Running solr index on hadoop - solr

I have a huge amount of data needs to be indexed and it took more than 10 hours to get the job done. Is there a way I can do this on hadoop? Anyone has done this before? Thanks a lot!

You haven't explained where does 10hr take? Does it take to extract the data? or does it take just to index the data.
If you are taking long time on the extraction, then you may use hadoop. Solr has a feature called bulk insert. So in your map function you could accumulate 1000s of record and commit for index in one shot to solr for large number of recods. That will optimize your performance alot.
Also what size is your data?
You could collect large number of records in reduce function of map/reduce job. You have to generate proper keys in your map so that large number of records go to single reduce function. In your custom reduce class, initialize solr object in setup/configure method, depending on your hadoop version and then close it in cleanup method.You will have to create a document collection object(in solrNet or solrj) and commit all of them in one single shot.
If you are using hadoop there is other option called katta. You can look over it as well.

You can write a map reduce job over your hadoop cluster which simply takes each record and sends it to solr over http for indexing. Afaik solr currently doesn't have indexing over cluster of machines, so it would be of worth to look into elastic search if you want to distribute your index also over multiple nodes.

There is a SOLR hadoop output format which creates a new index in each reducer- so you disteibute your keys according to the indices which you want and then copy the hdfs files into your SOLR instance after the fact.
http://www.datasalt.com/2011/10/front-end-view-generation-with-hadoop/

Related

full build solr index with large amount of data

I have a text file containing over 10 million records of web pages.
I want to build solr index with this file every day(because this file is updated daily).
Is there any effective solutions to full build solr index at once? Such as using map reduce model to accelerate building process.
I think using solr api to add document is a little bit slow.
It is not clear how much content is in those 10 million records, but it may actually be simple enough to index those in bulk. Just check your solrconfig.xml for your commit settings, you may, for example, have autoCommit configured with low maxDocs settings. In your case, you may want to disable autoCommit completely and just do it manually at the end.
However, if it is still a bit slow, before going to map-reduce, you could think about building a separate index and then swapping it with the current index.
This way, you actually have the previous collection to roll-back to and/or to compare if needed. The new collection can even be built on a different machine and/or more close to the data.

Handling large number of ids in Solr

I need to perform an online search in Solr i.e user need to find list of user which are online with particular criteria.
How I am handling this: we store the ids of user in a table and I send all online user id in Solr request like
&fq=-id:(id1 id2 id3 ............id5000)
The problem with this approach is that when ids become large, Solr is taking too much time to resolved and we need to transfer large request over the network.
One solution can be use of join in Solr but online data change regularly and I can't index data every time (say 5-10 min, it should be at-least an hour).
Other solution I think of firing this query internally from Solr based on certain parameter in URL. I don't have much idea about Solr internals so don't know how to proceed.
With Solr4's soft commits, committing has become cheap enough that it might be feasible to actually store the "online" flag directly in the user record, and just have &fq=online:true on your query. That reduces the overhead involved in sending 5000 id's over the wire and parsing them, and lets Solr optimize the query a bit. Whenever someone logs in or out, set their status and set the commitWithin on the update. It's worth a shot, anyway.
We worked around this issue by implementing Sharding of the data.
Basically, without going heavily into code detail:
Write your own indexing code
use consistent hashing to decide which ID goes to which Solr server
index each user data to the relevant shard (it can be a several machines)
make sure you have redundancy
Query Solr shards
Do sharded queries in Solr using the shards parameter
Start an EmbeddedSolr and use it to do a sharded query
Solr will query all the shards and merge the results, it also provides timeouts if you need to limit the query time for each shard
Even with all of what I said above, I do not believe Solr is a good fit for this. Solr is not really well suited for searches on indexes that are constantly changing and also if you mainly search by IDs than a search engine is not needed.
For our project we basically implement all the index building, load balancing and query engine ourselves and use Solr mostly as storage. But we have started using Solr when sharding was flaky and not performant, I am not sure what the state of it is today.
Last note, if I was building this system today from scratch without all the work we did over the past 4 years I would advise using a cache to store all the users that are currently online (say memcached or redis) and at request time I would simply iterate over all of them and filter out according to the criteria. The filtering by criteria can be cached independently and updated incrementally, also iterating over 5000 records is not necessarily very time consuming if the matching logic is very simple.
Any robust solution will include bringing your data close to SOLR (batch) and using it internally. NOT running a very large request during search which is low latency thing.
You should develop your own filter; The filter will cache the online users data once in a while (say, every minute). If the data changes VERY frequently, consider implementing PostFilter.
You can find a good example of filter implementation here:
http://searchhub.org/2012/02/22/custom-security-filtering-in-solr/
one solution can be use of join in solr but online data change
regularly and i cant index data everytime(say 5-10 min, it should be
at-least an hr)
I think you could very well use Solr joins, but after a little bit of improvisation.
The Solution, I propose is as follows:
You can have 2 Indexes (Solr Cores)
1. Primary Index (The one you have now)
2. Secondary Index with only two fields , "ID" and "IS_ONLINE"
You could now update the Secondary Index frequently (in the order of seconds) and keep it in sync with the table you have, for storing online users.
NOTE: This secondary Index even if updated frequently, would not degrade any performance provided we do the necessary tweaks like usage of appropriate queries during delta-import, etc.
You could now perform a Solr join on the ID field on these two Indexes to achieve what you want. Here is the link on how to perform Solr Joins between Indexes/ Solr Cores.

