bits> bitset_b(0);
// declare and initialize bitset representation of mask (0000000000000001)
bitset<num_bits> mask(1);
for ( char i = 0; i < num_bits; ++i )
{
bitset_b = (bitset_b << 1) | bitset_a & mask;
bitset_a >>= 1;
}
return (unsigned short) bitset_b.to_ulong();
}
void PrintBits( unsigned short a )
{
// declare and initialize bitset representation of a
bitset<sizeof(a) * CHAR_BIT> bitset(a);
// print out bits
cout << bitset << endl;
}
// Testing the functionality of the code
int main ()
{
unsigned short a = 17, b;
cout << "Original: ";
PrintBits(a);
b = ReverseBits( a );
cout << "Reversed: ";
PrintBits(b);
}
// Output:
Original: 0000000000010001
Reversed: 1000100000000000
Another loop-based solution that exits quickly when the number is low (in C++ for multiple types)
template<class T>
T reverse_bits(T in) {
T bit = static_cast<T>(1) << (sizeof(T) * 8 - 1);
T out;
for (out = 0; bit && in; bit >>= 1, in >>= 1) {
if (in & 1) {
out |= bit;
}
}
return out;
}
or in C for an unsigned int
unsigned int reverse_bits(unsigned int in) {
unsigned int bit = 1u << (sizeof(T) * 8 - 1);
unsigned int out;
for (out = 0; bit && in; bit >>= 1, in >>= 1) {
if (in & 1)
out |= bit;
}
return out;
}
It seems that many other posts are concerned about speed (i.e best = fastest).
What about simplicity? Consider:
char ReverseBits(char character) {
char reversed_character = 0;
for (int i = 0; i < 8; i++) {
char ith_bit = (c >> i) & 1;
reversed_character |= (ith_bit << (sizeof(char) - 1 - i));
}
return reversed_character;
}
and hope that clever compiler will optimise for you.
If you want to reverse a longer list of bits (containing sizeof(char) * n bits), you can use this function to get:
void ReverseNumber(char* number, int bit_count_in_number) {
int bytes_occupied = bit_count_in_number / sizeof(char);
// first reverse bytes
for (int i = 0; i <= (bytes_occupied / 2); i++) {
swap(long_number[i], long_number[n - i]);
}
// then reverse bits of each individual byte
for (int i = 0; i < bytes_occupied; i++) {
long_number[i] = ReverseBits(long_number[i]);
}
}
This would reverse [10000000, 10101010] into [01010101, 00000001].
For other web-searchers who might encounter this question, here is a summary (for C and JavaScript).
For a complete solution in JavaScript, we can first generate the table:
const BIT_REVERSAL_TABLE = new Array(256)
for (var i = 0; i < 256; ++i) {
var v = i, r = i, s = 7;
for (v >>>= 1; v; v >>>= 1) {
r <<= 1;
r |= v & 1;
--s;
}
BIT_REVERSAL_TABLE[i] = (r << s) & 0xff;
}
This gives us BIT_REVERSAL_TABLE, which is what #MattJ posted:
const BIT_REVERSAL_TABLE = new Uint8Array([
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff
])
Then the algorithms for 8-bit, 16-bit, and 32-bit unsigned integers can be found here:
function reverseBits8(n) {
return BIT_REVERSAL_TABLE[n]
}
function reverseBits16(n) {
return (BIT_REVERSAL_TABLE[(n >> 8) & 0xff] |
BIT_REVERSAL_TABLE[n & 0xff] << 8)
}
function reverseBits32(n) {
return (BIT_REVERSAL_TABLE[n & 0xff] << 24) |
(BIT_REVERSAL_TABLE[(n >>> 8) & 0xff] << 16) |
(BIT_REVERSAL_TABLE[(n >>> 16) & 0xff] << 8) |
BIT_REVERSAL_TABLE[(n >>> 24) & 0xff];
}
Note, the 32-bit version doesn't work in JavaScript (must convert to using BigInts which is straightforward), but should work in a 64-bit language:
log8(0b11000100)
log16(0b1110001001001100)
log32(0b11110010111110111100110010101011)
// 0b11000100 => 0b00100011
// 0b1110001001001100 => 0b0011001001000111
// doesn't work in JS it seems:
// 0b11110010111110111100110010101011 => 0b0-101010110011000010000010110001
function log8(n) {
console.log(`${bits(n, 8)} => ${bits(reverseBits8(n), 8)}`)
}
function log16(n) {
console.log(`${bits(n, 16)} => ${bits(reverseBits16(n), 16)}`)
}
function log32(n) {
console.log(`${bits(n, 32)} => ${bits(reverseBits32(n), 32)}`)
}
function bits(n, size) {
return `0b${n.toString(2).padStart(size, '0')}`
}
Note: This solution works in JavaScript for 32-bits:
function reverseBits32(n) {
let res = 0;
for (let i = 0; i < 32; i++) {
res = (res << 1) + (n & 1);
n = n >>> 1;
}
return res >>> 0;
}
All 3 table based solutions will work fine in C. Here is a rough C version:
#include <stdlib.h>
static uint8_t* BIT_REVERSAL_TABLE;
uint8_t*
make_bit_reversal_table() {
uint8_t *table = malloc(256 * sizeof(uint8_t));
uint8_t i;
for (i = 0; i < 256 ; ++i) {
uint8_t v = i;
uint8_t r = i;
uint8_t s = 7;
for (v = v >> 1; v; v = v >> 1) {
r <<= 1;
r |= v & 1;
--s;
}
table[i] = (r << s) & 0xff;
}
return table;
}
uint8_t
reverse_bits_8(uint8_t n) {
return BIT_REVERSAL_TABLE[n];
}
uint16_t
reverse_bits_16(uint16_t n)
{
return (BIT_REVERSAL_TABLE[(n >> 8) & 0xff]
| BIT_REVERSAL_TABLE[n & 0xff] << 8);
}
uint32_t
reverse_bits_32(uint32_t n) {
return (BIT_REVERSAL_TABLE[n & 0xff] << 24)
| (BIT_REVERSAL_TABLE[(n >> 8) & 0xff] << 16)
| (BIT_REVERSAL_TABLE[(n >> 16) & 0xff] << 8)
| BIT_REVERSAL_TABLE[(n >> 24) & 0xff];
}
int
main(void) {
BIT_REVERSAL_TABLE = make_bit_reversal_table();
return 0;
}
Bit reversal in pseudo code
source -> byte to be reversed b00101100
destination -> reversed, also needs to be of unsigned type so sign bit is not propogated down
copy into temp so original is unaffected, also needs to be of unsigned type so that sign bit is not shifted in automaticaly
bytecopy = b0010110
LOOP8: //do this 8 times
test if bytecopy is < 0 (negative)
set bit8 (msb) of reversed = reversed | b10000000
else do not set bit8
shift bytecopy left 1 place
bytecopy = bytecopy << 1 = b0101100 result
shift result right 1 place
reversed = reversed >> 1 = b00000000
8 times no then up^ LOOP8
8 times yes then done.
My simple solution
BitReverse(IN)
OUT = 0x00;
R = 1; // Right mask ...0000.0001
L = 0; // Left mask 1000.0000...
L = ~0;
L = ~(i >> 1);
int size = sizeof(IN) * 4; // bit size
while(size--){
if(IN & L) OUT = OUT | R; // start from MSB 1000.xxxx
if(IN & R) OUT = OUT | L; // start from LSB xxxx.0001
L = L >> 1;
R = R << 1;
}
return OUT;
This is for 32 bit, we need to change the size if we consider 8 bits.
void bitReverse(int num)
{
int num_reverse = 0;
int size = (sizeof(int)*8) -1;
int i=0,j=0;
for(i=0,j=size;i<=size,j>=0;i++,j--)
{
if((num >> i)&1)
{
num_reverse = (num_reverse | (1<<j));
}
}
printf("\n rev num = %d\n",num_reverse);
}
Reading the input integer "num" in LSB->MSB order and storing in num_reverse in MSB->LSB order.
Reverse every bits in each 4 bit, e.g:
0101 1011 1100 0110 becomes
1010 1101 0011 0110
Another:
1010 1100 0101 1100 becomes
0101 0011 1010 0011
I can think to reverse all 32 bit as below:
unsigned int reverseBits(unsigned int num)
{
unsigned int count = sizeof(num) * 8 - 1;
unsigned int reverse_num = num;
num >>= 1;
while(num)
{
reverse_num <<= 1;
reverse_num |= num & 1;
num >>= 1;
count--;
}
reverse_num <<= count;
return reverse_num;
}
But how to solve the above problem?
You can take the algorithm for complete bit-reversal, and delete a couple of steps, leaving you with just: (not tested)
x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); // swap odd/even bits
x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); // swap groups of 2
Obviously that assumes unsigned ints are 32 bits.
