Effects of Loop unrolling on memory bound data - c

I have been working with a piece of code which is intensively memory bound. I am trying to optimize it within a single core by manually implementing cache blocking, sw prefetching, loop unrolling etc. Even though cache blocking gives significant improvement in performance. However when i introduce loop unrolling I get tremendous performance degradation.
I am compiling with Intel icc with compiler flags -O2 and -ipo in all my test cases.
My code is similar to this (3D 25-point stencil):
void stencil_baseline (double *V, double *U, int dx, int dy, int dz, double c0, double c1, double c2, double c3, double c4)
{
int i, j, k;
for (k = 4; k < dz-4; k++)
{
for (j = 4; j < dy-4; j++)
{
//x-direction
for (i = 4; i < dx-4; i++)
{
U[k*dy*dx+j*dx+i] = (c0 * (V[k*dy*dx+j*dx+i]) //center
+ c1 * (V[k*dy*dx+j*dx+(i-1)] + V[k*dy*dx+j*dx+(i+1)])
+ c2 * (V[k*dy*dx+j*dx+(i-2)] + V[k*dy*dx+j*dx+(i+2)])
+ c3 * (V[k*dy*dx+j*dx+(i-3)] + V[k*dy*dx+j*dx+(i+3)])
+ c4 * (V[k*dy*dx+j*dx+(i-4)] + V[k*dy*dx+j*dx+(i+4)]));
}
//y-direction
for (i = 4; i < dx-4; i++)
{
U[k*dy*dx+j*dx+i] += (c1 * (V[k*dy*dx+(j-1)*dx+i] + V[k*dy*dx+(j+1)*dx+i])
+ c2 * (V[k*dy*dx+(j-2)*dx+i] + V[k*dy*dx+(j+2)*dx+i])
+ c3 * (V[k*dy*dx+(j-3)*dx+i] + V[k*dy*dx+(j+3)*dx+i])
+ c4 * (V[k*dy*dx+(j-4)*dx+i] + V[k*dy*dx+(j+4)*dx+i]));
}
//z-direction
for (i = 4; i < dx-4; i++)
{
U[k*dy*dx+j*dx+i] += (c1 * (V[(k-1)*dy*dx+j*dx+i] + V[(k+1)*dy*dx+j*dx+i])
+ c2 * (V[(k-2)*dy*dx+j*dx+i] + V[(k+2)*dy*dx+j*dx+i])
+ c3 * (V[(k-3)*dy*dx+j*dx+i] + V[(k+3)*dy*dx+j*dx+i])
+ c4 * (V[(k-4)*dy*dx+j*dx+i] + V[(k+4)*dy*dx+j*dx+i]));
}
}
}
}
When I do loop unrolling on the innermost loop (dimension i) and unroll in directions x,y,z separately by unroll factor 2,4,8 respectively, I get performance degradation in all 9 cases i.e. unroll by 2 on direction x, unroll by 2 on direction y, unroll by 2 in direction z, unroll by 4 in direction x ... etc.
But when I perform loop unrolling on the outermost loop (dimension k) by factor of 8 (2 & 4 also), I get v.good performance improvement which is even better than cache blocking.
I even tried profiling my code with Intel Vtune. It seemed like the bottlenecks where mainly due to 1.LLC Miss and 2. LLC Load Misses serviced by Remote DRAM.
I am unable to understand why unrolling the innermost fastest loop in giving performance degradation whereas unrolling the outermost, slowest dimension is fetching performance improvement. However, this improvement in the latter case is when i use -O2 and -ipo when compiling with icc.
I am not sure how to interpret these statistics. Can someone help shed some light on this.

This strongly suggests that you are causing instruction cache misses by the unrolling, which is typical. In the age of modern hardware, unrolling no longer automatically means faster code. If each inner loop fits in a cache line, you will get better performance.
You may be able to unroll manually, to limit the size of the generated code, but this will require examining the generated machine-language instructions -- and their position -- to ensure that your loop is within a single cache line. Cache lines are typically 64 bytes long, and aligned on 64-byte boundaries.
Outer loops do not have the same effect. They will likely be outside of the instruction cache regardless of the unroll level. Unrolling these results in fewer branches, which is why you get better performance.
"Load misses serviced by remote DRAM" means that you allocated memory on one NUMA node, but now you are running on the other. Setting process or thread affinity based on NUMA is the answer.
Remote DRAM takes almost twice as long to read as local DRAM on the Intel machines that I have used.

Related

How do I obtain the theoretical/Linpack FLOPS performance on basic vector/matrix operations?

The question is simple. How do I further optimize my code as the basic matrix operations are critical and common to my calculation. BLAS and LAPACK operations are good in linear algebra but neither of them provides basic element by element addition/multiply operations (Hadamard). Theoretical performance maybe difficult, but Linpack performance or 60~80% Linpack performance should be achievable. (I can only do 12%, if I use multiply-add, then only 25%)
For references
Theoretical performance: 8259u has 4 cores * 3.8GHz * 16 FLOPS = 240 GFlops
Linpack performance: 8259u can run as fast as 140~160 GFlops double precision operations.
Platform: Macbook Pro 2018, Monterey
CPU: i5-8259u, 4c8t
RAM: 8GB
CC: gcc 11.3.0
CFLAGS: -mavx2 -mfma -fopenmp -O3
Here's my attempt
the flops are calculated as follows:
double time = stop - start;
double ops = 1.0 * Nx * Ny * iterNum; //2.0 for complex numbers
double flops = ops / time;
double gFlops = flops / 1E9;
Here's some results when I run my code. real and complex results are almost the same. Only showing the real results (roughly):
//Nx = Ny = 2048, iterNum = 10000
//Typical matrix size and iteration depth for my calculation
threads = 1: 1 GFlops
threads = 2: 2 GFlops
threads = 4: 3 GFlops
threads = 8: 4 GFlops
threads = 16: 9 GFlops
threads = 32: 11 GFlops
threads = 64: 15 GFlops
threads = 128: 18 GFlops
threads = 256: 19 GFlops
threads = 512: 21 GFlops
threads = 1024: 20 GFlops
threads = 2048: 40 GFlops // wrong answer
For the convenience of large matrix on heap and integrating with mathGL, the matrix is flattened as a vector consisting of Nx * Ny elements cascading by rows.