Sunspot with Solr 3.5. Manually updating indexes for real time search

Im working with Rails 3 and Sunspot solr 3.5. My application uses Solr to index user generated content and makes it searchable for other users. The goal is to allow users to search this data as soon as possible from the time the user uploaded it. I don't know if this qualifies as Real time search.
My application has two models
Posts
PostItems
I index posts by including data from post items so that a when a user searches based on certain description provided in a post_item record the corresponding post object is made available in the search.
Users frequently update post_items so every time a new post_item is added I need to reindex the corresponding post object so that the new post_item will be available during search.
So at the moment whenever I receive a new post_item object I run
post_item.post.solr_index! #
which according to this documentation instantly updates the index and commits. This works but is this the right way to handle indexing in this scenario? I read here that calling index while searching may break solr. Also frequent manual index calls are not the way to go.
Any suggestions on the right way to do this. Are there alternatives other than switching to ElasticSearch
try to use this gem https://github.com/bdurand/sunspot_index_queue
you will than be able to batch reindex, let's say, every minute, and it definitely will not brake an index
If you are just starting out and have the luxury to choose between Solr and ElasticSearch, go with ElasticSearch.
We use Solr in production and have run into many weird issues as the index and search volume grew. The conclusion was Solr was built/optimzed for indexing huge documents(word/pdf content) and in large numbers(billions?) but updating the index once a day or a couple of days when nobody is searching.
It was a wrong choice for consumer Rails application where documents are small, small in numbers( in millions) updates are random and continuous and the search needs to be somewhat real time( a delay of 5-10 sec is fine).
Some of the tricks we applied to tune the server.
removed all commits (i.e., !) from rails code,
use Solr auto-commit every 5/20 seconds,
have master/slave configuration,
run index optimization(on Master) every 1 hour
and more.
and we still see high CPU usage on slaves when the commit triggers. As a result some searches take a long time(> 60 seconds at times).
Also I doubt if the batching indexing sunspot_index_queue gem can remedy the high CPU issue.

Solr - Reindex recommended batch size

I've just installed Solr on my Rails application (using sunspot).
I want solr to re-index a couple of columns on one of my tables, the tables is pretty big (~50M records).
What is the recommended batch size to use? currently i'm using 1000 and its running for over a day.
Any ideas?
The batch size is not that important, 1000 is probably OK, though I wouldn't go any larger than that. It depends on the size of the documents, how many bytes of text are indexed for each one.
Are you committing after each batch? That can be slow. I load a 23M document index with a single commit at the end. The documents are small, the metadata for books, and it takes about 90 minutes. To get that speed, I needed to use a single SQL query for the load. Using any subqueries made it about 10X slower.
I'm using the JDBC support in the DataInputHandler, though I may move to some custom code that makes a DB query and submits batches.
I've heard that the CSV input handler is very efficient, so it might work to dump your data to CSV, then load it with that handler.

Retrieving information from aggregated weblogs data, how to do it?

I would like to know how to retrieve data from aggregated logs? This is what I have:
- about 30GB daily of uncompressed log data loaded into HDFS (and this will grow soon to about 100GB)
This is my idea:
- each night this data is processed with Pig
- logs are read, split, and custom UDF retrieves data like: timestamp, url, user_id (lets say, this is all what I need)
- from log entry and loads this into HBase (log data will be stored infinitely)
Then if I want to know which users saw particular page within given time range I can quickly query HBase without scanning whole log data with each query (and I want fast answers - minutes are acceptable). And there will be multiple querying taking place simultaneously.
What do you think about this workflow? Do you think, that loading this information into HBase would make sense? What are other options and how do they compare to my solution?
I appreciate all comments/questions and answers. Thank you in advance.
With Hadoop you are always doing one of two things (either processing or querying).
For what you are looking to-do I would suggest using HIVE http://hadoop.apache.org/hive/. You can take your data and then create a M/R job to process and push that data how you like it into HIVE tables. From there (you can even partition on data as it might be appropriate for speed to not look at data not required as you say). From here you can query out your data results as you like. Here is very good online tutorial http://www.cloudera.com/videos/hive_tutorial
There are a lots of ways to solve this but it sounds like HBase is a bit overkill unless you want to setup all the server required for it to run as an exercise to learn it. HBase would be good if you have thousands of people simultaneously looking to get at the information.
You might also want to look into FLUME which is new import server from Cloudera . It will get your files from some place straight to HDFS http://www.cloudera.com/blog/2010/07/whats-new-in-cdh3b2-flume/

Resources