What are the good strategies to combat noise in decision tree?
In my training data,
I have two records with the same attributes but they give different classification.
Female, Luxury, LV, Yes
Female, Luxury, LV, No
Based on my reading, it says to return the plurality classification of these two records.
But that will raise a problem when i want to make a prediction because the output of my prediction should be either yes or no.
So, trying to find out what are the strategies I can use in this case to predict.
Thank you.
When the class prediction is undecided:
The easiest (and common) approach is to predict the majority class.
Get some more information. For example include additional attributes (if available) or get more training samples (if available).
Remove some information. The intention is to remove as many sources of noise as possible while preserving the predictive information as much as possible. Commonly it's done by removing useless attributes. In the case of tree it can be done by pruning. Eventually you can remove outliers (like wrongly measured samples) but you have to know which sample is the outlier.
Related
I have experience dealing with Neural Networks, specifically ones of the Back-Propagating nature, and I know that of the inputs passed to the trainer, dependencies between inputs are part of the resulting models knowledge when a hidden layer is introduced.
Is the same true for decision networks?
I have found that information around these algorithms (ID3) etc somewhat hard to find. I have been able to find the actual algorithms, but information such as expected/optimal dataset formats and other overviews are rare.
Thanks.
Decision Trees are actually very easy to provide data to because all they need is a table of data, and which column out of that data what feature (or column) you want to predict on. That data can be discrete or continuous for any feature. Now there are several flavors of decision trees with different support for continuous and discrete values. And they work differently so understanding how each one works can be challenging.
Different decision tree algorithms with comparison of complexity or performance
Depending on the type of algorithm you are interested in it can be hard to find information without reading the actual papers if you want to try and implement it. I've implemented the CART algorithm, and the only option for that was to find the original 200 page book about it. Most of other treatments only discuss ideas like splitting with enough detail, but fail to discuss any other aspect at more than a high level.
As for if they take into account the dependencies between things. I believe it only assumes dependence between each input feature and the prediction feature. If the input was independent from the prediction feature you couldn't use it as a split criteria. But, between other input features I believe they must be independent of each other. I'd have to check the book to ensure that was true or not, but off the top of my head I think that's true.
Specifically, their most recent implementation.
http://www.numenta.com/htm-overview/htm-algorithms.php
Essentially, I'm asking whether non-euclidean relationships, or relationships in patterns that exceed the dimensionality of the inputs, can be effectively inferred by the algorithm in its present state?
HTM uses Euclidean geometry to determine "neighborship" when analyzing patterns. Consistently framed input causes the algorithm to exhibit predictive behavior, and sequence length is practically unlimited. This algorithm learns very well - but I'm wondering whether it has the capacity to infer nonlinear attributes from its input data.
For example, if you input the entire set of texts from Project Gutenberg, it's going to pick up on the set of probabilistic rules that comprise English spelling, grammar, and readily apparent features from the subject matter, such as gender associations with words, and so forth. These are first level "linear" relations, and can be easily defined with probabilities in a logical network.
A nonlinear relation would be an association of assumptions and implications, such as "Time flies like an arrow, fruit flies like a banana." If correctly framed, the ambiguity of the sentence causes a predictive interpretation of the sentence to generate many possible meanings.
If the algorithm is capable of "understanding" nonlinear relations, then it would be able to process the first phrase and correctly identify that "Time flies" is talking about time doing something, and "fruit flies" are a type of bug.
The answer to the question is probably a simple one to find, but I can't decide either way. Does mapping down the input into a uniform, 2d, Euclidean plane preclude the association of nonlinear attributes of the data?
If it doesn't prevent nonlinear associations, my assumption would then be that you could simply vary the resolution, repetition, and other input attributes to automate the discovery of nonlinear relations - in effect, adding a "think harder" process to the algorithm.
From what I understand of HTM's, the structure of layers and columns mimics the structure of the neocortex. See appendix B here: http://www.numenta.com/htm-overview/education/HTM_CorticalLearningAlgorithms.pdf
So the short answer would be that since the brain can understand non-linear phenomenon with this structure, so can an HTM.
Initial, instantaneous sensory input is indeed mapped to 2D regions within an HTM. This does not limit HTM's to dealing with 2D representations any more than a one dimensional string of bits is limited to representing only one dimensional things. It's just a way of encoding stuff so that sparse distributed representations can be formed and their efficiencies can be taken advantage of.