// for real numbers
x = (double *)_mm_malloc(Nx * Ny * sizeof(double), 32);
y = (double *)_mm_malloc(Nx * Ny * sizeof(double), 32);
z = (double *)_mm_malloc(Nx * Ny * sizeof(double), 32);
sum = (double *)_mm_malloc(Nx * Ny * sizeof(double), 32);
// for complex numbers
x = (double *)_mm_malloc(Nx * Ny * sizeof(double complex), 32);
y = (double *)_mm_malloc(Nx * Ny * sizeof(double complex), 32);
z = (double *)_mm_malloc(Nx * Ny * sizeof(double complex), 32);
sum = (double *)_mm_malloc(Nx * Ny * sizeof(double complex), 32);
and the addition was done parallelly using openmp.
double start = omp_get_wtime();
#pragma omp parallel private(shift)
{
for (int tds = omp_get_thread_num(); tds < threads; tds = tds + threads)
{
shift = Nx * Ny / threads * tds;
for (int i = 0; i < iterNum; i++)
{
AddComplex(sum+shift, sum+shift, z+shift, Nx/threads, Ny);
}
}
}
double stop = omp_get_wtime();
I wrote explicit vectorization code using AVX intrinsics "immintrin.h".
//real matrix addition
void AddReal(double *summation, const double *summand, const double *addend, int Nx, int Ny)
{
int nBlock = Nx * Ny / realPackSize;
int nRem = Nx * Ny % realPackSize;
register __m256d packSummand, packAddend, packSum;
const double *px = summand;
const double *py = addend;
double *pSum = summation;
for (int i = 0; i < nBlock; i++)
{
packSummand = _mm256_load_pd(px);
packAddend = _mm256_load_pd(py);
packSum = _mm256_add_pd(packSummand, packAddend);
_mm256_store_pd(pSum, packSum);
px = px + realPackSize;
py = py + realPackSize;
pSum = pSum + realPackSize;
}
for (int i = 0; i < nRem; i++)
{
pSum[i] = px[i] + py[i];
}
px = NULL;
py = NULL;
pSum = NULL;
return;
}
//Complex matrix addition
void AddComplex(double complex *summation, const double complex *summand, const double complex *addend, int Nx, int Ny)
{
int nBlock = Nx * Ny / complexPackSize;
int nRem = Nx * Ny % complexPackSize;
register __m256d packSummand, packAddend, packSum;
const double complex *px = summand;
const double complex *py = addend;
double complex *pSum = summation;
for (int i = 0; i < nBlock; i++)
{
packSummand = _mm256_load_pd(px);
packAddend = _mm256_load_pd(py);
packSum = _mm256_add_pd(packSummand, packAddend);
_mm256_store_pd(pSum, packSum);
px = px + complexPackSize;
py = py + complexPackSize;
pSum = pSum + complexPackSize;
}
for (int i = 0; i < nRem; i++)
{
pSum[i] = px[i] + py[i];
}
px = NULL;
py = NULL;
pSum = NULL;
return;
}
Level 1 (eg. dot product) and level 2 (eg. vector-matrix multiplication) BLAS functions are known not to scale (especially level 1 BLAS functions) as opposed to level 3 (eg. matrix-multiplication). Indeed, they are generally memory-bound: the amount of data read/written is O(n) while the amount of floating-point operation is also O(n). This is not the case for level 3 BLAS which are generally clearly compute-bound.
Theoretical performance maybe difficult, but Linpack performance or 60~80% Linpack performance should be achievable
If the computation is memory bound, then, no, this is not possible. Linpack is generally clearly compute bound on nearly all machine. The think is memory is slow and the speed of the RAM is not increasing as fast as the speed of processors over the last decades. This is known as a memory wall (formulated few decades ago and still true nowadays).
Here's some results when I run my code.
Having a faster computation with from using 1024 threads instead of 512 on a mobile processor with 4 core and 8 thread make me think that there is a huge problem somewhere. The maximum should be reached with 8 threads, or otherwise this means the computation is clearly inefficient. Indeed, running more threads than hardware threads cause the OS scheduler to make expensive context-switch (higher overhead). In the end, your processor never runs more that 8 tasks at a time. There are two possibility:
The timings are not correct (the provided piece of code about that seems fine to me)
The program is bogus
The computation exhibit a super-linear speed up (possibly due to cache)
I wrote explicit vectorization code using AVX intrinsics "immintrin.h".
The hot loop contains 2 loads, 1 store, 1 add and few instructions incrementing integers. Your processor can do 2 loads and 1 store per cycle so the SIMD part can be done in 1 cycle of throughput (though the latency can be much bigger) assuming nBlock is large enough.
Your processor can do 2 add per cycle so half the throughput is lost. However, you cannot write something faster than that if the load/write are mandatory.
If complexPackSize is smaller than a SIMD lane, then I think the processor has to make complex operation due to the overlapp with the past iteration that will certainly make it run the loop much less efficiently (a loop carried dependency will make the loop latency bound which is very inefficient here). If complexPackSize is much larger than a cache line, then prefetching will likely be an issue.
Your processor cannot execute too many instructions at the same time. The increment instruction and the loop check cause 5 instruction to be executed, which consume at least 1 cycle. This reduce the throughput by a factor of 2 again so not more than 25% of the theoretical performance can be reached. This can be improved a bit by unrolling the loop. Unrolling might also improve the execution because the _mm256_add_pd instruction has a pretty high latency. One should keep in mind that SIMD instructions are great for throughput but not for latency. Thus, when the latency is not an issue, SIMD codes should be fast.
Note that the write allocate cache policy cause data to be read when _mm256_store_pd is used increasing the amount of data transferred from the RAM and reducing the observed throughput. _mm256_stream_pd can be used to avoid this effect but it is fast only if data are not read just after or when data do not fit in the cache anyway. It also require data to be aligned. In fact, _mm256_store_pd also requires that and if it is not the case, it certainly cause a silent bug. The same applies for _mm256_load_pd: _mm256_loadu_pd should be used instead for unaligned data. I am not sure data read is always aligned. It should be fine if complexPackSize is a power of two divisible by 32 as well as shift. However, I highly doubt this is the case for shift, especially with a large number of threads. I also find very suspicious to use a constant complexPackSize while the SIMD lanes have a fixed size. Did you checked the results in all cases?

