store data in array from loop in matlab - arrays

I want to store data coming from for-loops in an array. How can I do that?
sample output:
for x=1:100
for y=1:100
Diff(x,y) = B(x,y)-C(x,y);
if (Diff(x,y) ~= 0)
% I want to store these values of coordinates in array
% and find x-max,x-min,y-max,y-min
fprintf('(%d,%d)\n',x,y);
end
end
end
Can anybody please tell me how can i do that. Thanks
Marry

So you want lists of the x and y (or row and column) coordinates at which B and C are different. I assume B and C are matrices. First, you should vectorize your code to get rid of the loops, and second, use the find() function:
Diff = B - C; % vectorized, loops over indices automatically
[list_x, list_y] = find(Diff~=0);
% finds the row and column indices at which Diff~=0 is true
Or, even shorter,
[list_x, list_y] = find(B~=C);
Remember that the first index in matlab is the row of the matrix, and the second index is the column; if you tried to visualize your matrices B or C or Diff by using imagesc, say, what you're calling the X coordinate would actually be displayed in the vertical direction, and what you're calling the Y coordinate would be displayed in the horizontal direction. To be a little more clear, you could say instead
[list_rows, list_cols] = find(B~=C);
To then find the maximum and minimum, use
maxrow = max(list_rows);
minrow = min(list_rows);
and likewise for list_cols.

If B(x,y) and C(x,y) are functions that accept matrix input, then instead of the double-for loop you can do
[x,y] = meshgrid(1:100);
Diff = B(x,y)-C(x,y);
mins = min(Diff);
maxs = max(Diff);
min_x = mins(1); min_y = mins(2);
max_x = maxs(1); max_y = maxs(2);
If B and C are just matrices holding data, then you can do
Diff = B-C;
But really, I need more detail before I can answer this completely.
So: are B and C functions, matrices? You want to find min_x, max_x, but in the example you give that's just 1 and 100, respectively, so...what do you mean?

Related

How do I delete all-zero pages from a 3D matrix in a loop?

How can I delete all-zero pages from a 3D matrix in a loop?
I have come up with the following code, though it is not 'entirely' correct, if at all. I am using MATLAB 2019b.
%pseudo data
x = zeros(3,2,2);
y = ones(3,2,2);
positions = 2:4;
y(positions) = 0;
xy = cat(3,x,y); %this is a 3x2x4 array; (:,:,1) and (:,:,2) are all zeros,
% (:,:,3) is ones and zeros, and (:,:,4) is all ones
%my aim is to delete the arrays that are entirely zeros i.e. xy(:,:,1) and xy(:,:,2),
%and this is what I have come up with; it doesn't delete the arrays but instead,
%all the ones.
for ii = 1:size(xy,3)
for idx = find(xy(:,:,ii) == 0)
xy(:,:,ii) = strcmp(xy, []);
end
end
Use any to find indices of the slices with at least one non-zero value. Use these indices to extract the required result.
idx = any(any(xy)); % idx = any(xy,[1 2]); for >=R2018b
xy = xy(:,:,idx);
I am unsure what you'd expect your code to do, especially given you're comparing strings in all-numerical arrays. Here's a piece of code which does what you desire:
x = zeros(3,2,2);
y = ones(3,2,2);
positions = 2:4;
y(positions) = 0;
xy = cat(3,x,y);
idx = ones(size(xy,3),1,'logical'); % initialise catching array
for ii = 1:size(xy,3)
if sum(nnz(xy(:,:,ii)),'all')==0 % If the third dimension is all zeros
idx(ii)= false; % exclude it
end
end
xy = xy(:,:,idx); % reindex to get rid of all-zero pages
The trick here is that sum(xy(:,:,ii),'all')==0 is zero iff all elements on the given page (third dimension) are zero. In that case, exclude it from idx. Then, in the last row, simply re-index using logical indexing to retain only pages whit at least one non-zero element.
You can do it even faster, without a loop, using sum(a,[1 2]), i.e. the vectorial-dimension sum:
idx = sum(nnz(xy),[1 2])~=0;
xy = xy(:,:,idx);