To answer your question about Project Gutenberg, I don't think an HTM will really understand language without first understanding the physical world on which language is based and creates symbols for. That said, this is a very interesting sequence for an HTM, since predictions are only made in one direction, and in a way the understanding of what's happening to the fruit goes backwards. i.e. I see the pattern 'flies like a' and assume the phrase applies to the fruit the same way it did to time. HTM's do group subsequent input (words in this case) together at higher levels, so if you used Fuzzy Grouping (perhaps) as Davide Maltoni has shown to be effective, the two halves of the sentence could be grouped together into the same high level representation and feedback could be sent down linking the two specific sentences. Numenta, to my knowledge has not done too much with feedback messages yet, but it's definitely part of the theory.
The software which runs the HTM is called NuPIC (Numenta Platform for Intelligent Computing). A NuPIC region (representing a region of neocortex) can be configured to either use topology or not, depending on the type of data it's receiving.
If you use topology, the usual setup maps each column to a set of inputs which is centred on the corresponding position in the input space (the connections will be selected randomly according to a probability distribution which favours the centre). The spatial pattern recognising component of NuPIC, known as the Spatial Pooler (SP), will then learn to recognise and represent localised topological features in the data.
There is absolutely no restriction on the "linearity" of the input data which NuPIC can learn. NuPIC can learn sequences of spatial patterns in extremely high-dimensional spaces, and is limited only by the presence (or lack of) spatial and temporal structure in the data.
To answer the specific part of your question, yes, NuPIC can learn non-Euclidean and non-linear relationships, because NuPIC is not, and cannot be modelled by, a linear system. On the other hand, it seems logically impossible to infer relationships of a dimensionality which exceeds that of the data.
The best place to find out about HTM and NuPIC, its Open Source implementation, is at NuPIC's community website (and mailing list).
Yes, It can do non-linear. Basically it is multilayer. And all multilayer neural networks can infer non linear relationships. And I think the neighborship is calculated locally. If it is calcualted locally then globally it can be piece wise non linear for example look at Local Linear Embedding.
Yes HTM uses euclidean geometry to connect synapses, but this is only because it is mimicking a biological system that sends out dendrites and creates connections to other nearby cells that have strong activation at that point in time.
The Cortical Learning Algorithm (CLA) is very good at predicting sequences, so it would be good at determining "Time flies like an arrow, fruit flies like a" and predict "banana" if it has encountered this sequence before or something close to it. I don't think it could infer that a fruit fly is a type of insect unless you trained it on that sequence. Thus the T for Temporal. HTMs are sequence association compressors and retrievers (a form of memory). To get the pattern out of the HTM you play in a sequence and it will match the strongest representation it has encountered to date and predict the next bits of the sequence. It seems to be very good at this and the main application for HTMs right now are predicting sequences and anomalies out of streams of data.
To get more complex representations and more abstraction you would cascade a trained HTMs outputs to another HTMs inputs along with some other new sequence based input to correlate to. I suppose you could wire in some feedback and do some other tricks to combine multiple HTMs, but you would need lots of training on primitives first, just like a baby does, before you will ever get something as sophisticated as associating concepts based on syntax of the written word.
ok guys, dont get silly, htms just copy data into them, if you want a concept, its going to be a group of the data, and then you can have motor depend on the relation, and then it all works.
our cortex, is probably way better, and actually generates new images, but a computer cortex WONT, but as it happens, it doesnt matter, and its very very useful already.
but drawing concepts from a data pool, is tricky, the easiest way to do it is by recording an invarient combination of its senses, and when it comes up, associate everything else to it, this will give you organism or animal like intelligence.
drawing harder relations, is what humans do, and its ad hoc logic, imagine a set explaining the most ad hoc relation, and then it slowly gets more and more specific, until it gets to exact motor programs... and all knowledge you have is controlling your motor, and making relations that trigger pathways in the cortex, and tell it where to go, from the blast search that checks all motor, and finds the most successful trigger.
woah that was a mouthful, but watch out dummies, you wont get no concepts from a predictive assimilator, which is what htm is, unless you work out how people draw relations in the data pool, like a machine, and if you do that, its like a program thats programming itself.
no shit.
I would like to have a word (e.g. "Apple) and process a text (or maybe more). I'd like to come up with related terms. For example: process a document for Apple and find that iPod, iPhone, Mac are terms related to "Apple".
Any idea on how to solve this?
As a starting point: your question relates to text mining.
There are two ways: a statistical approach, and one form natural language processing (nlp).
I do not know much about nlp, but can say something about the statistical approach:
You need some vector space representation of your documents, see
http://en.wikipedia.org/wiki/Vector_space_model
http://en.wikipedia.org/wiki/Document-term_matrix
http://en.wikipedia.org/wiki/Tf%E2%80%93idf
In order to learn semantics, that is: different words mean the same, or one word can have different meanings, you need a large text corpus for learning. As I said this is a statistical approach, so you need lots of samples.
http://www.daviddlewis.com/resources/testcollections/
Maybe you have lots of documents from the context you are going to use. That is the best situation.