Implementing matrix operation using AVX in C

I'm trying to implement the following operation using AVX:
for (i=0; i<N; i++) {
for(j=0; j<N; j++) {
for (k=0; k<K; k++) {
d[i][j] += 2 * a[i][k] * ( b[k][j]- c[k]);
}
}
}
for (int i=0; i<N; i++){
f+= d[ind[i]][ind[i]]/2;
}
Where d is a NxN matrix, a is a NxK, b a KxN and c a vector of length K. All of them are doubles. Of course, all the data is aligned and I am using #pragma vector aligned to help compiler (gcc).
I know how to use AVX extensions with one-dimension arrays, but it is being a little bit tricky to me to do it with matrix. Currently, I have the following, but I'm not getting correct results:
for (int i=0; i< floor (N/4); i++){
for (int j=0; j< floor (N/4); j++){
__m256d D, A, B, C;
D = _mm256_setzero_pd();
#pragma vector aligned
for (int k=0; k<K_MAX; k++){
A = _mm256_load_pd(a[i] + k*4);
B = _mm256_load_pd(b[k] + j*4);
C = _mm256_load_pd(c + 4*k);
B = _mm256_sub_pd(B, C);
A = _mm256_mul_pd(A, B);
D = _mm256_add_pd(_mm256_set1_pd(2.0), A);
_mm256_store_pd(d[i] + j*4, D);
}
}
}
for (int i=0; i<N; i++){
f+= d[ind[i]][ind[i]]/2;
}
I hope someone can tell me where the mistake is.
Thanks in advance.
NOTE: I'm not willing to introduce OpenMP, just using SIMD Intel instructions
Assuming both N and K numbers are relatively large (much larger than 4 which is hardware vector size), here's one way to vectorize your main loop. Untested.
The main idea is vectorizing the middle loop instead of the inner one. This is done for two reasons.
This avoids horizontal operations. When vectorizing just the inner loop, we would have to compute horizontal sum of a vector.
That b[k][j] load has unfortunate RAM access pattern when loading for 4 consecutive k values, need either 4 separate load instructions, or gather load, both methods are relatively slow. Loading elements for 4 consecutive j values is a full-vector load instruction, very efficient, especially since you align your inputs.
const int N_aligned = ( N / 4 ) * 4;
for( int i = 0; i < N; i++ )
{
int j = 0;
for( ; j < N_aligned; j += 4 )
{
// Load 4 scalars from d
__m256d dv = _mm256_loadu_pd( &d[ i ][ j ] );
// Run the inner loop which only loads from RAM but never stores any data
for( int k = 0; k < K; k++ )
{
__m256d av = _mm256_broadcast_sd( &a[ i ][ k ] );
__m256d bv = _mm256_loadu_pd( &b[ k ][ j ] );
__m256d cv = _mm256_broadcast_sd( &c[ k ] );
// dv += 2*av*( bv - cv )
__m256d t1 = _mm256_add_pd( av, av ); // 2*av
__m256d t2 = _mm256_sub_pd( bv, cv ); // bv - cv
dv = _mm256_fmadd_pd( t1, t2, dv );
}
// Store the updated 4 values
_mm256_storeu_pd( &d[ i ][ j ], dv );
}
// Handle remainder with scalar code
for( ; j < N; j++ )
{
double ds = d[ i ][ j ];
for( int k = 0; k < K; k++ )
ds += 2 * a[ i ][ k ] * ( b[ k ][ j ] - c[ k ] );
d[ i ][ j ] = ds;
}
}
If you want to optimize further, try to unroll the inner loop by a small factor like 2, use 2 independent accumulators initialized with _mm256_setzero_pd(), add them after the loop. It could be that on some processors, this version stalls on the latency of the FMA instruction, instead of saturating load ports or ALUs. Multiple independent accumulators sometimes help.
b[k][j] is your problem: the elements b[k + 0..3][j] aren't contiguous in memory. Using SIMD (in a reasonable / useful way) is not something you can drop in to the classic naive matmul loop. See What Every Programmer Should Know About Memory? - there's an appendix with an example of an SSE2 matmul (with cache-blocking) which shows how to do operations in a different order that's SIMD-friendly.
Soonts's answer shows how to vectorize at all, by vectorizing over j, the middle loop. But that leaves a relatively poor memory access pattern, and 3 loads + 3 ALU operations inside the loop. (This answer started out as a comment on it, see it for the code I'm talking about and proposing changes to.)
Loop inversion should be possible to do j as the inner-most loop. That would mean doing stores for d[i][j] += ... inside the inner-most loop, but OTOH it makes more loop invariants in 2 * a[i][k] * ( b[k][j]- c[k] ) so you can usefully transform to d[i][j] += (2*a_ik) * b[k][j] - (2*a_ik*c_k), i.e. one VFMSUBPD and one VADDPD per load&store. (With the bv load folding into the FMSUB as a memory source operand, and the dv load folding into VADDPD, so hopefully only 3 uops for the front-end, including a separate store, not including loop overhead.)
The compiler will have to unroll and avoid an indexed addressing mode so the store-address uop can stay micro-fused and run on port 7 on Intel CPUs (Haswell through Skylake-family), not competing with the two loads. Ice Lake doesn't have that problem, having two full independent store-AGUs separate from the two load AGUs. But probably still needs some loop unrolling to avoid a front-end bottleneck.
Here's an example, untested (original version contributed by Soonts, thanks). It optimizes down to 2 FP math ops in the loop in a different way: simply hoisting 2*a out of the loop, doing SUB then FMA for dv += (2av)*(sub_result). But bv can't be a source operand for vsubpd because we need bv - cv. But we can fix that by negating cv to allow (-cv) + bv in the inner loop, with bv as a memory source operand. Sometimes compilers will do things like that for you, but here it seems they didn't, so I did it manually. Otherwise we get a separate vmovupd load going through the front-end.
#include <stdint.h>
#include <stdlib.h>
#include <immintrin.h>
// This double [N][N] C99 VLA syntax isn't portable to C++ even with GNU extensions
// restrict tells the compiler the output doesn't overlap with any of the inputs
void matop(size_t N, size_t K, double d[restrict N][N], const double a[restrict N][K], const double b[restrict K][N], const double c[restrict K])
{
for( size_t i = 0; i < N; i++ ) {
// loop-invariant pointers for this outer iteration
//double* restrict rowDi = &d[ i ][ 0 ];
const double* restrict rowAi = &a[ i ][ 0 ];
for( size_t k = 0; k < K; k++ ) {
const double* restrict rowBk = &b[ k ][ 0 ];
double* restrict rowDi = &d[ i ][ 0 ];
#if 0 // pure scalar
// auto-vectorizes ok; still a lot of extra checking outside outermost loop even with restrict
for (size_t j=0 ; j<N ; j++){
rowDi[j] += 2*rowAi[k] * (rowBk[j] - c[k]);
}
#else // SIMD inner loop with cleanup
// *** TODO: unroll over 2 or 3 i values
// and maybe also 2 or 3 k values, to reuse each bv a few times while it's loaded.
