I need to read some objects from console.It is a bit like the battleship game written in C.
Think of it I have a platform of 6x6 array.I am taking the user input from the user and the char 'X' means it is a shaded area in the two dimensional array.I am assigning the chars for the 36 place.The example of the array after user has given the inputs is;
0,0 0,6
X XXX
X X
XX X
X
6,0 6,6
Sorry the output is not too clear.It is the output of the X chars that user had entered.The 'x' chars in the two groups are unioned and so, there are 2 objects in the graph.I need to count the number of the groups.The direction of the X chars is not able to be symetric, all the thing is there may be group of x chars that are unioned and i want to count the groups
Model the problem as the graph (as you already understood): G=(V,E), where V is your grid (or only the x's to be more exact), and E = { (u,v) | there is X in both u and v }
During parsing, save all your coordinates in an container, and map each to a boolean value indicating if it was visited or not.
Now, repeat while there are still non visited x's:
Run a graph discovery algorithm (BFS is an example) from this (not visited) x, and mark all visited x's encountered during the run of the discovery algorithm
The number of iterations (number of times BFS was invoked) is the number of groups.
Related
I'm more interested in the thought process than in the code itself. I'm supposed to find the number of v[i] components in a sorted array such that x < v[i] < y, where x and y are sent as input from the keyboard.
I'm supposed to solve this efficiently using a modified binary search instead of a regular search through the vector.
My problem is that I can't visualize how to implement a binary search in this case, the method just doesn't seem fit to me.
Any thoughts ?
You could do a binary search in the array for x and y. Then you could subtract the index of x from the index of y to get how many items are between them.
You'd actually have to subtract 1 from that result since you are using strictly less-than.
For example, say you have an array:
[3, 6, 8, 10, 14, 39, 41, 100]
Let x=8 and y = 39.
The index of x is 2 and the index of y is 5.
5-2 = 3
3-1 = 2
If x and y are allowed to be values that are not contained in your array, you can still follow the same approach. Search for x and if it is not found, use the index of the element that is just larger than x. Likewise for the index of the element that is just smaller than y.
Supposing the original array v is sorted, just follow those steps:
Use binary search to locate value x in the array - if it's not there (the lower and upper bounds in binary search meet), get the index of closest higher value
Do the same for the y value, get the index of closest lower value if it's not this time
Find out how many items are in between (by subtracting indices and adding 1)
Here's a great article if you're interested: Binary Search
Depending on the values of x and y, if they're the lower and upper limits respectively of numbers within the array, it's as simple as applying a general BS algorithm with those limits in place rather than the general first and last element of the array.
Drawing it up on paper will help.
I am new to Matlab.
Lets say I have an array a = [1:1:1000]
I have to divide this into 50 parts 1-20; 21-40 .... 981-1000.
I am trying to do it this way.
E=1000X
a=[1:E]
n=50
d=E/n
b=[]
for i=0:n
b(i)=a[i:d]
end
But I am unable to get the result.
And the second part I am working on is, depending on another result, say if my answer is 3, the first split array should have a counter and that should be +1, if the answer is 45 the 3rd split array's counter should be +1 and so on and in the end I have to make a histogram of all the counters.
You can do all of this with one function: histc. In your situation:
X = (1:1:1000)';
Edges = (1:20:1000)';
Count = histc(X, Edges);
Essentially, Count contains the number of elements in X that fall into the categories defined in Edges, where Edges is a monotonically increasing vector whose elements define the boundaries of sequential categories. A more common example might be to construct X using a probability density, say, the uniform distribution, eg:
X = 1000 * rand(1000, 1);
Play around with specifications for X and Edges and you should get the idea. If you want the actual histogram plot, look into the hist function.
As for the second part of your question, I'm not really sure what you're asking.
I've been trying to find solution to my problem for more than a week and I couldn't find out anything better than a milion iterations prog, so I think it's time to ask someone to help me.