1. Lookup-table to reverse nibbles. The i-th element gives the nibble-reversed version of i, where i is an unsigned byte:
static const unsigned char lut[] = {
0x00, 0x08, 0x04, 0x0C, 0x02, 0x0A, 0x06, 0x0E,
0x01, 0x09, 0x05, 0x0D, 0x03, 0x0B, 0x07, 0x0F,
0x80, 0x88, 0x84, 0x8C, 0x82, 0x8A, 0x86, 0x8E,
0x81, 0x89, 0x85, 0x8D, 0x83, 0x8B, 0x87, 0x8F,
0x40, 0x48, 0x44, 0x4C, 0x42, 0x4A, 0x46, 0x4E,
0x41, 0x49, 0x45, 0x4D, 0x43, 0x4B, 0x47, 0x4F,
0xC0, 0xC8, 0xC4, 0xCC, 0xC2, 0xCA, 0xC6, 0xCE,
0xC1, 0xC9, 0xC5, 0xCD, 0xC3, 0xCB, 0xC7, 0xCF,
0x20, 0x28, 0x24, 0x2C, 0x22, 0x2A, 0x26, 0x2E,
0x21, 0x29, 0x25, 0x2D, 0x23, 0x2B, 0x27, 0x2F,
0xA0, 0xA8, 0xA4, 0xAC, 0xA2, 0xAA, 0xA6, 0xAE,
0xA1, 0xA9, 0xA5, 0xAD, 0xA3, 0xAB, 0xA7, 0xAF,
0x60, 0x68, 0x64, 0x6C, 0x62, 0x6A, 0x66, 0x6E,
0x61, 0x69, 0x65, 0x6D, 0x63, 0x6B, 0x67, 0x6F,
0xE0, 0xE8, 0xE4, 0xEC, 0xE2, 0xEA, 0xE6, 0xEE,
0xE1, 0xE9, 0xE5, 0xED, 0xE3, 0xEB, 0xE7, 0xEF,
0x10, 0x18, 0x14, 0x1C, 0x12, 0x1A, 0x16, 0x1E,
0x11, 0x19, 0x15, 0x1D, 0x13, 0x1B, 0x17, 0x1F,
0x90, 0x98, 0x94, 0x9C, 0x92, 0x9A, 0x96, 0x9E,
0x91, 0x99, 0x95, 0x9D, 0x93, 0x9B, 0x97, 0x9F,
0x50, 0x58, 0x54, 0x5C, 0x52, 0x5A, 0x56, 0x5E,
0x51, 0x59, 0x55, 0x5D, 0x53, 0x5B, 0x57, 0x5F,
0xD0, 0xD8, 0xD4, 0xDC, 0xD2, 0xDA, 0xD6, 0xDE,
0xD1, 0xD9, 0xD5, 0xDD, 0xD3, 0xDB, 0xD7, 0xDF,
0x30, 0x38, 0x34, 0x3C, 0x32, 0x3A, 0x36, 0x3E,
0x31, 0x39, 0x35, 0x3D, 0x33, 0x3B, 0x37, 0x3F,
0xB0, 0xB8, 0xB4, 0xBC, 0xB2, 0xBA, 0xB6, 0xBE,
0xB1, 0xB9, 0xB5, 0xBD, 0xB3, 0xBB, 0xB7, 0xBF,
0x70, 0x78, 0x74, 0x7C, 0x72, 0x7A, 0x76, 0x7E,
0x71, 0x79, 0x75, 0x7D, 0x73, 0x7B, 0x77, 0x7F,
0xF0, 0xF8, 0xF4, 0xFC, 0xF2, 0xFA, 0xF6, 0xFE,
0xF1, 0xF9, 0xF5, 0xFD, 0xF3, 0xFB, 0xF7, 0xFF
};
2. Function to reverse the nibbles. It applies the lookup-table to every byte of an unsigned 4-byte integer:
unsigned reverse_nibbles(unsigned i) {
return (lut[(i & 0xFF000000) >> 24] << 24) |
(lut[(i & 0x00FF0000) >> 16] << 16) |
(lut[(i & 0x0000FF00) >> 8] << 8) |
(lut[ i & 0x000000FF ] );
}
Test results (ideone):
0000 0000 0000 0000 0101 1011 1100 0110
0000 0000 0000 0000 1010 1101 0011 0110
0000 0000 0000 0000 1010 1100 0101 1100
0000 0000 0000 0000 0101 0011 1010 0011
1100 1010 1111 1110 1011 1010 1011 1110
0011 0101 1111 0111 1101 0101 1101 0111
The lookup table was pre-calculated this way (ideone):
#include <stdio.h>
int main() {
unsigned i, j;
for (i = 0; i < 256; ++i) {
j = ((i & 0x01) << 3) |
((i & 0x02) << 1) |
((i & 0x04) >> 1) |
((i & 0x08) >> 3) |
((i & 0x10) << 3) |
((i & 0x20) << 1) |
((i & 0x40) >> 1) |
((i & 0x80) >> 3);
printf("0x%02X, ", j);
if (((i + 1) % 8) == 0)
printf("\n");
}
return 0;
}
Use code similar to what you have for each run of 4 bits, shifting each reversed nibble into the final result.
You could have 1 version of your code extract & replace each run of 4 bits (shifting by 4 bits with each iteration), and calling a different version that takes a 4-bit value & reverses those 4 bits (by setting count to 3, I believe).
My answer to swap every 4 bit is as below:
num = ((num&0F0F0F0F)<<4)|((num>>4)&0F0F0F0F);
I'm converting an unsigned integer to binary using bitwise operators, and currently do integer & 1 to check if bit is 1 or 0 and output, then right shift by 1 to divide by 2. However the bits are returned in the wrong order (reverse), so I thought to reverse the bits order in the integer before beginning.
Is there a simple way to do this?
Example:
So if I'm given the unsigned int 10 = 1010
while (x not eq 0)
if (x & 1)
output a '1'
else
output a '0'
right shift x by 1
this returns 0101 which is incorrect... so I was thinking to reverse the order of the bits originally before running the loop, but I'm unsure how to do this?
Reversing the bits in a word is annoying and it's easier just to output them in reverse order. E.g.,
void write_u32(uint32_t x)
{
int i;
for (i = 0; i < 32; ++i)
putchar((x & ((uint32_t) 1 << (31 - i)) ? '1' : '0');
}
Here's the typical solution to reversing the bit order:
uint32_t reverse(uint32_t x)
{
x = ((x >> 1) & 0x55555555u) | ((x & 0x55555555u) << 1);
x = ((x >> 2) & 0x33333333u) | ((x & 0x33333333u) << 2);
x = ((x >> 4) & 0x0f0f0f0fu) | ((x & 0x0f0f0f0fu) << 4);
x = ((x >> 8) & 0x00ff00ffu) | ((x & 0x00ff00ffu) << 8);
x = ((x >> 16) & 0xffffu) | ((x & 0xffffu) << 16);
return x;
}
you could move from left to right instead, that is shift a one from the MSB to the LSB, for example:
unsigned n = 20543;
unsigned x = 1<<31;
while (x) {
printf("%u ", (x&n)!=0);
x = x>>1;
}
You could just loop through the bits from big end to little end.
#define N_BITS (sizeof(unsigned) * CHAR_BIT)
#define HI_BIT (1 << (N_BITS - 1))
for (int i = 0; i < N_BITS; i++) {
printf("%d", !!(x & HI_BIT));
x <<= 1;
}
Where !! can also be written !=0 or >> (N_BITS - 1).
You could reverse the bits like you output them, and instead store them in another integer, and do it again :
for (i = 0; i < (sizeof(unsigned int) * CHAR_BIT); i++)
{
new_int |= (original_int & 1);
original_int = original_int >> 1;
new_int = new_int << 1;
}
Or you could just do the opposite, shift your mask :
unsigned int mask = 1 << ((sizeof(unsigned int) * CHAR_BIT) - 1);
while (mask > 0)
{
bit = original_int & mask;
mask = mask >> 1;
printf("%d", (bit > 0));
}
If you want to remove leading 0's you can either wait for a 1 to get printed, or do a preliminary go-through :
unsigned int mask = 1 << ((sizeof(unsigned int) * CHAR_BIT) - 1);
while ((mask > 0) && ((original_int & mask) == 0))
mask = mask >> 1;
do
{
bit = original_int & mask;
mask = mask >> 1;
printf("%d", (bit > 0));
} while (mask > 0);
this way you will place the mask on the first 1 to be printed and forget about the leading 0's
But remember : printing the binary value of an integer can be done just with printf
unsigned int rev_bits(unsigned int input)
{
unsigned int output = 0;
unsigned int n = sizeof(input) << 3;
unsigned int i = 0;
for (i = 0; i < n; i++)
if ((input >> i) & 0x1)
output |= (0x1 << (n - 1 - i));
return output;
}
You can reverse an unsigned 32-bit integer and return using the following reverse function :
unsigned int reverse(unsigned int A) {
unsigned int B = 0;
for(int i=0;i<32;i++){
unsigned int j = pow(2,31-i);
if((A & (1<<i)) == (1<<i)) B += j;
}
return B;
}
Remember to include the math library. Happy coding :)
I believe the question is asking how to not output in reverse order.
Fun answer (recursion):
#include <stdio.h>
void print_bits_r(unsigned int x){
if(x==0){
printf("0");
return;
}
unsigned int n=x>>1;
if(n!=0){
print_bits_r(n);
}
if(x&1){
printf("1");
}else{
printf("0");
}
}
void print_bits(unsigned int x){
printf("%u=",x);
print_bits_r(x);
printf("\n");
}
int main(void) {
print_bits(10u);//1010
print_bits((1<<5)+(1<<4)+1);//110001
print_bits(498598u);//1111001101110100110
return 0;
}
Expected output:
10=1010
49=110001
498598=1111001101110100110
Sequential version (picks off the high-bits first):
#include <limits.h>//Defines CHAR_BIT
//....
void print_bits_r(unsigned int x){
//unsigned int mask=(UINT_MAX>>1)+1u;//Also works...
unsigned int mask=1u<<(CHAR_BIT*sizeof(unsigned int)-1u);
int start=0;
while(mask!=0){
if((x&mask)!=0){
printf("1");
start=1;
}else{
if(start){
printf("0");
}
}
mask>>=1;
}
if(!start){
printf("0");
}
}
The Best way to reverse the bit in an integer is:
It is very efficient.