__m256d av = _mm256_broadcast_sd( rowAi + k );
av = _mm256_add_pd( av, av ); // 2*a[ i ][ k ] broadcasted
const __m256d cv = _mm256_broadcast_sd( &c[ k ] );
const __m256d minus_ck = _mm256_xor_pd(cv, _mm256_set1_pd(-0.0)); // broadcasted -c[k]
//const size_t N_aligned = ( (size_t)N / 4 ) * 4;
size_t N_aligned = N & -4; // round down to a multiple of 4 j iterations
const double* endBk = rowBk + N_aligned;
//for( ; j < N_aligned; j += 4 )
for ( ; rowBk != endBk ; rowBk += 4, rowDi += 4) { // coax GCC into using pointer-increments in the asm, instead of j+=4
// Load the output vector to update
__m256d dv = _mm256_loadu_pd( rowDi );
// Update with FMA
__m256d bv = _mm256_loadu_pd( rowBk );
__m256d t2 = _mm256_add_pd( minus_ck, bv ); // bv - cv
dv = _mm256_fmadd_pd( av, t2, dv );
// Store back to the same address
_mm256_storeu_pd( rowDi, dv );
}
// rowDi and rowBk point to the double after the last full vector
// The remainder, if you can't pad your rows to a multiple of 4 and step on that padding
for(int j=0 ; j < (N&3); j++ )
rowDi[ j ] += _mm256_cvtsd_f64( av ) * ( rowBk[ j ] + _mm256_cvtsd_f64( minus_ck ) );
#endif
}
}
}
Without unrolling (https://godbolt.org/z/6WeYKbnYY), GCC11's inner loop asm looks like this, all single-uop instructions that can stay micro-fused even in the back-end on Haswell and later.
.L7: # do{
vaddpd ymm0, ymm2, YMMWORD PTR [rax] # -c[k] + rowBk[0..3]
add rax, 32 # rowBk += 4
add rdx, 32 # rowDi += 4
vfmadd213pd ymm0, ymm1, YMMWORD PTR [rdx-32] # fma(2aik, Bkj-ck, Dij)
vmovupd YMMWORD PTR [rdx-32], ymm0 # store FMA result
cmp rcx, rax
jne .L7 # }while(p != endp)
But it's 6 total uops, 3 of them loop overhead (pointer increments and fused cmp+jne), so Haswell through Skylake could only run it at 1 iteration per 1.5 clocks, bottlenecked on the 4-wide issue stage in the front-end. (Which wouldn't let OoO exec get ahead on executing the pointer increments and loop branch, to notice early and recover while the back-end was still chewing on older loads and FP math.)
So loop unrolling should be helpful, since we managed to coax GCC into using indexed addressing modes. Without that it's relatively useless with AVX code on Intel Haswell/Skylake CPUs, with each vaddpd ymm5, ymm4, [rax + r14] decoding as 1 micro-fused uop, but unlaminating into 2 at issue into the back-end, not helping us get more work through the narrowest part of the front-end. (A lot like if we'd used a separate vmovupd load like we got with _mm256_sub_pd(bv, cv) instead of add(bv, -cv).)
The vmovupd ymmword ptr [rbp + r14], ymm5 store stays micro-fused but can't run on port 7, limiting us to a total of 2 memory operations per clock (up to 1 of which can be a store.) So a best case of 1.5 cycles per vector.
Compiled on https://godbolt.org/z/rd3rn9zor with GCC and clang -O3 -march=skylake -funroll-loops. GCC does actually use pointer increments with loads folded into 8x vaddpd and 8x vfmadd213pd. But clang uses indexed addressing modes and doesn't unroll. (You probably don't want -funroll-loops for your whole program, so either compile this separately or manually unroll. GCC's unrolling fully peels a prologue that does 0..7 vector iterations before entering the actual SIMD loop, so it's quite aggressive.)
GCC's loop-unrolling looks useful here for large N, amortizing the pointer increments and loop overhead over multiple vectors. (GCC doesn't know how to invent multiple accumulators for FP dep chains in a dot product for example, making its unrolling useless in that case, unlike clang.)
Unfortunately clang doesn't unroll the inner loop for us, but it does use vmaskmovpd in an interesting way for the cleanup.
It's maybe good that we use a separate loop counter for cleanup, in a way that lets the compiler easily prove the trip-count for the cleanup is 0..3, so it doesn't try to auto-vectorize with YMM.
The other way to do it, using an actual j variable for the inner loop and its cleanup, more like Soonts' edit. IIRC, compilers did try to auto-vectorize the cleanup for this, wasting code size and some always-false branching.
size_t j = 0; // used for cleanup loop after
for( ; j < N_aligned; j += 4 )
{
// Load the output vector to update
__m256d dv = _mm256_loadu_pd( rowDi + j );
// Update with FMA
__m256d bv = _mm256_loadu_pd( rowBk + j );
__m256d t2 = _mm256_sub_pd( bv, cv ); // bv - cv
dv = _mm256_fmadd_pd( av, t2, dv );
// Store back to the same address
_mm256_storeu_pd( rowDi + j, dv );
}
// The remainder, if you can't pad your rows to a multiple of 4
for( ; j < N; j++ )
rowDi[ j ] += _mm256_cvtsd_f64( av ) * ( rowBk[ j ] - _mm256_cvtsd_f64( cv ) );
This has a fairly good mix of load&store vs. FP math for modern CPUs (https://agner.org/optimize/ and https://uops.info/), especially Intel where we can do 2 loads and 1 store. I think Zen 2 or 3 can also do 2 loads + 1 store. It needs to hit in L1d cache to sustain that kind of throughput, though. (And even then, Intel's optimization manual says the max sustained L1d bandwidth on Skylake is less than the full 96 bytes/cycle that would require. More like mid-80s IIRC, so we can't quite expect one result vector per cycle, even with sufficient unrolling to avoid front-end bottlenecks.)
There's no latency bottleneck, since we move on to a new dv every iteration instead of accumulating anything across loop iterations.