You have to retrieve latent factors from this corpus. Most common are:
LSA (http://en.wikipedia.org/wiki/Latent_semantic_analysis)
PLSA (http://en.wikipedia.org/wiki/Probabilistic_latent_semantic_analysis)
nonnegative matrix factorization (http://en.wikipedia.org/wiki/Non-negative_matrix_factorization)
latent dirichlet allocation (http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation)
These methods involve lots of math. Either you dig it, or you have to find good libraries.
I can recommend the following books:
http://www.oreilly.de/catalog/9780596529321/toc.html
http://www.oreilly.de/catalog/9780596516499/index.html
Like all of AI, it's a very difficult problem. You should look into natural language processing to learn about some of the issues.
One very, very simplistic approach can be to build a 2d-table of words, with for each pair of words the average distance (in words) that they appear in the text. Obviously you'll need to limit the maximum distance considered, and possibly the number of words as well. Then, after processing a lot of text you'll have an indicator of how often certain words appear in the same context.
What I would do is get all the words in a text and make a frequency list (how often each word appears). Maybe also add to it a heuristic factor on how far the word is from "Apple". Then read multiple documents, and cross out words that are not common in all the documents. Then prioritize based on the frequency and distance from the keyword. Of course, you will get a lot of garbage and possibly miss some relevant words, but by adjusting the heuristics you should get at least some decent matches.
The technique that you are looking for is called Latent Semantic Analysis (LSA). It is also sometimes called Latent Semantic Indexing. The technique operates on the idea that related concepts occur together in text. It uses statistics to build the word relationships. Given a large enough corpus of documents it will definitely solve your problem of finding related words.
Take a look at vector space models.
I'm wondering how people test artificial intelligence algorithms in an automated fashion.
One example would be for the Turing Test - say there were a number of submissions for a contest. Is there any conceivable way to score candidates in an automated fashion - other than just having humans test them out.
I've also seen some data sets (obscured images of numbers/letters, groups of photos, etc) that can be fed in and learned over time. What good resources are out there for this.
One challenge I see: you don't want an algorithm that tailors itself to the test data over time, since you are trying to see how well it does in the general case. Are there any techniques to ensure it doesn't do this? Such as giving it a random test each time, or averaging its results over a bunch of random tests.
Basically, given a bunch of algorithms, I want some automated process to feed it data and see how well it "learned" it or can predict new stuff it hasn't seen yet.
This is a complex topic - good AI algorithms are generally the ones which can generalize well to "unseen" data. The simplest method is to have two datasets: a training set and an evaluation set used for measuring the performances. But generally, you want to "tune" your algorithm so you may want 3 datasets, one for learning, one for tuning, and one for evaluation. What defines tuning depends on your algorithm, but a typical example is a model where you have a few hyper-parameters (for example parameters in your Bayesian prior under the Bayesian view of learning) that you would like to tune on a separate dataset. The learning procedure would already have set a value for it (or maybe you hardcoded their value), but having enough data may help so that you can tune them separately.
As for making those separate datasets, there are many ways to do so, for example by dividing the data you have available into subsets used for different purposes. There is a tradeoff to be made because you want as much data as possible for training, but you want enough data for evaluation too (assuming you are in the design phase of your new algorithm/product).
A standard method to do so in a systematic way from a known dataset is cross validation.
Generally when it comes to this sort of thing you have two datasets - one large "training set" which you use to build and tune the algorithm, and a separate smaller "probe set" that you use to evaluate its performance.
#Anon has the right of things - training and what I'll call validation sets. That noted, the bits and pieces I see about developments in this field point at two things:
Bayesian Classifiers: there's something like this probably filtering your email. In short you train the algorithm to make a probabilistic decision if a particular item is part of a group or not (e.g. spam and ham).
Multiple Classifiers: this is the approach that the winning group involved in the Netflix challenge took, whereby it's not about optimizing one particular algorithm (e.g. Bayesian, Genetic Programming, Neural Networks, etc..) by combining several to get a better result.
As for data sets Weka has several available. I haven't explored other libraries for data sets, but mloss.org appears to be a good resource. Finally data.gov offers a lot of sets that provide some interesting opportunities.
Training data sets and test sets are very common for K-means and other clustering algorithms, but to have something that's artificially intelligent without supervised learning (which means having a training set) you are building a "brain" so-to-speak based on:
In chess: all possible future states possible from the current gameState.
In most AI-learning (reinforcement learning) you have a problem where the "agent" is trained by doing the game over and over. Basically you ascribe a value to every state. Then you assign an expected value of each possible action at a state.