It only runs upto when the leftmost bit is 1.
CODE SNIPPET
int reverse ( unsigned int n )
{
int x = 0;
int mask = 1;
while ( n > 0 )
{
x = x << 1;
if ( mask & n )
x = x | 1;
n = n >> 1;
}
return x;
}
The 2nd answer by Dietrich Epp is likely what's best on a modern processor with high speed caches. On typical microcontrollers however that is not the case and there the following is not only faster but also more versatile and more compact (in C):
// reverse a byte
uint8_t reverse_u8(uint8_t x)
{
const unsigned char * rev = "\x0\x8\x4\xC\x2\xA\x6\xE\x1\x9\x5\xD\x3\xB\x7\xF";
return rev[(x & 0xF0) >> 4] | (rev[x & 0x0F] << 4);
}
// reverse a word
uint16_t reverse_u16(uint16_t x)
{
return reverse_u8(x >> 8) | (reverse_u8(x & 0xFF) << 8);
}
// reverse a long
uint32_t reverse_u32(uint32_t x)
{
return reverse_u16(x >> 16) | (reverse_u16(x & 0xFFFF) << 16);
}
The code is easily translated to Java, Go, Rust etc. Of course if you only need to print the digits, it is best to simply print in reverse order (see the answer by Dietrich Epp).
It seems foolish to reverse the bit order of an integer value and then pick off bits from the low end, when it is trivial to leave it unchanged and pick off bits from the high end.
You want to convert an integer into a text representation, in this case in base-2 (binary). Computers convert integers into text all the time, most often in base-10 or base-16.
A simple built-in solution is:
printf('%b', 123); // outputs 1111011
But that's not standard in C. (See Is there a printf converter to print in binary format?)
Numbers are written with the most-significant digit (or bit) first, so repeatedly taking the least-significant digit (or bit) is half the job. You have to collect the digits and assemble or output them in reverse order.
To display the value 123 as base-10, you would:
Divide 123 by 10, yielding 12 remainder 3.
Divide 12 by 10, yielding 1 remainder 2.
Finally, divide 1 by 10, yielding 0 remainder 1. (0 is the stopping point.)
Display the remainders (3, 2, 1) in reverse order, to display "123".
We could put any number of zeros before the 123, but that is not proper, because they do not contribute anything. Bigger numbers need longer character strings ("123", "123000", "123000000"). With this approach, you don't know how many digits are needed until you compute the most-significant digit, so you can't output the first digit until you have computed all of them.
Alternatively, you can compute the most-significant digit first. It looks a little more complex. Especially in bases other than base-2. Again starting with 123:
Divide 123 by 1000, yielding 0 remainder 123.
Divide 123 by 100, yielding 1 remainder 23.
Divide 23 by 10, yielding 2 remainder 3.
Finally, divide 3 by 1, yielding 3 remainder 0. (0 is the stopping point.)
Display the quotients (0, 1, 2, 3) in the same order, skipping the leading zeros, to display "123".
You could output the digits in order as they are computed. You have to start with a large-enough divisor. For uint16 it's 10000; for uint32 it's 1000000000.
To display the value 123 as base-2, using the first method:
Divide 123 by 2, yielding 61 remainder 1.
Divide 61 by 2, yielding 30 remainder 1.
Divide 30 by 2, yielding 15 remainder 0.
Divide 15 by 2, yielding 7 remainder 1.
Divide 7 by 2, yielding 3 remainder 1.
Divide 3 by 2, yielding 1 remainder 1.
Finally, divide 1 by 2, yielding 0 remainder 1. (0 is the stopping point.)
Display the remainders (1,1,0,1,1,1,1) in reverse order, to display "1111011".
(Dividing by 2 can be accomplished by right-shifting by 1 bit.)
The second method yields the digits (bits) in order.
Divide 123 by 256, yielding 0 remainder 123.
Divide 123 by 128, yielding 0 remainder 123.
Divide 123 by 64, yielding 1 remainder 59.
Divide 59 by 32, yielding 1 remainder 27.
Divide 27 by 16, yielding 1 remainder 11.
Divide 11 by 8, yielding 1 remainder 3.
Divide 3 by 4, yielding 0 remainder 3.
Divide 2 by 2, yielding 1 remainder 1.
Finally, divide 1 by 1, yielding 1 remainder 0. (0 is the stopping point.)
Display the quotients (0,0,1,1,1,1,0,1,1) in the same order, skipping any leading first zeros, to display "1111011".
(These divisions can be accomplished using comparisons. The comparison values can be generated by dividing by 2, which means right-shifting by 1 bit.)
Any of these solutions might need a hack to prevent the value 0 from displaying as nothing (a.k.a. "", or the empty string) instead of "0".
I came up with a solution which dosesn't involve any application of bitwise operators. it is inefficient in terms of both space and time.
int arr[32];
for(int i=0;i<32;i++)
{
arr[i]=A%2;
A=A/2;
}
double res=1;
double re=0;
for(int i=0;i<32;i++)
{
int j=31-i;
res=arr[i];
while(j>0)
{
res=res*2;
j--;
}
re=re+res;
}
cout<<(unsigned int )re;
Here's a golang version of reverse bits in an integer, if anyone is looking for one. I wrote this with an approach similar to string reverse in c. Going over from bits 0 to 15 (31/2), swap bit i with bit (31-i). Please check the following code.
package main
import "fmt"
func main() {
var num = 2
//swap bits at index i and 31-i for i between 0-15
for i := 0; i < 31/2; i++ {
swap(&num, uint(i))
}
fmt.Printf("num is %d", num)
}
//check if bit at index is set
func isSet(num *int, index uint) int {
return *num & (1 << index)
}
//set bit at index
func set(num *int, index uint) {
*num = *num | (1 << index)
}
//reset bit at index
func reSet(num *int, index uint) {
*num = *num & ^(1 << index)
}
//swap bits on index and 31-index
func swap(num *int, index uint) {
//check index and 31-index bits
a := isSet(num, index)
b := isSet(num, uint(31)-index)
if a != 0 {
//bit at index is 1, set 31-index
set(num, uint(31)-index)
} else {
//bit at index is 0, reset 31-index
reSet(num, uint(31)-index)
}
if b != 0 {
set(num, index)
} else {
reSet(num, index)
}
}`
Here's my bit shift version which I think is very concise. Does not work with leading zeros though. The main idea is as follows
Input is in variable a, final answer in b
Keep extracting the right most bit from a using (a&1)
OR that with b and left shift b to make place for the next bit
Right shift a to go to the next bit
#include <stdio.h>
void main()
{
int a = 23;
int b = 0;
while(a!=0)
{
b = (b<<1)|(a&1);
a = a>>1;
}
printf("reversed bits gives %d\n", b);
}
The following make use of a table that stored all the reversed value of each byte, table[byte] == reversed_byte, and reverse the 4 bytes of the unsigned integer. Faster to compute than other answers.
#include <stdint.h>
uint32_t reverse_bits(uint32_t n) {
static const uint8_t table[256] =
{
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
// 1 2 3 4 -> byte 4 becomes 1, 3 becomes 2, 2 becomes 3 and 1 becomes 4.
return (table[n & 0xff] << 24) | (table[(n >> 8) & 0xff] << 16) |
(table[(n >> 16) & 0xff] << 8) | (table[(n >> 24) & 0xff]);
}
For a FFT function I need to permutate or shuffle the elements within an array in a bit-reversed way. That's a common task with FFTs because most power of two sized FFT functions either expect or return their data in a bit-reversed way.
E.g. assume that the array has 256 elements I'd like to swap each element with it's bit-reversed pattern. Here are two examples (in binary):
Element 00000001b should be swapped with element 10000000b
Element 00010111b should be swapped with element 11101000b
and so on.
Any idea how to do this fast and more important: in-place?
I already have a function that does this swap. It's not hard to write one. Since this is such a common operation in DSP I have the feeling that there are more clever ways to do it than my very naiive loop.
Language in question is C, but any language is fine.
To swap in place with a single pass, iterate once through all elements in increasing index. Perform a swap only if the index is less-than the reversed index -- this will skip the double swap problem and also palindrome cases (elements 00000000b, 10000001b, 10100101b) which inverse to the same value and no swap is required.
// Let data[256] be your element array
for (i=0; i<256; i++)
j = bit_reverse(i);
if (i < j)
{
swap(data[i],data[j]);
}
The bit_reverse() can be using Nathaneil's bit-operations trick.
The bit_reverse() will be called 256 times but the swap() will be called less than 128 times.
A quick way to do this is to swap every adjacent single bit, then 2-bit fields, etc.
The fast way to do this is:
x = (x & 0x55) << 1 | (x & 0xAA) >> 1; //swaps bits
x = (x & 0x33) << 2 | (x & 0xCC) >> 2; //swapss 2-bit fields
x = (x & 0x0F) << 4 | (x & 0xF0) >> 4;
While hard to read, if this is something that needs to be optimized you may want to do it this way.