Matrix calculations without loops in MATLAB

I have an issue with a code performing some array operations. It is too slow, because I use loops and input data are quite big. It was the easiest way for me, but now I am looking for something faster than for loops. I was trying to optimize or rewrite code, but unsuccessful. I really aprecciate Your help.
In my code I have three arrays x1, y1 (coordinates of points in grid), g1 (values in the points) and for example their size is 300 x 300. I treat each matrix as composition of 9 and I make calculation for points in the middle one. For example I start with g1(101,101), but I am using data from g1(1:201,1:201)=g2. I need to calculate distance from each point of g1(1:201,1:201) to g1(101,101) (ll matrix), then I calculate nn as it is in the code, next I find value for g1(101,101) from nn and put it in N array. Then I go to g1(101,102) and so on until g1(200,200), where in this last case g2=g1(99:300,99:300).
As i said, this code is not very efficient, even I have to use larger arrays than I gave in the example, it takes too much time. I hope I explain enough clearly what I expect from the code. I was thinking of using arrayfun, but I have never worked with this function, so I don't know how should use it, however it seems to me it won't handle. Maybe there are other solutions, however I couldn't find anything apropriate.
tic
x1=randn(300,300);
y1=randn(300,300);
g1=randn(300,300);
m=size(g1,1);
n=size(g1,2);
w=1/3*m;
k=1/3*n;
N=zeros(w,k);
for i=w+1:2*w
for j=k+1:2*k
x=x1(i,j);
y=y1(i,j);
x2=y1(i-k:i+k,j-w:j+w);
y2=y1(i-k:i+k,j-w:j+w);
g2=g1(i-k:i+k,j-w:j+w);
ll=1./sqrt((x2-x).^2+(y2-y).^2);
ll(isinf(ll))=0;
nn=ifft2(fft2(g2).*fft2(ll));
N(i-w,j-k)=nn(w+1,k+1);
end
end
czas=toc;
For what it's worth, arrayfun() is just a wrapper for a for loop, so it wouldn't lead to any performance improvements. Also, you probably have a typo in the definition of x2, I'll assume that it depends on x1. Otherwise it would be a superfluous variable. Also, your i<->w/k, j<->k/w pairing seems inconsistent, you should check that as well. Also also, just timing with tic/toc is rarely accurate. When profiling your code, put it in a function and run the timing multiple times, and exclude the variable generation from the timing. Even better: use the built-in profiler.
Disclaimer: this solution will likely not help for your actual problem due to its huge memory need. For your input of 300x300 matrices this works with arrays of size 300x300x100x100, which is usually a no-go. Still, it's here for reference with a smaller input size. I wanted to add a solution based on nlfilter(), but your problem seems to be too convoluted to be able to use that.
As always with vectorization, you can do it faster if you can spare the memory for it. You are trying to work with matrices of size [2*k+1,2*w+1] for each [i,j] index. This calls for 4d arrays, of shape [2*k+1,2*w+1,w,k]. For each element [i,j] you have a matrix with indices [:,:,i,j] to treat together with the corresponding elements of x1 and y1. It also helps that fft2 accepts multidimensional arrays.
Here's what I mean:
tic
x1 = randn(30,30); %// smaller input for tractability
y1 = randn(30,30);
g1 = randn(30,30);
m = size(g1,1);
n = size(g1,2);
w = 1/3*m;
k = 1/3*n;
%// these will be indexed on the fly:
%//x = x1(w+1:2*w,k+1:2*k); %// size [w,k]
%//y = x1(w+1:2*w,k+1:2*k); %// size [w,k]
x2 = zeros(2*k+1,2*w+1,w,k); %// size [2*k+1,2*w+1,w,k]
y2 = zeros(2*k+1,2*w+1,w,k); %// size [2*k+1,2*w+1,w,k]
g2 = zeros(2*k+1,2*w+1,w,k); %// size [2*k+1,2*w+1,w,k]
%// manual definition for now, maybe could be done smarter:
for ii=w+1:2*w %// don't use i and j as variables
for jj=k+1:2*k %// don't use i and j as variables
x2(:,:,ii-w,jj-k) = x1(ii-k:ii+k,jj-w:jj+w); %// check w vs k here
y2(:,:,ii-w,jj-k) = y1(ii-k:ii+k,jj-w:jj+w); %// check w vs k here
g2(:,:,ii-w,jj-k) = g1(ii-k:ii+k,jj-w:jj+w); %// check w vs k here
end
end
%// use bsxfun to operate on [2*k+1,2*w+1,w,k] vs [w,k]-sized arrays
%// need to introduce leading singletons with permute() in the latter
%// in order to have shape [1,1,w,k] compatible with the first array
ll = 1./sqrt(bsxfun(#minus,x2,permute(x1(w+1:2*w,k+1:2*k),[3,4,1,2])).^2 ...
+ bsxfun(#minus,y2,permute(y1(w+1:2*w,k+1:2*k),[3,4,1,2])).^2);
ll(isinf(ll)) = 0;
%// compute fft2, operating on [2*k+1,2*w+1,w,k]
%// will return fft2 for each index in the [w,k] subspace
nn = ifft2(fft2(g2).*fft2(ll));
%// we need nn(w+1,k+1,:,:) which is exactly of size [w,k] as needed
N = reshape(nn(w+1,k+1,:,:),[w,k]); %// quicker than squeeze()
N = real(N); %// this solution leaves an imaginary part of around 1e-12
czas=toc;