The other advantage to this is that memory access to d[i][j] and b[k][j] would be sequential, with no other memory access in the inner-most loop. (The middle loop would do broadcast-loads of a[i][k] and c[k]. Those seem likely to cache-miss if the inner loop evicts too much; with some unrolling of the outer loop, one SIMD load and some shuffling could help, but probably cache-blocking would avoid a need for that.)
Looping over the same d[i] row repeatedly for different b[k] rows gives us locality for the part that we're modifying (i.e. use k as the middle loop, keeping i as the outer-most.) With k as the outer loop, we'd be looping K times over the whole d[0..N-1][0..N-1], probably needing to write + read each pass all that way out to whichever level of cache or memory could hold it.
But really you'd still want to cache-block if each row is really long, so you avoid the cache misses to bring all of b[][] in from DRAM N times. And avoid evicting the stuff you're going to broadcast-load next.
Smarter unrolling: a first step towards cache-blocking
Some of the above problems with maxing out load/store execution unit throughput, and requiring the compiler to use non-indexed addressing modes, can go away if we do more with each vector of data while it's loaded.
For example, instead of working on just one row of d[][], we could be working on 2, 3, or 4. Then every (rowBk[j] - c[k]) result can be used that many times (with a different 2aik) for a d[i+unroll][j + 0..vec] vector.
And we can also load a couple different (rowBk+K*0..unroll)[j+0..3], each with a corresponding minus_ck0, minus_ck1, etc. (Or keep an array of vectors; as long as it's small and the compiler has enough registers, the elements won't exist in memory.)
With multiple bv-cv and dv vectors in registers all at the same time, we can do significantly more FMAs per load without increasing the total amount of FP work. It takes more registers for constants, though, otherwise we could be defeating the purpose by forcing more reloads.
The d[i][j] += (2*a_ik) * b[k][j] - (2*a_ik*c_k) transformation wouldn't be useful here; we want to keep bv-cv separate from i so we can reuse that result as an input for different FMAs.
The b[k][j]+(-c[k]) can still benefit from micro-fusion of a load with a vaddpd so ideally it would still use a pointer increment, but the front-end might not be a bottleneck anymore.
Don't overdo it with this; too many memory input streams can be a problem for cache conflict misses especially for some N values that might create aliasing, and also for HW prefetching tracking them all. (Although Intel's L2 streamer is said to track 1 forward and 1 backward stream per 4k page, IIRC.) Probably about 4 to 8 ish streams is ok. But if d[][] isn't missing in L1d, then it's not really an input stream from memory. You don't want your b[][] input rows to be evicting the d data, though, since you'll be looping over 2 to 4 rows of d data repeatedly.
By comparison: Soonts's loop - less frequent cleanup, but worse memory access pattern.
Soonts's current loop with 3 loads and 3 ALU operations isn't ideal, although 1 load per FMA operation is already ok if they hit in cache (most modern CPUs can do 2 each per clock, although AMD Zen can also do 2 FP adds in parallel with mul/fma). If that extra ALU operation was a bottleneck, we could pre-multiply a[][] by 2 once, taking only O(N*K) work vs. O(N^2*K) to do it on the fly. But it's probably not a bottleneck and thus not worth it.
More importantly, the memory access pattern in Soonts's current answer is looping forward 1 double at a time for broadcast loads of c[k] and a[i][k] which is good, but the bv = _mm256_loadu_pd of b[k][j + 0..3] is unfortunately striding down a column.
If you're going to unroll as Soonts suggested, don't just do two dep chains for one dv, do at least two vectors, d[i][j + 0..3] and 4..7 so you use a whole 64 bytes (full cache line) from every b[k][j] you touch. Or four vectors for a pair of cache-lines. (Intel CPUs at least use an adjacent-line prefetcher, which likes to complete a 128-byte aligned pair of cache lines, so you'd benefit from aligning the rows of b[][] by 128. Or at least by 64, and get some benefit from adjacent-line prefetching.
If a vertical slice of b[][] fits in some level of cache (along with the row of d[i][] you're currently accumulating into), the next stride down the next group of columns can benefit from that prefetching and locality. If not, fully using the lines you touch is more important, so they don't have to get pulled in again later.
So with Soonts's vectorization strategy, for large problems where this won't fit in L1d cache, probably good to make sure b's rows are aligned by 64, even if that means padding at the end of each row. (The storage geometry doesn't have to match the actual matrix dimension; you pass N and row_stride separately. You use one for index calculations, the other for loop bounds.)

loop unrolling not giving expected speedup for floating-point dot product

/* Inner product. Accumulate in temporary */
void inner4(vec_ptr u, vec_ptr v, data_t *dest)
{
long i;
long length = vec_length(u);
data_t *udata = get_vec_start(u);
data_t *vdata = get_vec_start(v);
data_t sum = (data_t) 0;
for (i = 0; i < length; i++) {
sum = sum + udata[i] * vdata[i];
}
*dest = sum;
}
Write a version of the inner product procedure described in the above problem that
uses 6 × 1a loop unrolling . For x86-64, our measurements of the unrolled version
give a CPE of 1.07 for integer data but still 3.01 for both floating-point data.
My code for 6*1a version of loop unrolling
void inner4(vec_ptr u, vec_ptr v, data_t *dest){
long i;
long length = vec_length(u);
data_t *udata = get_vec_start(u);
data_t *vdata = get_vec_start(v);
long limit = length -5;
data_t sum = (data_t) 0;
for(i=0; i<limit; i+=6){
sum = sum +
((udata[ i ] * vdata[ i ]
+ udata[ i+1 ] * vdata[ i+1 ])
+ (udata[ i+2 ] * vdata[ i+2 ]
+ udata[ i+3 ] * vdata[ i+3 ]))
+ ((udata[ i+4 ] * vdata[ i+4 ])
+ udata[ i+5 ] * vdata[ i+5 ]);
}
for (i = 0; i < length; i++) {
sum = sum + udata[i] * vdata[i];
}
*dest = sum;
}
Question: Explain why any (scalar) version of an inner product procedure running on an Intel Core i7 Haswell processor cannot achieve a CPE less than 1.00.
Any idea how to solve the problem?
Your unroll doesn't help with the FP latency bottleneck:
sum + x + y + z without -ffast-math is the same order of operations as sum += x; sum += y; ... so you haven't done anything about the single dependency chain running through all the + operations. Loop overhead (or front-end throughput) is not the bottleneck, it's the 3 cycle latency of addss on Haswell, so this unroll makes basically no difference.