This code uses a lookup table to reverse 64-bit numbers very quickly. For your C-language example, I also included versions for 32-, 16-, and 8-bit numbers (assumes int is 32 bits). In an object-oriented language (C++, C#, etc), I would have just overloaded the function.
I don't have a C-compiler handy at the moment so, hopefully, I didn't miss anything.
unsigned char ReverseBits[] =
{
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
unsigned long Reverse64Bits(unsigned long number)
{
unsigned long result;
result =
(ReverseBits[ number & 0xff] << 56) |
(ReverseBits[(number >> 8) & 0xff] << 48) |
(ReverseBits[(number >> 16) & 0xff] << 40) |
(ReverseBits[(number >> 24) & 0xff] << 32) |
(ReverseBits[(number >> 32) & 0xff] << 24) |
(ReverseBits[(number >> 40) & 0xff] << 16) |
(ReverseBits[(number >> 48) & 0xff] << 8) |
(ReverseBits[(number >> 56) & 0xff]);
return result;
}
unsigned int Reverse32Bits(unsigned int number)
{
unsigned int result;
result =
(ReverseBits[ number & 0xff] << 24) |
(ReverseBits[(number >> 8) & 0xff] << 16) |
(ReverseBits[(number >> 16) & 0xff] << 8) |
(ReverseBits[(number >> 24) & 0xff]);
return result;
}
unsigned short Reverse16Bits(unsigned short number)
{
unsigned short result;
result =
(ReverseBits[ number & 0xff] << 8) |
(ReverseBits[(number >> 8) & 0xff]);
return result;
}
unsigned char Reverse8Bits(unsigned char number)
{
unsigned char result;
result = (ReverseBits[number]);
return result;
}
If you think about what's happening to the bitswapped index, it's being counted up in the same way that the non-bitswapped index is being counted up, just with the bits being used in the reverse order from conventional counting.
Rather than bitswapping the index every time through the loop you can manually implement a '++' equivalent that uses bits in the wrong order to do a double indexed for loop. I've verified that gcc at O3 inlines the increment function, but as to whether it's any faster then bitswapping the number via a lookup every time, that's for the profiler to say.
Here's an illustrative test program.
#include <stdio.h>
void RevBitIncr( int *n, int bit )
{
do
{
bit >>= 1;
*n ^= bit;
} while( (*n & bit) == 0 && bit != 1 );
}
int main(void)
{
int max = 0x100;
int i, j;
for( i = 0, j = 0; i != max; ++i, RevBitIncr( &j, max ) )
{
if( i < j )
printf( "%02x <-> %02x\n", i, j );
}
return 0;
}
Using a pre-built lookup table to do the mapping seems to be the obvious solution. I guess it depends how big the arrays you will be dealing with are. But even if a direct mapping is not possible, I'd still go for a lookup table, maybe of byte-size patterns that you can use to build the word-sized pattern for the final index.
The following approach computes the next bit-reversed index from the previous one like in Charles Bailey's answer, but in a more optimized way. Note that incrementing a number simply flips a sequence of least-significant bits, for example from 0111 to 1000. So in order to compute the next bit-reversed index, you have to flip a sequence of most-significant bits. If your target platform has a CTZ ("count trailing zeros") instruction, this can be done efficiently.
Example using GCC's __builtin_ctz:
void brswap(double *a, unsigned n) {
for (unsigned i = 0, j = 0; i < n; i++) {
if (i < j) {
double tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
// Length of the mask.
unsigned len = __builtin_ctz(i + 1) + 1;
// XOR with mask.
j ^= n - (n >> len);
}
}
Without a CTZ instruction, you can also use integer division:
void brswap(double *a, unsigned n) {
for (unsigned i = 0, j = 0; i < n; i++) {
if (i < j) {
double tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
// Compute a mask of LSBs.
unsigned mask = i ^ (i + 1);
// Using division to bit-reverse a single bit.
unsigned rev = n / (mask + 1);
// XOR with mask.
j ^= n - rev;
}
}
Element 00000001b should be swapped
with element 10000000b
I think you mean "Element 00000001b should be swapped with element 11111110b" in the first line?
Instead of awapping 256 bytes you could cast the array to (long long*) and swap 32 "long long" values instead, that should be much faster on 64 bit machines (or use 64 long values on a 32 bit machine).
Secondly if you naively run through the array and swap all values with its complement than you will swap all elements twice, so you have done nothing at all :-)
So you first have to identity which are the complements and leave them out of your loop.
What is the most efficient algorithm to achieve the following:
0010 0000 => 0000 0100
The conversion is from MSB->LSB to LSB->MSB. All bits must be reversed; that is, this is not endianness-swapping.
NOTE: All algorithms below are in C, but should be portable to your language of choice (just don't look at me when they're not as fast :)
Options
Low Memory (32-bit int, 32-bit machine)(from here):
unsigned int
reverse(register unsigned int x)
{
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
return((x >> 16) | (x << 16));
}
From the famous Bit Twiddling Hacks page:
Fastest (lookup table):
static const unsigned char BitReverseTable256[] =
{
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
unsigned int v; // reverse 32-bit value, 8 bits at time
unsigned int c; // c will get v reversed
// Option 1:
c = (BitReverseTable256[v & 0xff] << 24) |
(BitReverseTable256[(v >> 8) & 0xff] << 16) |
(BitReverseTable256[(v >> 16) & 0xff] << 8) |
(BitReverseTable256[(v >> 24) & 0xff]);
// Option 2:
unsigned char * p = (unsigned char *) &v;
unsigned char * q = (unsigned char *) &c;
q[3] = BitReverseTable256[p[0]];
q[2] = BitReverseTable256[p[1]];
q[1] = BitReverseTable256[p[2]];
q[0] = BitReverseTable256[p[3]];
You can extend this idea to 64-bit ints, or trade off memory for speed (assuming your L1 Data Cache is large enough), and reverse 16 bits at a time with a 64K-entry lookup table.
Others
Simple
unsigned int v; // input bits to be reversed
unsigned int r = v & 1; // r will be reversed bits of v; first get LSB of v
int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end
for (v >>= 1; v; v >>= 1)
{
r <<= 1;
r |= v & 1;
s--;
}
r <<= s; // shift when v's highest bits are zero
Faster (32-bit processor)
unsigned char b = x;
b = ((b * 0x0802LU & 0x22110LU) | (b * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
Faster (64-bit processor)
unsigned char b; // reverse this (8-bit) byte
b = (b * 0x0202020202ULL & 0x010884422010ULL) % 1023;
If you want to do this on a 32-bit int, just reverse the bits in each byte, and reverse the order of the bytes. That is:
unsigned int toReverse;
unsigned int reversed;
unsigned char inByte0 = (toReverse & 0xFF);
unsigned char inByte1 = (toReverse & 0xFF00) >> 8;
unsigned char inByte2 = (toReverse & 0xFF0000) >> 16;
unsigned char inByte3 = (toReverse & 0xFF000000) >> 24;
reversed = (reverseBits(inByte0) << 24) | (reverseBits(inByte1) << 16) | (reverseBits(inByte2) << 8) | (reverseBits(inByte3);
Results
I benchmarked the two most promising solutions, the lookup table, and bitwise-AND (the first one). The test machine is a laptop w/ 4GB of DDR2-800 and a Core 2 Duo T7500 # 2.4GHz, 4MB L2 Cache; YMMV. I used gcc 4.3.2 on 64-bit Linux. OpenMP (and the GCC bindings) were used for high-resolution timers.
reverse.c
#include <stdlib.h>
#include <stdio.h>
#include <omp.h>
unsigned int
reverse(register unsigned int x)
{
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
return((x >> 16) | (x << 16));
}
int main()
{
unsigned int *ints = malloc(100000000*sizeof(unsigned int));
unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
for(unsigned int i = 0; i < 100000000; i++)
ints[i] = rand();
unsigned int *inptr = ints;
unsigned int *outptr = ints2;
unsigned int *endptr = ints + 100000000;
// Starting the time measurement
double start = omp_get_wtime();
// Computations to be measured
while(inptr != endptr)
{
(*outptr) = reverse(*inptr);
inptr++;
outptr++;
}
// Measuring the elapsed time
double end = omp_get_wtime();
// Time calculation (in seconds)
printf("Time: %f seconds\n", end-start);
free(ints);
free(ints2);
return 0;
}
reverse_lookup.c
#include <stdlib.h>
#include <stdio.h>
#include <omp.h>
static const unsigned char BitReverseTable256[] =
{
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
int main()
{
unsigned int *ints = malloc(100000000*sizeof(unsigned int));
unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
for(unsigned int i = 0; i < 100000000; i++)
ints[i] = rand();
unsigned int *inptr = ints;
unsigned int *outptr = ints2;
unsigned int *endptr = ints + 100000000;
// Starting the time measurement
double start = omp_get_wtime();
// Computations to be measured
while(inptr != endptr)
{
unsigned int in = *inptr;
// Option 1:
//*outptr = (BitReverseTable256[in & 0xff] << 24) |
// (BitReverseTable256[(in >> 8) & 0xff] << 16) |
// (BitReverseTable256[(in >> 16) & 0xff] << 8) |
// (BitReverseTable256[(in >> 24) & 0xff]);
// Option 2:
unsigned char * p = (unsigned char *) &(*inptr);
unsigned char * q = (unsigned char *) &(*outptr);
q[3] = BitReverseTable256[p[0]];
q[2] = BitReverseTable256[p[1]];
q[1] = BitReverseTable256[p[2]];
q[0] = BitReverseTable256[p[3]];
inptr++;
outptr++;
}
// Measuring the elapsed time
double end = omp_get_wtime();
// Time calculation (in seconds)
printf("Time: %f seconds\n", end-start);
free(ints);
free(ints2);
return 0;
}
I tried both approaches at several different optimizations, ran 3 trials at each level, and each trial reversed 100 million random unsigned ints. For the lookup table option, I tried both schemes (options 1 and 2) given on the bitwise hacks page. Results are shown below.