I've got a 3D array. Let's say, we're talking about the ground and the first layer is a surface.
Another layers are floors below the ground. I have to find deepest path's length, count of isolated caves underground and the size of the biggest cave.
Here's the visualisation of my problem.
Input:
5 5 5 // x, y, z
xxxxx
oxxxx
xxxxx
xoxxo
ooxxx
xxxxx
xxoxx
and so...
Output:
5 // deepest path - starting from the surface
22 // size of the biggest cave
3 // number of izolated caves (red ones) (izolated - cave that doesn't reach the surface)
Note, that even though red cell on the 2nd floor is placed next to green one, It's not the same cave because it's placed diagonally and that doesn't count.
I've been told that the best way to do this, might be using recursive algorithm "divide and rule" however I don't really know how could it look like.
I think you should be able to do it in O(N).
When you parse your input, assign each node a 'caveNumber' initialized to 0. Set it to a valid number whenever you visit a cave:
CaveCount = 0, IsolatedCaveCount=0
AllSizes = new Vector.
For each node,
ProcessNode(size:0,depth:0);
ProcessNode(size,depth):
If node.isCave and !node.caveNumber
if (size==0) ++CaveCount
if (size==0 and depth!=0) IsolatedCaveCount++
node.caveNumber = CaveCount
AllSizes[CaveCount]++
For each neighbor of node,
if (goingDeeper) depth++
ProcessNode(size+1, depth).
You will visit each node 7 times at worst case: once from the outer loop, and possibly once from each of its six neighbors. But you'll only work on each one once, since after that the caveNumber is set, and you ignore it.
You can do the depth tracking by adding a depth parameter to the recursive ProcessNode call, and only incrementing it when visiting a lower neighbor.
The solution shown below (as a python program) runs in time O(n lg*(n)), where lg*(n) is the nearly-constant iterated-log function often associated with union operations in disjoint-set forests.
In the first pass through all cells, the program creates a disjoint-set forest, using routines called makeset(), findset(), link(), and union(), just as explained in section 22.3 (Disjoint-set forests) of edition 1 of Cormen/Leiserson/Rivest. In later passes through the cells, it counts the number of members of each disjoint forest, checks the depth, etc. The first pass runs in time O(n lg*(n)) and later passes run in time O(n) but by simple program changes some of the passes could run in O(c) or O(b) for c caves with a total of b cells.
Note that the code shown below is not subject to the error contained in a previous answer, where the previous answer's pseudo-code contains the line
if (size==0 and depth!=0) IsolatedCaveCount++
The error in that line is that a cave with a connection to the surface might have underground rising branches, which the other answer would erroneously add to its total of isolated caves.
The code shown below produces the following output:
Deepest: 5 Largest: 22 Isolated: 3
(Note that the count of 24 shown in your diagram should be 22, from 4+9+9.)
