Understanding "redundant" columns in C-Store DB (column-oriented) - database

Following the paper published on C-store, I did not understand the part
Redundant storage of elements of a table in several overlapping projections in different orders, so that a query can be solved using the most advantageous projection
Firstly, I did not understand how is it derived as to which column(s) make up for "redundant" columns in the database table?
Second, in reference to the point above, my understanding is that these columns marked as "redundant" don't have to be stored in every projection that is created on the table. If a query requests for such a column, only one of the projections would be needed to answer the query. Am I correct?

Related

Implementing temporal tables for dimensions for tracking changes

I am working on a star schema and I want to track the history of data for some dimensions and specifically for some columns. Is it possible to work with temporal tables as an other alternative ? If yes, how to store the current record in a temporal table? Also, is it logic that the source of my dimension will be the historical table of my temporal table?
Determining if two rows or expressions are equal can be a difficult and resource intensive process. This can be the case with UPDATE statements where the update was conditional based on all of the columns being equal or not for a specific row.
To address this need in the SQL Server environment the CHECKSUM function ,in your case is helpful as it natively creates a unique expression for comparison between two records.
So you will compare between your two sources which are logically the ODS and Datawarehouse. If the Chescksum between two different sources isn't the same, you will update the old record and insert the new updated one.

DB design for combining two one to one table

I have a legacy application which has below tables which has 1 to 1 mapping
customer (has already 40 columns)
customer_additional_attributes(has 20 columns)
My question :- Would not it be better design if customer and customer_additional_attributes tables were combined as it would have saves extra join or query sometime to fetch data
from customer_additional_attributes ?
Is there any disadvantage of single table(like in above scenario) but large number of columns?
The data format that you have is called "vertical partitioning". This is when rows of an entity are split across multiple tables. In a normalized structure, this is problematic, because inserts of rows (for instance) are not necessarily atomic -- they affect two tables.
But there are good reasons for doing this. The most obvious is when the rows are too wide. If the columns are too wide, they simply will not fit in one table, so they are spread through multiple tables.
Similarly, if some columns are much larger -- and rarely used -- then putting them in another table can be a big win on performance.
Before combining the tables, you should recognize that the data structure is intentional. It might simply be the result of "laziness". The first table was created -- and then additional attributes came along so they were put into another table. Or, it could be quite intentional, and you would want to understand why.
Note that the join between the two tables should be pretty fast, particularly if the same primary key is used for both.
You have many to many relationship maybe you have to create intermediate table so one for customer, one for customer_attributes and one for customer_additional_attibutes containing id of the two table

What is the number of columns that make table really big?