Bitwise AND
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse reverse.c
mrj10#mjlap:~/code$ ./reverse
Time: 2.000593 seconds
mrj10#mjlap:~/code$ ./reverse
Time: 1.938893 seconds
mrj10#mjlap:~/code$ ./reverse
Time: 1.936365 seconds
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse reverse.c
mrj10#mjlap:~/code$ ./reverse
Time: 0.942709 seconds
mrj10#mjlap:~/code$ ./reverse
Time: 0.991104 seconds
mrj10#mjlap:~/code$ ./reverse
Time: 0.947203 seconds
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse reverse.c
mrj10#mjlap:~/code$ ./reverse
Time: 0.922639 seconds
mrj10#mjlap:~/code$ ./reverse
Time: 0.892372 seconds
mrj10#mjlap:~/code$ ./reverse
Time: 0.891688 seconds
Lookup Table (option 1)
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.201127 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.196129 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.235972 seconds
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 0.633042 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 0.655880 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 0.633390 seconds
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 0.652322 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 0.631739 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 0.652431 seconds
Lookup Table (option 2)
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.671537 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.688173 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.664662 seconds
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.049851 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.048403 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.085086 seconds
mrj10#mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.082223 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.053431 seconds
mrj10#mjlap:~/code$ ./reverse_lookup
Time: 1.081224 seconds
Conclusion
Use the lookup table, with option 1 (byte addressing is unsurprisingly slow) if you're concerned about performance. If you need to squeeze every last byte of memory out of your system (and you might, if you care about the performance of bit reversal), the optimized versions of the bitwise-AND approach aren't too shabby either.
Caveat
Yes, I know the benchmark code is a complete hack. Suggestions on how to improve it are more than welcome. Things I know about:
I don't have access to ICC. This may be faster (please respond in a comment if you can test this out).
A 64K lookup table may do well on some modern microarchitectures with large L1D.
-mtune=native didn't work for -O2/-O3 (ld blew up with some crazy symbol redefinition error), so I don't believe the generated code is tuned for my microarchitecture.
There may be a way to do this slightly faster with SSE. I have no idea how, but with fast replication, packed bitwise AND, and swizzling instructions, there's got to be something there.
I know only enough x86 assembly to be dangerous; here's the code GCC generated on -O3 for option 1, so somebody more knowledgable than myself can check it out:
32-bit
.L3:
movl (%r12,%rsi), %ecx
movzbl %cl, %eax
movzbl BitReverseTable256(%rax), %edx
movl %ecx, %eax
shrl $24, %eax
mov %eax, %eax
movzbl BitReverseTable256(%rax), %eax
sall $24, %edx
orl %eax, %edx
movzbl %ch, %eax
shrl $16, %ecx
movzbl BitReverseTable256(%rax), %eax
movzbl %cl, %ecx
sall $16, %eax
orl %eax, %edx
movzbl BitReverseTable256(%rcx), %eax
sall $8, %eax
orl %eax, %edx
movl %edx, (%r13,%rsi)
addq $4, %rsi
cmpq $400000000, %rsi
jne .L3
EDIT: I also tried using uint64_t types on my machine to see if there was any performance boost. Performance was about 10% faster than 32-bit, and was nearly identical whether you were just using 64-bit types to reverse bits on two 32-bit int types at a time, or whether you were actually reversing bits in half as many 64-bit values. The assembly code is shown below (for the former case, reversing bits for two 32-bit int types at a time):
.L3:
movq (%r12,%rsi), %rdx
movq %rdx, %rax
shrq $24, %rax
andl $255, %eax
movzbl BitReverseTable256(%rax), %ecx
movzbq %dl,%rax
movzbl BitReverseTable256(%rax), %eax
salq $24, %rax
orq %rax, %rcx
movq %rdx, %rax
shrq $56, %rax
movzbl BitReverseTable256(%rax), %eax
salq $32, %rax
orq %rax, %rcx
movzbl %dh, %eax
shrq $16, %rdx
movzbl BitReverseTable256(%rax), %eax
salq $16, %rax
orq %rax, %rcx
movzbq %dl,%rax
shrq $16, %rdx
movzbl BitReverseTable256(%rax), %eax
salq $8, %rax
orq %rax, %rcx
movzbq %dl,%rax
shrq $8, %rdx
movzbl BitReverseTable256(%rax), %eax
salq $56, %rax
orq %rax, %rcx
movzbq %dl,%rax
shrq $8, %rdx
movzbl BitReverseTable256(%rax), %eax
andl $255, %edx
salq $48, %rax
orq %rax, %rcx
movzbl BitReverseTable256(%rdx), %eax
salq $40, %rax
orq %rax, %rcx
movq %rcx, (%r13,%rsi)
addq $8, %rsi
cmpq $400000000, %rsi
jne .L3
This thread caught my attention since it deals with a simple problem that requires a lot of work (CPU cycles) even for a modern CPU. And one day I also stood there with the same ¤#%"#" problem. I had to flip millions of bytes. However I know all my target systems are modern Intel-based so let's start optimizing to the extreme!!!
So I used Matt J's lookup code as the base. the system I'm benchmarking on is a i7 haswell 4700eq.
Matt J's lookup bitflipping 400 000 000 bytes: Around 0.272 seconds.
I then went ahead and tried to see if Intel's ISPC compiler could vectorise the arithmetics in the reverse.c.
I'm not going to bore you with my findings here since I tried a lot to help the compiler find stuff, anyhow I ended up with performance of around 0.15 seconds to bitflip 400 000 000 bytes. It's a great reduction but for my application that's still way way too slow..
So people let me present the fastest Intel based bitflipper in the world. Clocked at:
Time to bitflip 400000000 bytes: 0.050082 seconds !!!!!
// Bitflip using AVX2 - The fastest Intel based bitflip in the world!!
// Made by Anders Cedronius 2014 (anders.cedronius (you know what) gmail.com)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <omp.h>
using namespace std;
#define DISPLAY_HEIGHT 4
#define DISPLAY_WIDTH 32
#define NUM_DATA_BYTES 400000000
// Constants (first we got the mask, then the high order nibble look up table and last we got the low order nibble lookup table)
__attribute__ ((aligned(32))) static unsigned char k1[32*3]={
0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,
0x00,0x08,0x04,0x0c,0x02,0x0a,0x06,0x0e,0x01,0x09,0x05,0x0d,0x03,0x0b,0x07,0x0f,0x00,0x08,0x04,0x0c,0x02,0x0a,0x06,0x0e,0x01,0x09,0x05,0x0d,0x03,0x0b,0x07,0x0f,
0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0,0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0,0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0,0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0
};
// The data to be bitflipped (+32 to avoid the quantization out of memory problem)
__attribute__ ((aligned(32))) static unsigned char data[NUM_DATA_BYTES+32]={};
extern "C" {
void bitflipbyte(unsigned char[],unsigned int,unsigned char[]);
}
int main()
{
for(unsigned int i = 0; i < NUM_DATA_BYTES; i++)
{
data[i] = rand();
}
printf ("\r\nData in(start):\r\n");
for (unsigned int j = 0; j < 4; j++)
{
for (unsigned int i = 0; i < DISPLAY_WIDTH; i++)
{
printf ("0x%02x,",data[i+(j*DISPLAY_WIDTH)]);
}
printf ("\r\n");
}
printf ("\r\nNumber of 32-byte chunks to convert: %d\r\n",(unsigned int)ceil(NUM_DATA_BYTES/32.0));
double start_time = omp_get_wtime();
bitflipbyte(data,(unsigned int)ceil(NUM_DATA_BYTES/32.0),k1);
double end_time = omp_get_wtime();
printf ("\r\nData out:\r\n");
for (unsigned int j = 0; j < 4; j++)
{
for (unsigned int i = 0; i < DISPLAY_WIDTH; i++)
{
printf ("0x%02x,",data[i+(j*DISPLAY_WIDTH)]);
}
printf ("\r\n");
}
printf("\r\n\r\nTime to bitflip %d bytes: %f seconds\r\n\r\n",NUM_DATA_BYTES, end_time-start_time);
// return with no errors
return 0;
}
The printf's are for debugging..
Here is the workhorse:
bits 64
global bitflipbyte
bitflipbyte:
vmovdqa ymm2, [rdx]
add rdx, 20h
vmovdqa ymm3, [rdx]
add rdx, 20h
vmovdqa ymm4, [rdx]
bitflipp_loop:
vmovdqa ymm0, [rdi]
vpand ymm1, ymm2, ymm0
vpandn ymm0, ymm2, ymm0
vpsrld ymm0, ymm0, 4h
vpshufb ymm1, ymm4, ymm1
vpshufb ymm0, ymm3, ymm0
vpor ymm0, ymm0, ymm1
vmovdqa [rdi], ymm0
add rdi, 20h
dec rsi
jnz bitflipp_loop
ret
The code takes 32 bytes then masks out the nibbles. The high nibble gets shifted right by 4. Then I use vpshufb and ymm4 / ymm3 as lookup tables. I could use a single lookup table but then I would have to shift left before ORing the nibbles together again.