v=[0b0000010000000000100111000, # Cave map
0b0000000100000110001100000,
0b0000000000000001100111000,
0b0000000000111001110111100,
0b0000100000111001110111101]
nx, ny, nz = 5, 5, 5
inlay, ncells = (nx+1) * ny, (nx+1) * ny * nz
masks = []
for r in range(ny):
masks += [2**j for j in range(nx*ny)][nx*r:nx*r+nx] + [0]
p = [-1 for i in range(ncells)] # parent links
r = [ 0 for i in range(ncells)] # rank
c = [ 0 for i in range(ncells)] # forest-size counts
d = [-1 for i in range(ncells)] # depths
def makeset(x): # Ref: CLR 22.3, Disjoint-set forests
p[x] = x
r[x] = 0
def findset(x):
if x != p[x]:
p[x] = findset(p[x])
return p[x]
def link(x,y):
if r[x] > r[y]:
p[y] = x
else:
p[x] = y
if r[x] == r[y]:
r[y] += 1
def union(x,y):
link(findset(x), findset(y))
fa = 0 # fa = floor above
bc = 0 # bc = floor's base cell #
for f in v: # f = current-floor map
cn = bc-1 # cn = cell#
ml = 0
for m in masks:
cn += 1
if m & f:
makeset(cn)
if ml & f:
union(cn, cn-1)
mr = m>>nx
if mr and mr & f:
union(cn, cn-nx-1)
if m & fa:
union(cn, cn-inlay)
ml = m
bc += inlay
fa = f
for i in range(inlay):
findset(i)
if p[i] > -1:
d[p[i]] = 0
for i in range(ncells):
if p[i] > -1:
c[findset(i)] += 1
if d[p[i]] > -1:
d[p[i]] = max(d[p[i]], i//inlay)
isola = len([i for i in range(ncells) if c[i] > 0 and d[p[i]] < 0])
print "Deepest:", 1+max(d), " Largest:", max(c), " Isolated:", isola
It sounds like you're solving a "connected components" problem. If your 3D array can be converted to a bit array (e.g. 0 = bedrock, 1 = cave, or vice versa) then you can apply a technique used in image processing to find the number and dimensions of either the foreground or background.
Typically this algorithm is applied in 2D images to find "connected components" or "blobs" of the same color. If possible, find a "single pass" algorithm:
http://en.wikipedia.org/wiki/Connected-component_labeling
The same technique can be applied to 3D data. Googling "connected components 3D" will yield links like this one:
http://www.ecse.rpi.edu/Homepages/wrf/pmwiki/pmwiki.php/Research/ConnectedComponents
Once the algorithm has finished processing your 3D array, you'll have a list of labeled, connected regions, and each region will be a list of voxels (volume elements analogous to image pixels). You can then analyze each labeled region to determine volume, closeness to the surface, height, etc.
Implementing these algorithms can be a little tricky, and you might want to try a 2D implementation first. Thought it might not be as efficient as you like, you could create a 3D connected component labeling algorithm by applying a 2D algorithm iteratively to each layer and then relabeling the connected regions from the top layer to the bottom layer:
For layer 0, find all connected regions using the 2D connected component algorithm
For layer 1, find all connected regions.
If any labeled pixel in layer 0 sits directly over a labeled pixel in layer 1, change all the labels in layer 1 to the label in layer 0.
Apply this labeling technique iteratively through the stack until you reach layer N.
One important considering in connected component labeling is how one considers regions to be connected. In a 2D image (or 2D array) of bits, we can consider either the "4-connected" region of neighbor elements
X 1 X
1 C 1
X 1 X
where "C" is the center element, "1" indicates neighbors that would be considered connected, and "X" are adjacent neighbors that we do not consider connected. Another option is to consider "8-connected neighbors":
1 1 1
1 C 1
1 1 1
That is, every element adjacent to a central pixel is considered connected. At first this may sound like the better option. In real-world 2D image data a chessboard pattern of noise or diagonal string of single noise pixels will be detected as a connected region, so we typically test for 4-connectivity.
For 3D data you can consider either 6-connectivity or 26-connectivity: 6-connectivity considers only the neighbor pixels that share a full cube face with the center voxel, and 26-connectivity considers every adjacent pixel around the center voxel. You mention that "diagonally placed" doesn't count, so 6-connectivity should suffice.
You can observe it as a graph where (non-diagonal) adjacent elements are connected if they both empty (part of a cave). Note that you don't have to convert it to a graph, you can use normal 3d array representation.
Finding caves is the same task as finding the connected components in a graph (O(N)) and the size of a cave is the number of nodes of that component.
On a circle, N arbitrary points are chosen on its circumference. The complete graph formed with those N points would divide the area of the circle into many pieces.
What is the maximum number of pieces of area that the circle will get divided into when the points are chosen along its circumference?
Examples:
2 points => 2 pieces
4 points => 8 pieces
Any ideas how to go about this?
This is known as Moser's circle problem.
The solution is:
i.e.