I have two tables in my database, one for login and second for user details (the database is not only two tables). Logins table has 12 columns (Id, Email, Password, PhoneNumber ...) and user details has 23 columns (Job, City, Gender, ContactInfo ..). The two tables have one-to-one relationship.
I am thinking to create one table that contain the columns of both tables but I not sure because this may make the size of the table big.
So this lead to my question, what the number of columns that make table big? Is there a certain or approximate number that make size of table big and make us stop adding columns to a table and create another one? or it is up to the programmer to decide such number?
The number of columns isn't realistically a problem. Any kind of performance issues you seem to be worried with can be attributed to the size of the DATA on the table. Ie, if the table has billions of rows, or if one of the columns contains 200 MB of XML data on each separate row, etc.
Normally, the only issue arising from a multitude of columns is how it pertains to indexing, as it can get troublesome trying to create 100 different indexes covering each variation of each query.
Point here is, we can't really give you any advice since just the number of tables and columns and relations isn't enough information to go on. It could be perfectly fine, or not. The nature of the data, and how you account for that data with proper normalization, indexing and statistics, is what really matters.
The constraint that makes us stop adding columns to an existing table in SQL is if we exceed the maximum number of columns that the database engine can support for a single table. As can be seen here, for SQLServer that is 1024 columns for a non-wide table, or 30,000 columns for a wide table.
35 columns is not a particularly large number of columns for a table.
There are a number of reasons why decomposing a table (splitting up by columns) might be advisable. One of the first reasons a beginner should learn is data normalization. Data normalization is not directly concerned with performance, although a normalized database will sometimes outperform a poorly built one, especially under load.
The first three steps in normalization result in 1st, 2nd, and 3rd normal forms. These forms have to do with the relationship that non-key values have to the key. A simple summary is that a table in 3rd normal form is one where all the non-key values are determined by the key, the whole key, and nothing but the key.
There is a whole body of literature out there that will teach you how to normalize, what the benefits of normalization are, and what the drawbacks sometimes are. Once you become proficient in normalization, you may wish to learn when to depart from the normalization rules, and follow a design pattern like Star Schema, which results in a well structured, but not normalized design.
Some people treat normalization like a religion, but that's overselling the idea. It's definitely a good thing to learn, but it's only a set of guidelines that can often (but not always) lead you in the direction of a satisfactory design.
A normalized database tends to outperform a non normalized one at update time, but a denormalized database can be built that is extraordinarily speedy for certain kinds of retrieval.
And, of course, all this depends on how many databases you are going to build, and their size and scope,
I take it that the login tables contains data that is only used when the user logs into your system. For all other purposes, the details table is used.
Separating these sets of data into separate tables is not a bad idea and could work perfectly well for your application. However, another option is having the data in one table and separating them using covering indexes.
One aspect of an index no one seems to consider is that an index can be thought of as a sub-table within a table. When a SQL statement accesses only the fields within an index, the I/O required to perform the operation can be limited to only the index rather than the entire row. So creating a "login" index and "details" index would achieve the same benefits as separate tables. With the added benefit that any operations that do need all the data would not have to perform a join of two tables.

Main table with hundreds vs few smaller

I was wondering which approach is better for designing databases?
I have currently one big table (97 columns per row) with references to lookup tables where I could.
Wouldn't it be better for performance to group some columns into smaller tables and add them key columns for referencing one whole row?
If you split up your table into several parts, you'll need additional joins to get all your columns for a single row - that will cost you time.
97 columns isn't much, really - I've seen way beyond 100.
It all depends on how your data is being used - if your row just has 97 columns, all the time, and needs to 97 columns - then it really hardly ever makes sense to split those up into various tables.
It might make sense if:
you can move some "large" columns (like XML, VARCHAR(MAX) etc.) into a separate table, if you don't need those all the time -> in that case, your "basic" row becomes smaller and your basic table will perform better - as long as you don't need those extra large column
you can move away some columns to a separate table that aren't always present, e.g. columns that might be "optional" and only present for e.g. 20% of the rows - in that case, you might save yourself some processing for the remaining 80% of the cases where those columns aren't needed.
It would be better to group relevant columns into different tables. This will improve the performance of your database as well as your ease of use as the programmer. You should try to first find all the different relationships between your columns and following that you should attempt to break everything into tables while keeping in mind these relationships (using primary keys, forking keys, references and so forth).Try to create a diagram as this http://www.simple-talk.com/iwritefor/articlefiles/354-image008.gif and take it from there.
Unless your data is denormalized it is likely best to keep all the columns in the same table. SQL Server reads pages into the buffer pool from individual tables. Thus you will have the cost of the joins on every access even if the pages accessed are already in the buffer pool. If you access just a few rows of the data per query with a key then an index will serve that query fine with all columns in the same table. Even if you will scan a large percentage of the rows (> 1% of a large table) but only a few of the 97 columns you are still better off keeping the columns in the same table as you can use a non clustered index that covers the query. However, if the data is heavily denormalized then normalizing it, which by definition breaks it into many tables based upon the rules of normalization to eliminate redundancy, will result in much improved performance and you will be able to write queries to access only the specific data elements you need.

When should I use Oracle's Index Organized Table? Or, when shouldn't I?