There are even faster ways of flipping the bits. But I'm bound to single thread and CPU so this was the fastest I could achieve. Can you make a faster version?
Please make no comments about using the Intel C/C++ Compiler Intrinsic Equivalent commands...
This is another solution for folks who love recursion.
The idea is simple.
Divide up input by half and swap the two halves, continue until it reaches single bit.
Illustrated in the example below.
Ex : If Input is 00101010 ==> Expected output is 01010100
1. Divide the input into 2 halves
0010 --- 1010
2. Swap the 2 Halves
1010 0010
3. Repeat the same for each half.
10 -- 10 --- 00 -- 10
10 10 10 00
1-0 -- 1-0 --- 1-0 -- 0-0
0 1 0 1 0 1 0 0
Done! Output is 01010100
Here is a recursive function to solve it. (Note I have used unsigned ints, so it can work for inputs up to sizeof(unsigned int)*8 bits.
The recursive function takes 2 parameters - The value whose bits need
to be reversed and the number of bits in the value.
int reverse_bits_recursive(unsigned int num, unsigned int numBits)
{
unsigned int reversedNum;;
unsigned int mask = 0;
mask = (0x1 << (numBits/2)) - 1;
if (numBits == 1) return num;
reversedNum = reverse_bits_recursive(num >> numBits/2, numBits/2) |
reverse_bits_recursive((num & mask), numBits/2) << numBits/2;
return reversedNum;
}
int main()
{
unsigned int reversedNum;
unsigned int num;
num = 0x55;
reversedNum = reverse_bits_recursive(num, 8);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
num = 0xabcd;
reversedNum = reverse_bits_recursive(num, 16);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
num = 0x123456;
reversedNum = reverse_bits_recursive(num, 24);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
num = 0x11223344;
reversedNum = reverse_bits_recursive(num,32);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
}
This is the output:
Bit Reversal Input = 0x55 Output = 0xaa
Bit Reversal Input = 0xabcd Output = 0xb3d5
Bit Reversal Input = 0x123456 Output = 0x651690
Bit Reversal Input = 0x11223344 Output = 0x22cc4488
Well this certainly won't be an answer like Matt J's but hopefully it will still be useful.
size_t reverse(size_t n, unsigned int bytes)
{
__asm__("BSWAP %0" : "=r"(n) : "0"(n));
n >>= ((sizeof(size_t) - bytes) * 8);
n = ((n & 0xaaaaaaaaaaaaaaaa) >> 1) | ((n & 0x5555555555555555) << 1);
n = ((n & 0xcccccccccccccccc) >> 2) | ((n & 0x3333333333333333) << 2);
n = ((n & 0xf0f0f0f0f0f0f0f0) >> 4) | ((n & 0x0f0f0f0f0f0f0f0f) << 4);
return n;
}
This is exactly the same idea as Matt's best algorithm except that there's this little instruction called BSWAP which swaps the bytes (not the bits) of a 64-bit number. So b7,b6,b5,b4,b3,b2,b1,b0 becomes b0,b1,b2,b3,b4,b5,b6,b7. Since we are working with a 32-bit number we need to shift our byte-swapped number down 32 bits. This just leaves us with the task of swapping the 8 bits of each byte which is done and voila! we're done.
Timing: on my machine, Matt's algorithm ran in ~0.52 seconds per trial. Mine ran in about 0.42 seconds per trial. 20% faster is not bad I think.
If you're worried about the availability of the instruction BSWAP Wikipedia lists the instruction BSWAP as being added with 80846 which came out in 1989. It should be noted that Wikipedia also states that this instruction only works on 32 bit registers which is clearly not the case on my machine, it very much works only on 64-bit registers.
This method will work equally well for any integral datatype so the method can be generalized trivially by passing the number of bytes desired:
size_t reverse(size_t n, unsigned int bytes)
{
__asm__("BSWAP %0" : "=r"(n) : "0"(n));
n >>= ((sizeof(size_t) - bytes) * 8);
n = ((n & 0xaaaaaaaaaaaaaaaa) >> 1) | ((n & 0x5555555555555555) << 1);
n = ((n & 0xcccccccccccccccc) >> 2) | ((n & 0x3333333333333333) << 2);
n = ((n & 0xf0f0f0f0f0f0f0f0) >> 4) | ((n & 0x0f0f0f0f0f0f0f0f) << 4);
return n;
}
which can then be called like:
n = reverse(n, sizeof(char));//only reverse 8 bits
n = reverse(n, sizeof(short));//reverse 16 bits
n = reverse(n, sizeof(int));//reverse 32 bits
n = reverse(n, sizeof(size_t));//reverse 64 bits
The compiler should be able to optimize the extra parameter away (assuming the compiler inlines the function) and for the sizeof(size_t) case the right-shift would be removed completely. Note that GCC at least is not able to remove the BSWAP and right-shift if passed sizeof(char).
Anders Cedronius's answer provides a great solution for people that have an x86 CPU with AVX2 support. For x86 platforms without AVX support or non-x86 platforms, either of the following implementations should work well.
The first code is a variant of the classic binary partitioning method, coded to maximize the use of the shift-plus-logic idiom useful on various ARM processors. In addition, it uses on-the-fly mask generation which could be beneficial for RISC processors that otherwise require multiple instructions to load each 32-bit mask value. Compilers for x86 platforms should use constant propagation to compute all masks at compile time rather than run time.
/* Classic binary partitioning algorithm */
inline uint32_t brev_classic (uint32_t a)
{
uint32_t m;
a = (a >> 16) | (a << 16); // swap halfwords
m = 0x00ff00ff; a = ((a >> 8) & m) | ((a << 8) & ~m); // swap bytes
m = m^(m << 4); a = ((a >> 4) & m) | ((a << 4) & ~m); // swap nibbles
m = m^(m << 2); a = ((a >> 2) & m) | ((a << 2) & ~m);
m = m^(m << 1); a = ((a >> 1) & m) | ((a << 1) & ~m);
return a;
}
In volume 4A of "The Art of Computer Programming", D. Knuth shows clever ways of reversing bits that somewhat surprisingly require fewer operations than the classical binary partitioning algorithms. One such algorithm for 32-bit operands, that I cannot find in TAOCP, is shown in this document on the Hacker's Delight website.
/* Knuth's algorithm from http://www.hackersdelight.org/revisions.pdf. Retrieved 8/19/2015 */
inline uint32_t brev_knuth (uint32_t a)
{
uint32_t t;
a = (a << 15) | (a >> 17);
t = (a ^ (a >> 10)) & 0x003f801f;
a = (t + (t << 10)) ^ a;
t = (a ^ (a >> 4)) & 0x0e038421;
a = (t + (t << 4)) ^ a;
t = (a ^ (a >> 2)) & 0x22488842;
a = (t + (t << 2)) ^ a;
return a;
}
Using the Intel compiler C/C++ compiler 13.1.3.198, both of the above functions auto-vectorize nicely targetting XMM registers. They could also be vectorized manually without a lot of effort.
On my IvyBridge Xeon E3 1270v2, using the auto-vectorized code, 100 million uint32_t words were bit-reversed in 0.070 seconds using brev_classic(), and 0.068 seconds using brev_knuth(). I took care to ensure that my benchmark was not limited by system memory bandwidth.
Native ARM instruction "rbit" can do it with 1 cpu cycle and 1 extra cpu register, impossible to beat.
Presuming that you have an array of bits, how about this:
1. Starting from MSB, push bits into a stack one by one.
2. Pop bits from this stack into another array (or the same array if you want to save space), placing the first popped bit into MSB and going on to less significant bits from there.
Stack stack = new Stack();
Bit[] bits = new Bit[] { 0, 0, 1, 0, 0, 0, 0, 0 };
for (int i = 0; i < bits.Length; i++)
{
stack.push(bits[i]);
}
for (int i = 0; i < bits.Length; i++)
{
bits[i] = stack.pop();
}
This ain't no job for a human! ... but perfect for a machine
This is 2015, 6 years from when this question was first asked. Compilers have since become our masters, and our job as humans is only to help them. So what's the best way to give our intentions to the machine?
Bit-reversal is so common that you have to wonder why the x86's ever growing ISA doesn't include an instruction to do it one go.
The reason: if you give your true concise intent to the compiler, bit reversal should only take ~20 CPU cycles. Let me show you how to craft reverse() and use it:
#include <inttypes.h>
#include <stdio.h>
uint64_t reverse(const uint64_t n,
const uint64_t k)
{
uint64_t r, i;
for (r = 0, i = 0; i < k; ++i)
r |= ((n >> i) & 1) << (k - i - 1);
return r;
}
int main()
{
const uint64_t size = 64;
uint64_t sum = 0;
uint64_t a;
for (a = 0; a < (uint64_t)1 << 30; ++a)
sum += reverse(a, size);
printf("%" PRIu64 "\n", sum);
return 0;
}
Compiling this sample program with Clang version >= 3.6, -O3, -march=native (tested with Haswell), gives artwork-quality code using the new AVX2 instructions, with a runtime of 11 seconds processing ~1 billion reverse()s. That's ~10 ns per reverse(), with .5 ns CPU cycle assuming 2 GHz puts us at the sweet 20 CPU cycles.