The proof is quite simple:
Consider each intersection inside the circle. It must be defined by the intersection of two lines, and each line has two points, so every intersection inside the circle defines 4 unique sets of points on the circumference. Therefore, there are at most n choose 4 inner vertices, and obviously there are n vertices on the circumference.
Now, how many edges does each vertex touch? Well, it's a complete graph, so each vertex on the outside touches n - 1 edges, and of course each vertex on the inside touches 4 edges. So the number of edges is given by (n(n - 1) + 4(n choose 4))/2 (we divide by two because otherwise each edge would be counted twice by its two vertices).
The final step is to use Euler's formula for the number of faces in a graph, i.e.: v - e + f = 1 (the Euler characteristic is 1 in our case).
Solving for f gives the formulae above :-)
I'm trying to program my TI-83 to do a subset sum search. So, given a list of length N, I want to find all lists of given length L, that sum to a given value V.
This is a little bit different than the regular subset sum problem because I am only searching for subsets of given lengths, not all lengths, and recursion is not necessarily the first choice because I can't call the program I'm working in.
I am able to easily accomplish the task with nested loops, but that is becoming cumbersome for values of L greater than 5. I'm trying for dynamic solutions, but am not getting anywhere.
Really, at this point, I am just trying to get the list references correct, so that's what I'm looking at. Let's go with an example:
L1={p,q,r,s,t,u}
so
N=6
let's look for all subsets of length 3 to keep it relatively short, so L = 3 (6c3 = 20 total outputs).
Ideally the list references that would be searched are:
{1,2,3}
{1,2,4}
{1,2,5}
{1,2,6}
{1,3,4}
{1,3,5}
{1,3,6}
{1,4,5}
{1,4,6}
{1,5,6}
{2,3,4}
{2,3,5}
{2,3,6}
{2,4,5}
{2,4,6}
{2,5,6}
{3,4,5}
{3,4,6}
{3,5,6}
{4,5,6}
Obviously accomplished by:
FOR A,1,N-2
FOR B,A+1,N-1
FOR C,B+1,N
display {A,B,C}
END
END
END
I initially sort the data of N descending which allows me to search for criteria that shorten the search, and using FOR loops screws it up a little at different places when I increment the values of A, B and C within the loops.
I am also looking for better dynamic solutions. I've done some research on the web, but I can't seem to adapt what is out there to my particular situation.
Any help would be appreciated. I am trying to keep it brief enough as to not write a novel but explain what I am trying to get at. I can provide more details as needed.
For optimisation, you simply want to skip those sub-trees of the search where you already now they'll exceed the value V. Recursion is the way to go but, since you've already ruled that out, you're going to be best off setting an upper limit on the allowed depths.
I'd go for something like this (for a depth of 3):
N is the total number of array elements.
L is the desired length (3).
V is the desired sum
Y[] is the array
Z is the total
Z = 0
IF Z <= V
FOR A,1,N-L
Z = Z + Y[A]
IF Z <= V
FOR B,A+1,N-L+1
Z = Z + Y[B]
IF Z <= V
FOR C,B+1,N-L+2
Z = Z + Y[C]
IF Z = V
DISPLAY {A,B,C}
END
Z = Z - Y[C]
END
END
Z = Z - Y[B]
END
END
Z = Z - Y[A]
END
END
Now that's pretty convoluted but it basically check at every stage whether you've already exceed the desired value and refuses to check lower sub-trees as an efficiency measure. It also keeps a running total for the current level so that it doesn't have to do a large number of additions when checking at lower levels. That's the adding and subtracting of the array values against Z.
It's going to get even more complicated when you modify it to handle more depth (by using variables from D to K for 11 levels (more if you're willing to move N and L down to W and X or if TI BASIC allows more than one character in a variable name).
The only other non-recursive way I can think of doing that is to use an array of value groups to emulate recursion with iteration, and that will look only slightly less hairy (although the code should be less nested).