What would work is sum += u[i]*v[i] + u[i+1]*v[i+1] + ... as a way to unroll without multiple accumulators, because then the sum of each group of elements is independent.
It costs slightly more math operations that way, like starting with a mul and ending with an add, but the middle ones can still contract into FMAs if you compile with -march=haswell. See comments on AVX performance slower for bitwise xor op and popcount for an example of GCC turning a naive unroll like sum += u0*v0; sum += u1*v1 into sum += u0*v0 + u1*v1;. In that case the problem was slightly different: sum of squared differences like sum += (u0-v0)**2 + (u1-v1)**2;, but it boils down to the same latency problem of ultimately doing some multiplies and adds.
The other way to solve the problem is with multiple accumulators, allowing all the operations to be FMAs. But Haswell has 5-cycle latency FMA, and 3-cycle latency addss, so doing the sum += ... addition on its own, not as part of an FMA, actually helps with the latency bottleneck on Haswell (unlike on Skylake add/sub/mul are all 4 cycle latency). The following all show unrolling with multiple accumulators, instead of with adding groups together like the first towards pairwise summation like you're doing:
Why does mulss take only 3 cycles on Haswell, different from Agner's instruction tables? (Unrolling FP loops with multiple accumulators)
When, if ever, is loop unrolling still useful?
Loop unrolling to achieve maximum throughput with Ivy Bridge and Haswell
FP math instruction throughput isn't the bottleneck for a big dot product on modern CPUs, only latency. Or load throughput if you unroll enough.
Explain why any (scalar) version of an inner product procedure running on an Intel Core i7 Haswell processor cannot achieve a CPE less than 1.00.
Each element takes 2 loads, and with only 2 load ports, that's a hard throughput bottleneck. (https://agner.org/optimize/ / https://www.realworldtech.com/haswell-cpu/5/)
I'm assuming you're counting an "element" as an i value, a pair of floats, one each from udata[i] and vdata[i]. The FP FMA throughput bottleneck is also 2/clock on Haswell (whether they're scalar, 128-bit, or 256-bit vectors), but dot product takes 2 loads per FMA. In theory, even Sandybridge or maybe even K8 could achieve 1 element per clock, with separate mul and add instructions, since they both support 2 loads per clock, and have a wide enough pipeline to get load / mulss / addss through the pipeline with some room to spare.

How to further optimize performance of Matrix Multiplication?

I am trying to optimize my matrix multiplication code running on a single core. How can I futher improve the performance in regards to loop unrolling, FMA/SSE? I'm also curious to know why the performance won't increase if you use four instead of two sums in the inner loop.
The problem size is a 1000x1000 matrix multiplication. Both gcc 9 and icc 19.0.5 are available. Intel Xeon # 3.10GHz, 32K L1d Cache, Skylake Architecture. Compiled with gcc -O3 -mavx.
void mmult(double* A, double* B, double* C)
{
const int block_size = 64 / sizeof(double);
__m256d sum[2], broadcast;
for (int i0 = 0; i0 < SIZE_M; i0 += block_size) {
for (int k0 = 0; k0 < SIZE_N; k0 += block_size) {
for (int j0 = 0; j0 < SIZE_K; j0 += block_size) {
int imax = i0 + block_size > SIZE_M ? SIZE_M : i0 + block_size;
int kmax = k0 + block_size > SIZE_N ? SIZE_N : k0 + block_size;
int jmax = j0 + block_size > SIZE_K ? SIZE_K : j0 + block_size;
for (int i1 = i0; i1 < imax; i1++) {
for (int k1 = k0; k1 < kmax; k1++) {
broadcast = _mm256_broadcast_sd(A+i1*SIZE_N+k1);
for (int j1 = j0; j1 < jmax; j1+=8) {
sum[0] = _mm256_load_pd(C+i1*SIZE_K+j1+0);
sum[0] = _mm256_add_pd(sum[0], _mm256_mul_pd(broadcast, _mm256_load_pd(B+k1*SIZE_K+j1+0)));
_mm256_store_pd(C+i1*SIZE_K+j1+0, sum[0]);
sum[1] = _mm256_load_pd(C+i1*SIZE_K+j1+4);
sum[1] = _mm256_add_pd(sum[1], _mm256_mul_pd(broadcast, _mm256_load_pd(B+k1*SIZE_K+j1+4)));
_mm256_store_pd(C+i1*SIZE_K+j1+4, sum[1]);
// doesn't improve performance.. why?
// sum[2] = _mm256_load_pd(C+i1*SIZE_K+j1+8);
// sum[2] = _mm256_add_pd(sum[2], _mm256_mul_pd(broadcast, _mm256_load_pd(B+k1*SIZE_K+j1+8)));
// _mm256_store_pd(C+i1*SIZE_K+j1+8, sum[2]);
// sum[3] = _mm256_load_pd(C+i1*SIZE_K+j1+12);
// sum[3] = _mm256_add_pd(sum[3], _mm256_mul_pd(broadcast, _mm256_load_pd(B+k1*SIZE_K+j1+12)));
// _mm256_store_pd(C+i1*SIZE_K+j1+4, sum[3]);
}
}
}
}
}
}
}
This code has 2 loads per FMA (if FMA-contraction happens), but Skylake only supports at most one load per FMA in theory (if you want to max out 2/clock FMA throughput), and even that is usually too much in practice. (Peak through is 2 loads + 1 store per clock, but it usually can't quite sustain that). See Intel's optimization guide and https://agner.org/optimize/
The loop overhead is not the biggest problem, the body itself forces the code to run at half speed.
If the k-loop was the inner loop, a lot of accumulation could be chained, without having to load/store to and from C. This has a downside: with a loop-carried dependency chain like that, it would be up to to code to explicitly ensure that there is enough independent work to be done.
In order to have few loads but enough independent work, the body of the inner loop could calculate the product between a small column vector from A and a small row vector from B, for example using 4 scalar broadcasts to load the column and 2 normal vector loads from B, resulting in just 6 loads for 8 independent FMAs (even lower ratios are possible), which is enough independent FMAs to keep Skylake happy and not too many loads. Even a 3x4 footprint is possible, which also has enough independent FMAs to keep Haswell happy (it needs at least 10).