Matlab: creating 3D arrays as a function of 2D arrays

I want to create 3d arrays that are functions of 2d arrays and apply matrix operations on each of the 2D arrays. Right now I am using for loop to create a series of 2d arrays, as in the code below:
for i=1:50
F = [1 0 0; 0 i/10 0; 0 0 1];
B=F*F';
end
Is there a way to do this without the for loop? I tried things such as:
F(2,2) = 0:0.1:5;
and:
f=1:0.1:5;
F=[1 0 0; 0 f 0; 0 0 1];
to create them without the loop, but both give errors of dimension inconsistency.
I also want to perform matrix operations on F in my code, such as
B=F*F';
and want to plot certain components of F as a function of something else. Is it possible to completely eliminate the for loop in such a case?
If I understand what you want correctly, you want 50 2D matrices stacked into a 3D matrix where the middle entry varies from 1/10 to 50/10 = 5 in steps of 1/10. You almost have it correct. What you would need to do is first create a 3D matrix stack, then assign a 3D vector to the middle entry.
Something like this would do:
N = 50;
F = repmat(eye(3,3), [1 1 N]);
F(2,2,:) = (1:N)/10; %// This is 1/10 to 5 in steps of 1/10... or 0.1:0.1:5
First pre-allocate a matrix F that is the identity matrix for all slices, then replace the middle row and middle column of each slice with i/10 for i = 1, 2, ..., 50.
Therefore, to get the ith slice, simply do:
out = F(:,:,i);
Minor Note
I noticed that what you want to do in the end is a matrix multiplication of the 3D matrices. That operation is not defined in MATLAB nor anywhere in a linear algebra context. If you want to multiply each 2D slice independently, you'd be better off using a for loop. Doing this vectorized with native operations isn't supported in this context.
To do it in a loop, you'd do something like this for each slice:
B = zeros(size(F));
for ii = 1 : size(B,3)
B(:,:,ii) = F(:,:,ii)*F(:,:,ii).';
end
... however, examining the properties of your matrix, the only thing that varies is the middle entry. If you perform a matrix multiplication, all of the entries per slice are going to be the same... except for the middle, where the entry is simply itself squared. It doesn't matter if you multiple one slice by the transpose of the other. The transpose of the identity is still the identity.
If your matrices are going to be like this, you can just perform an element-wise multiplication with itself:
B = F.*F;
This will not work if F is anything else but what you have above.
Creating the matrix would be easy:
N = 50;
S = cell(1,N);
S(:) = {eye(3,3)};
F = cat(3, S{:});
F(2,2,:) = (1:N)/10;
Another (faster) way would be:
N = 50;
F = zeros(3,3,N);
F(1,1,:) = 1;
F(2,2,:) = (1:N)/10;
F(3,3,:) = 1;
You then can get the 3rd matrix (for example) by:
F(:,:,3)

Skip some columns when searching a matrix in a loop

I have a matrix, c, and I want to search many times for the index of the positive minimum element
d = min(c(c>0));
[x,y] = find(c == d);
but in the next search I want it to skip the old y.
how to do it?
I want to use x and y in some other calculation.
also I want to find this d minimum just within specific columns in the matrix c like:
j from m+1 to n-1
please help
Define mask = zeros(size(c)); before the loop.
And before finding the minimum use,
newc = c + mask;
d = min(newc(newc>0));
[x,y] = find(newc == d);
mask(:,y) = NaN;
I think you can update the c matrix. I mean:
% In the loop, use it:
[x,y]=find(c==d);
c(:, y) = [];
If c matrix is important, you can use a temporary variable equals to c, instead of using c.

Summing blocks of numbers in a vector in matlab

I need to sum consecutive 96 value blocks in a vector of n (in one case 14112) values. The background is that the values are 15-min temperature measurements and I want to average 96 at a time (1 to 96, 96+1 to 2*96 ... n*96+1 to (n+1)*96) to produce a daily average. This could of course be done in a loop stepping 96 but my question is if there is a more efficient way to accomplish this in Matlab.
By using reshape and mean:
data = randn(1,14112); % example data. Row vector
m = 96; % block size. It is assumed that m divides length(data)
result = mean(reshape(data,m,[]));
As #Dan points out, if the number of elements is not a multiple of the block size some padding is necessary. The following code, due to him, does the necessary padding in the last block while keeping the mean of that block. Thanks also to #DennisJaheruddin for his sugggestion not to modifiy original variable:
data = randn(1,14100); % example data. Row vector
m = 96; % block size
n = length(data);
result = mean(reshape([data repmat(mean(data(n-mod(n,m)+1:n)), 1, m - mod(n, m))], m, []));
Here is an alternate way to nicely deal with the problem, it also works if the lenght of the data is not a nice multiple of the window size:
data = randn(1,14112);
w = 96;
N = numel(data);
M = NaN(w,ceil(N/w));
M(1:N) = data;
nanmean(M)
If you don't want to include partial days at the end, use fix instead of ceil.

Resources