Index Organized Tables (IOTs) are tables stored in an index structure. Whereas a table stored
in a heap is unorganized, data in an IOT is stored and sorted by primary key (the data is the index). IOTs behave just like “regular” tables, and you use the same SQL to access them.
Every table in a proper relational database is supposed to have a primary key... If every table in my database has a primary key, should I always use an index organized table?
I'm guessing the answer is no, so when is an index organized table not the best choice?
Basically an index-organized table is an index without a table. There is a table object which we can find in USER_TABLES but it is just a reference to the underlying index. The index structure matches the table's projection. So if you have a table whose columns consist of the primary key and at most one other column then you have a possible candidate for INDEX ORGANIZED.
The main use case for index organized table is a table which is almost always accessed by its primary key and we always want to retrieve all its columns. In practice, index organized tables are most likely to be reference data, code look-up affairs. Application tables are almost always heap organized.
The syntax allows an IOT to have more than one non-key column. Sometimes this is correct. But it is also an indication that maybe we need to reconsider our design decisions. Certainly if we find ourselves contemplating the need for additional indexes on the non-primary key columns then we're probably better off with a regular heap table. So, as most tables probably need additional indexes most tables are not suitable for IOTs.
Coming back to this answer I see a couple of other responses in this thread propose intersection tables as suitable candidates for IOTs. This seems reasonable, because it is common for intersection tables to have a projection which matches the candidate key: STUDENTS_CLASSES could have a projection of just (STUDENT_ID, CLASS_ID).
I don't think this is cast-iron. Intersection tables often have a technical key (i.e. STUDENT_CLASS_ID). They may also have non-key columns (metadata columns like START_DATE, END_DATE are common). Also there is no prevailing access path - we want to find all the students who take a class as often as we want to find all the classes a student is taking - so we need an indexing strategy which supports both equally well. Not saying intersection tables are not a use case for IOTs. just that they are not automatically so.
I'd consider them for very narrow tables (such as the join tables used to resolve many-to-many tables). If (virtually) all the columns in the table are going to be in an index anyway, then why shouldn't you used an IOT.
Small tables can be good candidates for IOTs as discussed by Richard Foote here
I consider the following kinds of tables excellent candidates for IOTs:
"small" "lookup" type tables (e.g. queried frequently, updated infrequently, fits in a relatively small number of blocks)
any table that you already are going to have an index that covers all the columns anyway (i.e. may as well save the space used by the table if the index duplicates 100% of the data)
From the Oracle Concepts guide:
Index-organized tables are useful when
related pieces of data must be stored
together or data must be physically
stored in a specific order. This type
of table is often used for information
retrieval, spatial (see "Overview of
Oracle Spatial"), and OLAP
applications (see "OLAP").
This question from AskTom may also be of some interest especially where someone gives a scenario and then asks would an IOT perform better than an heap organised table, Tom's response is:
we can hypothesize all day long, but
until you measure it, you'll never
know for sure.
An index-organized table is generally a good choice if you only access data from that table by the key, the whole key, and nothing but the key.
Further, there are many limitations about what other database features can and cannot be used with index-organized tables -- I recall that in at least one version one could not use logical standby databases with index-organized tables. An index-organized table is not a good choice if it prevents you from using other functionality.
All an IOT really saves is the logical read(s) on the table segment, and as you might have spent two or three or more on the IOT/index this is not always a great saving except for small data sets.
Another feature to consider for speeding up lookups, particularly on larger tables, is a single table hash cluster. When correctly created they are more efficient for large data sets than an IOT because they require only one logical read to find the data, whereas an IOT is still an index that needs multiple logical i/o's to locate the leaf node.
I can't per se comment on IOTs, however if I'm reading this right then they're the same as a 'clustered index' in SQL Server. Typically you should think about not using such an index if your primary key (or the value(s) you're indexing if it's not a primary key) are likely to be distributed fairly randomly - as these inserts can result in many page splits (expensive).
Indexes such as identity columns (sequences in Oracle?) and dates 'around the current date' tend to make for good candidates for such indexes.
An Index-Organized Table--in contrast to an ordinary table--has its own way of structuring, storing, and indexing data.
Index organized tables (IOT) are indexes which actually hold the data which is being indexed, unlike the indexes which are stored somewhere else and have links to actual data.

Resources