I happen to have some example code, it's for single precision and C++ but you'll get the point:
sumA_1 = _mm256_load_ps(&result[i * N + j]);
sumB_1 = _mm256_load_ps(&result[i * N + j + 8]);
sumA_2 = _mm256_load_ps(&result[(i + 1) * N + j]);
sumB_2 = _mm256_load_ps(&result[(i + 1) * N + j + 8]);
sumA_3 = _mm256_load_ps(&result[(i + 2) * N + j]);
sumB_3 = _mm256_load_ps(&result[(i + 2) * N + j + 8]);
sumA_4 = _mm256_load_ps(&result[(i + 3) * N + j]);
sumB_4 = _mm256_load_ps(&result[(i + 3) * N + j + 8]);
for (size_t k = kk; k < kk + akb; k++) {
auto bc_mat1_1 = _mm256_set1_ps(*mat1ptr);
auto vecA_mat2 = _mm256_load_ps(mat2 + m2idx);
auto vecB_mat2 = _mm256_load_ps(mat2 + m2idx + 8);
sumA_1 = _mm256_fmadd_ps(bc_mat1_1, vecA_mat2, sumA_1);
sumB_1 = _mm256_fmadd_ps(bc_mat1_1, vecB_mat2, sumB_1);
auto bc_mat1_2 = _mm256_set1_ps(mat1ptr[N]);
sumA_2 = _mm256_fmadd_ps(bc_mat1_2, vecA_mat2, sumA_2);
sumB_2 = _mm256_fmadd_ps(bc_mat1_2, vecB_mat2, sumB_2);
auto bc_mat1_3 = _mm256_set1_ps(mat1ptr[N * 2]);
sumA_3 = _mm256_fmadd_ps(bc_mat1_3, vecA_mat2, sumA_3);
sumB_3 = _mm256_fmadd_ps(bc_mat1_3, vecB_mat2, sumB_3);
auto bc_mat1_4 = _mm256_set1_ps(mat1ptr[N * 3]);
sumA_4 = _mm256_fmadd_ps(bc_mat1_4, vecA_mat2, sumA_4);
sumB_4 = _mm256_fmadd_ps(bc_mat1_4, vecB_mat2, sumB_4);
m2idx += 16;
mat1ptr++;
}
_mm256_store_ps(&result[i * N + j], sumA_1);
_mm256_store_ps(&result[i * N + j + 8], sumB_1);
_mm256_store_ps(&result[(i + 1) * N + j], sumA_2);
_mm256_store_ps(&result[(i + 1) * N + j + 8], sumB_2);
_mm256_store_ps(&result[(i + 2) * N + j], sumA_3);
_mm256_store_ps(&result[(i + 2) * N + j + 8], sumB_3);
_mm256_store_ps(&result[(i + 3) * N + j], sumA_4);
_mm256_store_ps(&result[(i + 3) * N + j + 8], sumB_4);
This means that the j-loop and the i-loop are unrolled, but not the k-loop, even though it is the inner loop now. Unrolling the k-loop a bit did help a bit in my experiments.
See #harold's answer for an actual improvement. This is mostly to repost what I wrote in comments.
four instead of two sums in the inner loop. (Why doesn't unrolling help?)
There's no loop-carried dependency through sum[i]. The next iteration assigns sum[0] = _mm256_load_pd(C+i1*SIZE_K+j1+0); which has no dependency on the previous value.
Therefore register-renaming of the same architectural register onto different physical registers is sufficient to avoid write-after-write hazards that might stall the pipeline. No need to complicate the source with multiple tmp variables. See Why does mulss take only 3 cycles on Haswell, different from Agner's instruction tables? (Unrolling FP loops with multiple accumulators) (In that question, one dot product of 2 arrays, there is a loop carried dependency through an accumulator. There, using multiple accumulators is valuable to hide FP FMA latency so we bottleneck on FMA throughput, not latency.)
A pipeline without register renaming (most in-order CPUs) would benefit from "software pipelining" to statically schedule for what out-of-order exec can do on the fly: load into different registers so there's distance (filled with independent work) between each load and the FMA that consumes it. And then between that and the store.
But all modern x86 CPUs are OoO; even Knight's Landing has some limited OoO exec for SIMD vectors. (Silvermont doesn't support AVX, but does run SIMD instructions in-order, only doing OoO for integer).
Without any multiple-accumulator situation to hide latency, the benefits of unrolling (explicitly in the source or with -funroll-loop as enabled by -fprofile-use, or in clang by default) are:
Reduce front-end bandwidth to get the loop overhead into the back-end. More useful-work uops per loop overhead. Thus it helps if your "useful work" is close to bottlenecked on the front end.
Less back-end execution-unit demand for running the loop overhead. Normally not a problem on Haswell and later, or Zen; the back end can mostly keep up with the front-end when the instruction mix includes some integer stuff and some pure load instructions.
Fewer total uops per work done means OoO exec can "see" farther ahead for memory loads/stores.
Sometimes better branch prediction for short-running loops: The lower iteration count means a shorter pattern for branch prediction to learn. So for short trip-counts, a better chance of correctly predicting the not-taken for the last iteration when execution falls out of the loop.
Sometimes save a mov reg,reg in more complicated cases where it's easier for the compiler to generate a new result in a different reg. The same variable can alternate between living in two regs instead of needing to get moved back to the same one to be ready for the next iteration. Especially if you have a loop that uses a[i] and a[i+1] in a dependent way, or something like Fibonacci.
With 2 loads + 1 store in the loop, that will probably be the bottleneck, not FMA or front-end bandwidth. Unrolling by 2 might have helped avoid a front-end bottleneck, but more than that would only matter with contention from another hyperthread.
An interesting question came up in comments: doesn't unrolling need a lot of registers to be useful?
Harold commented:
16 is not a huge number of registers, but it's enough to have 12
accumulators and 3 pieces of row vector from B and the broadcasted
scalar from A, so it works out to just about enough. The loop from OP
above barely uses any registers anyway. The 8 registers in 32bit are
indeed too few.
Of course since the code in the question doesn't have "accumulators" in registers across loop iterations, only adding into memory, compilers could have optimized all of sum[0..n] to reuse the same register in asm; it's "dead" after storing. So actual register pressure is very low.
Yes x86-64 is somewhat register-poor, that's why AVX512 doubles the number as well as width of vector regs (zmm0..31). Yes, many RISCs have 32 int / 32 fp regs, including AArch64 up from 16 in ARM.
x86-64 has 16 scalar integer registers (including the stack pointer, not including the program counter), so normal functions can use 15. There are also 16 vector regs, xmm0..15. (And with AVX they're double the width ymm0..15).