You can fit 10 reverse()s in the time it takes to access RAM once for a single large array!
You can fit 1 reverse() in the time it takes to access an L2 cache LUT twice.
Caveat: this sample code should hold as a decent benchmark for a few years, but it will eventually start to show its age once compilers are smart enough to optimize main() to just printf the final result instead of really computing anything. But for now it works in showcasing reverse().
Of course the obvious source of bit-twiddling hacks is here:
http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious
Implementation with low memory and fastest.
private Byte BitReverse(Byte bData)
{
Byte[] lookup = { 0, 8, 4, 12,
2, 10, 6, 14 ,
1, 9, 5, 13,
3, 11, 7, 15 };
Byte ret_val = (Byte)(((lookup[(bData & 0x0F)]) << 4) + lookup[((bData & 0xF0) >> 4)]);
return ret_val;
}
Well, this is basically the same as the first "reverse()" but it is 64 bit and only needs one immediate mask to be loaded from the instruction stream. GCC creates code without jumps, so this should be pretty fast.
#include <stdio.h>
static unsigned long long swap64(unsigned long long val)
{
#define ZZZZ(x,s,m) (((x) >>(s)) & (m)) | (((x) & (m))<<(s));
/* val = (((val) >>16) & 0xFFFF0000FFFF) | (((val) & 0xFFFF0000FFFF)<<16); */
val = ZZZZ(val,32, 0x00000000FFFFFFFFull );
val = ZZZZ(val,16, 0x0000FFFF0000FFFFull );
val = ZZZZ(val,8, 0x00FF00FF00FF00FFull );
val = ZZZZ(val,4, 0x0F0F0F0F0F0F0F0Full );
val = ZZZZ(val,2, 0x3333333333333333ull );
val = ZZZZ(val,1, 0x5555555555555555ull );
return val;
#undef ZZZZ
}
int main(void)
{
unsigned long long val, aaaa[16] =
{ 0xfedcba9876543210,0xedcba9876543210f,0xdcba9876543210fe,0xcba9876543210fed
, 0xba9876543210fedc,0xa9876543210fedcb,0x9876543210fedcba,0x876543210fedcba9
, 0x76543210fedcba98,0x6543210fedcba987,0x543210fedcba9876,0x43210fedcba98765
, 0x3210fedcba987654,0x210fedcba9876543,0x10fedcba98765432,0x0fedcba987654321
};
unsigned iii;
for (iii=0; iii < 16; iii++) {
val = swap64 (aaaa[iii]);
printf("A[]=%016llX Sw=%016llx\n", aaaa[iii], val);
}
return 0;
}
I was curious how fast would be the obvious raw rotation.
On my machine (i7#2600), the average for 1,500,150,000 iterations was 27.28 ns (over a a random set of 131,071 64-bit integers).
Advantages: the amount of memory needed is little and the code is simple. I would say it is not that large, either. The time required is predictable and constant for any input (128 arithmetic SHIFT operations + 64 logical AND operations + 64 logical OR operations).
I compared to the best time obtained by #Matt J - who has the accepted answer. If I read his answer correctly, the best he has got was 0.631739 seconds for 1,000,000 iterations, which leads to an average of 631 ns per rotation.
The code snippet I used is this one below:
unsigned long long reverse_long(unsigned long long x)
{
return (((x >> 0) & 1) << 63) |
(((x >> 1) & 1) << 62) |
(((x >> 2) & 1) << 61) |
(((x >> 3) & 1) << 60) |
(((x >> 4) & 1) << 59) |
(((x >> 5) & 1) << 58) |
(((x >> 6) & 1) << 57) |
(((x >> 7) & 1) << 56) |
(((x >> 8) & 1) << 55) |
(((x >> 9) & 1) << 54) |
(((x >> 10) & 1) << 53) |
(((x >> 11) & 1) << 52) |
(((x >> 12) & 1) << 51) |
(((x >> 13) & 1) << 50) |
(((x >> 14) & 1) << 49) |
(((x >> 15) & 1) << 48) |
(((x >> 16) & 1) << 47) |
(((x >> 17) & 1) << 46) |
(((x >> 18) & 1) << 45) |
(((x >> 19) & 1) << 44) |
(((x >> 20) & 1) << 43) |
(((x >> 21) & 1) << 42) |
(((x >> 22) & 1) << 41) |
(((x >> 23) & 1) << 40) |
(((x >> 24) & 1) << 39) |
(((x >> 25) & 1) << 38) |
(((x >> 26) & 1) << 37) |
(((x >> 27) & 1) << 36) |
(((x >> 28) & 1) << 35) |
(((x >> 29) & 1) << 34) |
(((x >> 30) & 1) << 33) |
(((x >> 31) & 1) << 32) |
(((x >> 32) & 1) << 31) |
(((x >> 33) & 1) << 30) |
(((x >> 34) & 1) << 29) |
(((x >> 35) & 1) << 28) |
(((x >> 36) & 1) << 27) |
(((x >> 37) & 1) << 26) |
(((x >> 38) & 1) << 25) |
(((x >> 39) & 1) << 24) |
(((x >> 40) & 1) << 23) |
(((x >> 41) & 1) << 22) |
(((x >> 42) & 1) << 21) |
(((x >> 43) & 1) << 20) |
(((x >> 44) & 1) << 19) |
(((x >> 45) & 1) << 18) |
(((x >> 46) & 1) << 17) |
(((x >> 47) & 1) << 16) |
(((x >> 48) & 1) << 15) |
(((x >> 49) & 1) << 14) |
(((x >> 50) & 1) << 13) |
(((x >> 51) & 1) << 12) |
(((x >> 52) & 1) << 11) |
(((x >> 53) & 1) << 10) |
(((x >> 54) & 1) << 9) |
(((x >> 55) & 1) << 8) |
(((x >> 56) & 1) << 7) |
(((x >> 57) & 1) << 6) |
(((x >> 58) & 1) << 5) |
(((x >> 59) & 1) << 4) |
(((x >> 60) & 1) << 3) |
(((x >> 61) & 1) << 2) |
(((x >> 62) & 1) << 1) |
(((x >> 63) & 1) << 0);
}
You might want to use the standard template library. It might be slower than the above mentioned code. However, it seems to me clearer and easier to understand.
#include<bitset>
#include<iostream>
template<size_t N>
const std::bitset<N> reverse(const std::bitset<N>& ordered)
{
std::bitset<N> reversed;
for(size_t i = 0, j = N - 1; i < N; ++i, --j)
reversed[j] = ordered[i];
return reversed;
};
// test the function
int main()
{
unsigned long num;
const size_t N = sizeof(num)*8;
std::cin >> num;
std::cout << std::showbase << std::hex;
std::cout << "ordered = " << num << std::endl;
std::cout << "reversed = " << reverse<N>(num).to_ulong() << std::endl;
std::cout << "double_reversed = " << reverse<N>(reverse<N>(num)).to_ulong() << std::endl;
}
Efficient can mean throughput or latency.
For throughout, see the answer by Anders Cedronius, it’s a good one.
For lower latency, I would recommend this code:
uint32_t reverseBits( uint32_t x )
{
#if defined(__arm__) || defined(__aarch64__)
__asm__( "rbit %0, %1" : "=r" ( x ) : "r" ( x ) );
return x;
#endif
// Flip pairwise
x = ( ( x & 0x55555555 ) << 1 ) | ( ( x & 0xAAAAAAAA ) >> 1 );
// Flip pairs
x = ( ( x & 0x33333333 ) << 2 ) | ( ( x & 0xCCCCCCCC ) >> 2 );
// Flip nibbles
x = ( ( x & 0x0F0F0F0F ) << 4 ) | ( ( x & 0xF0F0F0F0 ) >> 4 );
// Flip bytes. CPUs have an instruction for that, pretty fast one.
#ifdef _MSC_VER
return _byteswap_ulong( x );
#elif defined(__INTEL_COMPILER)
return (uint32_t)_bswap( (int)x );
#else
// Assuming gcc or clang
return __builtin_bswap32( x );
#endif
}
Compilers output: https://godbolt.org/z/5ehd89
Generic
C code. Using 1 byte input data num as example.
unsigned char num = 0xaa; // 1010 1010 (aa) -> 0101 0101 (55)
int s = sizeof(num) * 8; // get number of bits
int i, x, y, p;
int var = 0; // make var data type to be equal or larger than num
for (i = 0; i < (s / 2); i++) {
// extract bit on the left, from MSB
p = s - i - 1;
x = num & (1 << p);
x = x >> p;
printf("x: %d\n", x);
// extract bit on the right, from LSB
y = num & (1 << i);
y = y >> i;
printf("y: %d\n", y);
var = var | (x << i); // apply x
var = var | (y << p); // apply y
}
printf("new: 0x%x\n", new);
How about the following:
uint reverseMSBToLSB32ui(uint input)
{
uint output = 0x00000000;
uint toANDVar = 0;
int places = 0;
for (int i = 1; i < 32; i++)
{
places = (32 - i);
toANDVar = (uint)(1 << places);
output |= (uint)(input & (toANDVar)) >> places;
}
return output;
}
Small and easy (though, 32 bit only).