So say you have S states and a actions per state (although you might have more possible moves in one state, and not as many in another), then you want to figure out the most-valuable states from s to be in, and the most valuable actions to take.
In order to figure out the value of states and their corresponding actions, you have to iterate the game through. Probabilistically, a certain sequence of states will lead to victory or defeat, and basically you learn which states lead to failure and are "bad states". You also learn which ones are more likely to lead to victory, and these are subsequently "good" states. They each get a mathematical value associated, usually as an expected reward.
Reward from second-last state to a winning state: +10
Reward if entering a losing state: -10
So the states that give negative rewards then give negative rewards backwards, to the state that called the second-last state, and then the state that called the third-last state and so-on.
Eventually, you have a mapping of expected reward based on which state you're in, and based on which action you take. You eventually find the "optimal" sequence of steps to take. This is often referred to as an optimal policy.
It is true of the converse that normal courses of actions that you are stepping-through while deriving the optimal policy are called simply policies and you are always implementing a certain "policy" with respect to Q-Learning.
Usually the way of determining the reward is the interesting part. Suppose I reward you for each state-transition that does not lead to failure. Then the value of walking all the states until I terminated is however many increments I made, however many state transitions I had.
If certain states are extremely unvaluable, then loss is easy to avoid because almost all bad states are avoided.
However, you don't want to discourage discovery of new, potentially more-efficient paths that don't follow just this-one-works, so you want to reward and punish the agent in such a way as to ensure "victory" or "keeping the pole balanced" or whatever as long as possible, but you don't want to be stuck at local maxima and minima for efficiency if failure is too painful, so no new, unexplored routes will be tried. (Although there are many approaches in addition to this one).
So when you ask "how do you test AI algorithms" the best part is is that the testing itself is how many "algorithms" are constructed. The algorithm is designed to test a certain course-of-action (policy). It's much more complicated than
"turn left every half mile"
it's more like
"turn left every half mile if I have turned right 3 times and then turned left 2 times and had a quarter in my left pocket to pay fare... etc etc"
It's very precise.
So the testing is usually actually how the A.I. is being programmed. Most models are just probabilistic representations of what is probably good and probably bad. Calculating every possible state is easier for computers (we thought!) because they can focus on one task for very long periods of time and how much they remember is exactly how much RAM you have. However, we learn by affecting neurons in a probabilistic manner, which is why the memristor is such a great discovery -- it's just like a neuron!
You should look at Neural Networks, it's mindblowing. The first time I read about making a "brain" out of a matrix of fake-neuron synaptic connections... A brain that can "remember" basically rocked my universe.
A.I. research is mostly probabilistic because we don't know how to make "thinking" we just know how to imitate our own inner learning process of try, try again.
This is for http://cssfingerprint.com
I have a system (see about page on site for details) where:
I need to output a ranked list, with confidences, of categories that match a particular feature vector
the binary feature vectors are a list of site IDs & whether this session detected a hit
feature vectors are, for a given categorization, somewhat noisy (sites will decay out of history, and people will visit sites they don't normally visit)
categories are a large, non-closed set (user IDs)
my total feature space is approximately 50 million items (URLs)
for any given test, I can only query approx. 0.2% of that space
I can only make the decision of what to query, based on results so far, ~10-30 times, and must do so in <~100ms (though I can take much longer to do post-processing, relevant aggregation, etc)
getting the AI's probability ranking of categories based on results so far is mildly expensive; ideally the decision will depend mostly on a few cheap sql queries
I have training data that can say authoritatively that any two feature vectors are the same category but not that they are different (people sometimes forget their codes and use new ones, thereby making a new user id)
I need an algorithm to determine what features (sites) are most likely to have a high ROI to query (i.e. to better discriminate between plausible-so-far categories [users], and to increase certainty that it's any given one).
This needs to take into balance exploitation (test based on prior test data) and exploration (test stuff that's not been tested enough to find out how it performs).
There's another question that deals with a priori ranking; this one is specifically about a posteriori ranking based on results gathered so far.
Right now, I have little enough data that I can just always test everything that anyone else has ever gotten a hit for, but eventually that won't be the case, at which point this problem will need to be solved.
I imagine that this is a fairly standard problem in AI - having a cheap heuristic for what expensive queries to make - but it wasn't covered in my AI class, so I don't actually know whether there's a standard answer. So, relevant reading that's not too math-heavy would be helpful, as well as suggestions for particular algorithms.
What's a good way to approach this problem?
If you know nothing about the features you have not sampled, then you have little to go on when deciding whether to explore or exploit your data. If you can express your ROI as a single number following every query, then there is an optimal way of making this choice by keeping track of the upper confidence bounds. See the paper Finite-time Analysis of Multiarmed Bandit Problem.