(Some of this was written before I noticed that sum[0..n] was pointless, not loop-carried.)
Register renaming onto a large physical register file is sufficient in this case. There are other cases where having more architectural registers helps, especially for higher FP latency hence why AVX512 has 32 zmm regs. But for integer 16 is close to enough. RISC CPUs were often designed for in-order without reg renaming, needing SW pipeline.
With OoO exec, the jump from 8 to 16 architectural GP integer regs is more significant than a jump from 16 to 32 would be, in terms of reducing spill/reloads. (I've seen a paper that measured total dynamic instruction count for SPECint with various numbers of architectural registers. I didn't look it up again, but 8->16 might have been 10% total saving while 16->32 was only a couple %. Something like that).
But this specific problem doesn't need a lot of FP registers, only 4 vectors for sum[0..3] (if they were loop-carried) and maybe 1 temporary; x86 can use memory-source mul/add/FMA. Register renaming removes any WAW hazards so we can reuse the same temporary register instead of needing software pipelining. (And OoO exec also hides load and ALU latency.)
You want multiple accumulators when there are loop-carried dependencies. This code is adding into memory, not into a few vector accumulators, so any dependency is through store/reload. But that only has ~7 cycle latency so any sane cache-blocking factor hides it.

Unrolling Loops (C)

I understand the concept of unrolling loops however, can someone explain to me how to unroll a simple loop?
It would be great if you would show me a loop, and then a unrolled version of that loop with explanations of what is happening.
I think it's important to clarify when loop unrolling is most effective: with dependency chains. A dependency chain is a series of operations where each calculation depends on the previous calculation. For example, the following loop has a dependency chain.
for(i=0; i<n; i++) sum += a[i];
Most modern processors can do multiple out-of-order operations per cycle. This increases the instruction throughput. However, out-of-order operations can't do this in a dependency chain. In the loop above each calculation is bound by the latency of the addition operation.
In the loop above we can unroll it into two dependency chains like this
sum1 = 0, sum2 = 0;
for(i=0; i<n/2; i+=2) sum1 += a[2*i], sum2 += a[2*i+1];
for(i=(n/2)*2; i<n; i++) sum += a[i]; // clean up for n odd
sum += sum1 + sum2;
Now an out-of-order processor could operate on either chain independently and depending on the processor simultaneously.
In general you should unroll by an amount equal to the latency of the operation times the number of those operations that can be done per clock cycle. For example with a x86_64 processor it can perform at least one SSE addition per clock cycle and the SSE addition has a latency of 3 so you should unroll three times. With a Haswell processor it can do two FMA operations per clock cycle and each FMA operations has a latency of 5 so you would need to unroll 10 times to get the maximum throughput.
As far as compilers go GCC does not unroll dependency chains (even with -funroll-loops). You have to unroll yourself with GCC. With Clang it unrolls four times which is generally pretty good (in some cases on Haswell and Broadwell you would need to unroll 10 times and with Skylake 8 times).
Another reason to unroll is when the number of operations in a loop exceeds the number of instructions which can be push through per clock cycle. For example in the following loop
for(i=0; i<n; i++) b[i] += 3.14159*a[i];
there is no dependency chain so there is no problem with out-of-order execution. But let's consider an instruction set which needs the following operations per iteration.
2 SIMD load
1 SIMD store
1 SIMD multiply
1 SIMD addition
1 scalar addition for the loop counter
1 conditional jump
Let's also assume the the processor can push through five of these instructions per cycle. In this case there are seven instructions per iteration but only five can be done per cycle. Loop unrolling can then be used to amortize the cost of the scalar addition to the counter i and the conditional jump. For example if you fully unrolled the loop these instruction would not be necessary.
For amortizing the cost of the loop counter and jump -funroll-loops works fine with GCC . It unrolls eight times which means the counter addition and jump has to be done once every eight iteration instead of every iteration.
The process of unrolling loops utilizes an essential concept in computer science: the space-time tradeoff, where increasing the space used can often lead to decreasing the time of an algorithm.
Let's say we have a simple loop,
const int n = 1000;
for (int i = 0; i < n; ++i) {
foo();
}
This is compiled to assembly looking something like this:
mov eax, 0
loop:
call foo
inc eax
cmp eax, 1000
jne loop
So the space-time trade-off is 5 lines of assembly for ~(4 * 1000) = ~4000 instructions executed.
So, let's try and unroll the loop a bit.
for (int i = 0; i < n; i += 10) {
foo();
foo();
foo();
foo();
foo();
foo();
foo();
foo();
foo();
foo();
}
And its assembly:
mov eax, 0
loop:
call foo
call foo
call foo
call foo
call foo
call foo
call foo
call foo
call foo
call foo
add eax, 10
cmp eax, 1000
jne loop
The space-time trade-off is 14 lines of assembly for ~(14 * 100) = ~1400 instructions executed.
We can do a total unrolling, like this:
foo();
foo();
// ...
// 996 foo()'s
// ...
foo();
foo();
Which compiles in assembly as 1000 call instructions.
This gives a space-time trade-off of 1000 lines of assembly for 1000 instructions.
As you can see, the general trend is that to reduce the amount of instructions executed by the CPU, we must increase the space required.
It is not efficient to totally unroll a loop, as the space required becomes extremely large. Partial unrolling gives huge benefits with greatly diminishing returns the more you unroll the loop.
While it's a good idea to understand loop unrolling, keep in mind that the compiler is smart and will do it for you.
Rolled (regular):
#define N 44
int main() {
int A[N], B[N];
int i;
// fill A with stuff ...
for(i = 0; i < N; i++) {
B[i] = A[i] * (100 % i);
}
// do stuff with B ...
}
Unrolled:
#define N 44
int main() {
int A[N], B[N];
int i;
// fill A with stuff ...
for(i = 0; i < N; i += 4) {
B[i] = A[i] * (100 % i);
B[i+1] = A[i+1] * (100 % i+1);
B[i+2] = A[i+2] * (100 % i+2);
B[i+3] = A[i+3] * (100 % i+3);
}
// do stuff with B ...
}
Unrolling can potentially increase performance at the cost of a larger program size. Performance increases could be due to a reduction in branch penalties, cache misses and execution instructions. Some disadvantages are obvious, like an increase in the amount of code and a decrease in readability, and some are not so obvious.

Resources