I thought this is one of the simplest way to reverse the bit.
please let me know if there is any flaw in this logic.
basically in this logic, we check the value of the bit in position.
set the bit if value is 1 on reversed position.
void bit_reverse(ui32 *data)
{
ui32 temp = 0;
ui32 i, bit_len;
{
for(i = 0, bit_len = 31; i <= bit_len; i++)
{
temp |= (*data & 1 << i)? (1 << bit_len-i) : 0;
}
*data = temp;
}
return;
}
unsigned char ReverseBits(unsigned char data)
{
unsigned char k = 0, rev = 0;
unsigned char n = data;
while(n)
{
k = n & (~(n - 1));
n &= (n - 1);
rev |= (128 / k);
}
return rev;
}
I think the simplest method I know follows. MSB is input and LSB is 'reversed' output:
unsigned char rev(char MSB) {
unsigned char LSB=0; // for output
_FOR(i,0,8) {
LSB= LSB << 1;
if(MSB&1) LSB = LSB | 1;
MSB= MSB >> 1;
}
return LSB;
}
// It works by rotating bytes in opposite directions.
// Just repeat for each byte.
// Purpose: to reverse bits in an unsigned short integer
// Input: an unsigned short integer whose bits are to be reversed
// Output: an unsigned short integer with the reversed bits of the input one
unsigned short ReverseBits( unsigned short a )
{
// declare and initialize number of bits in the unsigned short integer
const char num_bits = sizeof(a) * CHAR_BIT;
// declare and initialize bitset representation of integer a
bitset<num_bits> bitset_a(a);
// declare and initialize bitset representation of integer b (0000000000000000)
bitset<num_bits> bitset_b(0);
// declare and initialize bitset representation of mask (0000000000000001)
bitset<num_bits> mask(1);
for ( char i = 0; i < num_bits; ++i )
{
bitset_b = (bitset_b << 1) | bitset_a & mask;
bitset_a >>= 1;
}
return (unsigned short) bitset_b.to_ulong();
}
void PrintBits( unsigned short a )
{
// declare and initialize bitset representation of a
bitset<sizeof(a) * CHAR_BIT> bitset(a);
// print out bits
cout << bitset << endl;
}
// Testing the functionality of the code
int main ()
{
unsigned short a = 17, b;
cout << "Original: ";
PrintBits(a);
b = ReverseBits( a );
cout << "Reversed: ";
PrintBits(b);
}
// Output:
Original: 0000000000010001
Reversed: 1000100000000000
Another loop-based solution that exits quickly when the number is low (in C++ for multiple types)
template<class T>
T reverse_bits(T in) {
T bit = static_cast<T>(1) << (sizeof(T) * 8 - 1);
T out;
for (out = 0; bit && in; bit >>= 1, in >>= 1) {
if (in & 1) {
out |= bit;
}
}
return out;
}
or in C for an unsigned int
unsigned int reverse_bits(unsigned int in) {
unsigned int bit = 1u << (sizeof(T) * 8 - 1);
unsigned int out;
for (out = 0; bit && in; bit >>= 1, in >>= 1) {
if (in & 1)
out |= bit;
}
return out;
}
It seems that many other posts are concerned about speed (i.e best = fastest).
What about simplicity? Consider:
char ReverseBits(char character) {
char reversed_character = 0;
for (int i = 0; i < 8; i++) {
char ith_bit = (c >> i) & 1;
reversed_character |= (ith_bit << (sizeof(char) - 1 - i));
}
return reversed_character;
}
and hope that clever compiler will optimise for you.
If you want to reverse a longer list of bits (containing sizeof(char) * n bits), you can use this function to get:
void ReverseNumber(char* number, int bit_count_in_number) {
int bytes_occupied = bit_count_in_number / sizeof(char);
// first reverse bytes
for (int i = 0; i <= (bytes_occupied / 2); i++) {
swap(long_number[i], long_number[n - i]);
}
// then reverse bits of each individual byte
for (int i = 0; i < bytes_occupied; i++) {
long_number[i] = ReverseBits(long_number[i]);
}
}
This would reverse [10000000, 10101010] into [01010101, 00000001].
For other web-searchers who might encounter this question, here is a summary (for C and JavaScript).
For a complete solution in JavaScript, we can first generate the table:
const BIT_REVERSAL_TABLE = new Array(256)
for (var i = 0; i < 256; ++i) {
var v = i, r = i, s = 7;
for (v >>>= 1; v; v >>>= 1) {
r <<= 1;
r |= v & 1;
--s;
}
BIT_REVERSAL_TABLE[i] = (r << s) & 0xff;
}
This gives us BIT_REVERSAL_TABLE, which is what #MattJ posted:
const BIT_REVERSAL_TABLE = new Uint8Array([
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff
])
Then the algorithms for 8-bit, 16-bit, and 32-bit unsigned integers can be found here:
function reverseBits8(n) {
return BIT_REVERSAL_TABLE[n]
}
function reverseBits16(n) {
return (BIT_REVERSAL_TABLE[(n >> 8) & 0xff] |
BIT_REVERSAL_TABLE[n & 0xff] << 8)
}
function reverseBits32(n) {
return (BIT_REVERSAL_TABLE[n & 0xff] << 24) |
(BIT_REVERSAL_TABLE[(n >>> 8) & 0xff] << 16) |
(BIT_REVERSAL_TABLE[(n >>> 16) & 0xff] << 8) |
BIT_REVERSAL_TABLE[(n >>> 24) & 0xff];
}
Note, the 32-bit version doesn't work in JavaScript (must convert to using BigInts which is straightforward), but should work in a 64-bit language:
log8(0b11000100)
log16(0b1110001001001100)
log32(0b11110010111110111100110010101011)
// 0b11000100 => 0b00100011
// 0b1110001001001100 => 0b0011001001000111
// doesn't work in JS it seems:
// 0b11110010111110111100110010101011 => 0b0-101010110011000010000010110001
function log8(n) {
console.log(`${bits(n, 8)} => ${bits(reverseBits8(n), 8)}`)
}
function log16(n) {
console.log(`${bits(n, 16)} => ${bits(reverseBits16(n), 16)}`)
}
function log32(n) {
console.log(`${bits(n, 32)} => ${bits(reverseBits32(n), 32)}`)
}
function bits(n, size) {
return `0b${n.toString(2).padStart(size, '0')}`
}
Note: This solution works in JavaScript for 32-bits:
function reverseBits32(n) {
let res = 0;
for (let i = 0; i < 32; i++) {
res = (res << 1) + (n & 1);
n = n >>> 1;
}
return res >>> 0;
}
All 3 table based solutions will work fine in C. Here is a rough C version:
#include <stdlib.h>
static uint8_t* BIT_REVERSAL_TABLE;
uint8_t*
make_bit_reversal_table() {
uint8_t *table = malloc(256 * sizeof(uint8_t));
uint8_t i;
for (i = 0; i < 256 ; ++i) {
uint8_t v = i;
uint8_t r = i;
uint8_t s = 7;
for (v = v >> 1; v; v = v >> 1) {
r <<= 1;
r |= v & 1;
--s;
}
table[i] = (r << s) & 0xff;
}
return table;
}
uint8_t
reverse_bits_8(uint8_t n) {
return BIT_REVERSAL_TABLE[n];
}
uint16_t
reverse_bits_16(uint16_t n)
{
return (BIT_REVERSAL_TABLE[(n >> 8) & 0xff]
| BIT_REVERSAL_TABLE[n & 0xff] << 8);
}
uint32_t
reverse_bits_32(uint32_t n) {
return (BIT_REVERSAL_TABLE[n & 0xff] << 24)
| (BIT_REVERSAL_TABLE[(n >> 8) & 0xff] << 16)
| (BIT_REVERSAL_TABLE[(n >> 16) & 0xff] << 8)
| BIT_REVERSAL_TABLE[(n >> 24) & 0xff];
}
int
main(void) {
BIT_REVERSAL_TABLE = make_bit_reversal_table();
return 0;
}
Bit reversal in pseudo code
source -> byte to be reversed b00101100
destination -> reversed, also needs to be of unsigned type so sign bit is not propogated down
copy into temp so original is unaffected, also needs to be of unsigned type so that sign bit is not shifted in automaticaly
bytecopy = b0010110
LOOP8: //do this 8 times
test if bytecopy is < 0 (negative)
set bit8 (msb) of reversed = reversed | b10000000
else do not set bit8
shift bytecopy left 1 place
bytecopy = bytecopy << 1 = b0101100 result
shift result right 1 place
reversed = reversed >> 1 = b00000000
8 times no then up^ LOOP8
8 times yes then done.
My simple solution
BitReverse(IN)
OUT = 0x00;
R = 1; // Right mask ...0000.0001
L = 0; // Left mask 1000.0000...
L = ~0;
L = ~(i >> 1);
int size = sizeof(IN) * 4; // bit size
while(size--){
if(IN & L) OUT = OUT | R; // start from MSB 1000.xxxx
if(IN & R) OUT = OUT | L; // start from LSB xxxx.0001
L = L >> 1;
R = R << 1;
}
return OUT;
This is for 32 bit, we need to change the size if we consider 8 bits.
void bitReverse(int num)
{
int num_reverse = 0;
int size = (sizeof(int)*8) -1;
int i=0,j=0;
for(i=0,j=size;i<=size,j>=0;i++,j--)
{
if((num >> i)&1)
{
num_reverse = (num_reverse | (1<<j));
}
}
printf("\n rev num = %d\n",num_reverse);
}
Reading the input integer "num" in LSB->MSB order and storing in num_reverse in MSB->LSB order.