int prime(unsigned long long n){
unsigned val=1, divisor=7;
if(n==2 || n==3) return 1; //n=2, n=3 (special cases).
if(n<2 || !(n%2 && n%3)) return 0; //if(n<2 || n%2==0 || n%3==0) return 0;
for(; divisor<=n/divisor; val++, divisor=6*val+1) //all primes take the form 6*k(+ or -)1, k[1, n).
if(!(n%divisor && n%(divisor-2))) return 0; //if(n%divisor==0 || n%(divisor-2)==0) return 0;
return 1;
}
The code above is something a friend wrote up for getting a prime number. It seems to be using some sort of sieving, but I'm not sure how it exactly works. The code below is my less awesome version. I would use sqrt for my loop, but I saw him doing something else (probably sieving related) and so I didn't bother.
int prime( unsigned long long n ){
unsigned i=5;
if(n < 4 && n > 0)
return 1;
if(n<=0 || !(n%2 || n%3))
return 0;
for(;i<n; i+=2)
if(!(n%i)) return 0;
return 1;
}
My question is: what exactly is he doing?
Your friend's code is making use of the fact that for N > 3, all prime numbers take the form (6×M±1) for M = 1, 2, ... (so for M = 1, the prime candidates are N = 5 and N = 7, and both those are primes). Also, all prime pairs are like 5 and 7. This only checks 2 out of every 3 odd numbers, whereas your solution checks 3 out of 3 odd numbers.
Your friend's code is using division to achieve something akin to the square root. That is, the condition divisor <= n / divisor is more or less equivalent to, but slower and safer from overflow than, divisor * divisor <= n. It might be better to use unsigned long long max = sqrt(n); outside the loop. This reduces the amount of checking considerably compared with your proposed solution which searches through many more possible values. The square root check relies on the fact that if N is composite, then for a given pair of factors F and G (such that F×G = N), one of them will be less than or equal to the square root of N and the other will be greater than or equal to the square root of N.
As Michael Burr points out, the friend's prime function identifies 25 (5×5) and 35 (5×7) as prime, and generates 177 numbers under 1000 as prime whereas, I believe, there are just 168 primes in that range. Other misidentified composites are 121 (11×11), 143 (13×11), 289 (17×17), 323 (17×19), 841 (29×29), 899 (29×31).
Test code:
#include <stdio.h>
int main(void)
{
unsigned long long c;
if (prime(2ULL))
printf("2\n");
if (prime(3ULL))
printf("3\n");
for (c = 5; c < 1000; c += 2)
if (prime(c))
printf("%llu\n", c);
return 0;
}
Fixed code.
The trouble with the original code is that it stops checking too soon because divisor is set to the larger, rather than the smaller, of the two numbers to be checked.
static int prime(unsigned long long n)
{
unsigned long long val = 1;
unsigned long long divisor = 5;
if (n == 2 || n == 3)
return 1;
if (n < 2 || n%2 == 0 || n%3 == 0)
return 0;
for ( ; divisor<=n/divisor; val++, divisor=6*val-1)
{
if (n%divisor == 0 || n%(divisor+2) == 0)
return 0;
}
return 1;
}
Note that the revision is simpler to understand because it doesn't need to explain the shorthand negated conditions in tail comments. Note also the +2 instead of -2 in the body of the loop.
He's checking for the basis 6k+1/6k-1 as all primes can be expressed in that form (and all integers can be expressed in the form of 6k+n where -1 <= n <= 4). So yes it is a form of sieving.. but not in the strict sense.
For more:
http://en.wikipedia.org/wiki/Primality_test
In case the 6k+-1 portion is confusing, note that you can perform some factorization of most forms of 6k+n and some are obviously composite and some need to be tested.
Consider numbers:
6k + 0 -> composite
6k + 1 -> not obviously composite
6k + 2 -> 2(3k+1) --> composite
6k + 3 -> 3(2k+1) --> composite
6k + 4 -> 2(3k+2) --> composite
6k + 5 -> not obviously composite
I've not seen this little trick before, so it's neat, but of limited utility since a sieve of Eratosthenese is more efficient for finding many small prime numbers, and larger prime numbers benefit from faster, more intelligent, tests.
#include<stdio.h>
int main()
{
int i,j;
printf("enter the value :");
scanf("%d",&i);
for (j=2;j<i;j++)
{
if (i%2==0 || i%j==0)
{
printf("%d is not a prime number",i);
return 0;
}
else
{
if (j==i-1)
{
printf("%d is a prime number",i);
}
else
{
continue;
}
}
}
}
#include<stdio.h>
int main()
{
int n, i = 3, count, c;
printf("Enter the number of prime numbers required\n");
scanf("%d",&n);
if ( n >= 1 )
{
printf("First %d prime numbers are :\n",n);
printf("2\n");
}
for ( count = 2 ; count <= n ; )
{
for ( c = 2 ; c <= i - 1 ; c++ )
{
if ( i%c == 0 )
break;
}
if ( c == i )
{
printf("%d\n",i);
count++;
}
i++;
}
return 0;
}
Related
I need to find the biggest divisor of a positive integer and output it. Divisor should not be 1 or be equal to the integer itself. If it's a prime number the output should be "0". I have this code so far. However it doesn't work. It only works when I use "break" instead of "return 0" statement, but according to the task I should not use break :( How can I fix it? Thnx
#include <stdio.h>
int main() {
int input, maxDiv;
int div = 2;
scanf("%d", &input);
for ( ; div <= input/2; div += 1 ) {
if ( input % div == 0 ) {
maxDiv = input / div;
return 0;
} else {
maxDiv = 0;
}
}
printf("%d\n", maxDiv);
return 0;
}
You can rewrite it this way
int main(){
int input, maxDiv = 0;
int div = 2;
scanf("%d", &input);
for(; !maxDiv; div++)
if(!(input%div))
maxDiv = input/div;
printf("%d\n", ( maxDiv == 1 || input < 0 ? 0 : maxDiv ) );
return 0;
}
It is an infinite loop that will exit as soon as maxDiv != 0. The complexity is O(sqrt (n)) as there is always a divisor of n less than or equal to sqrt(n), so the code is bound to exit (even if input is negative).
I forgot, you have to handle the case where input is zero.
Maybe you can declare a flag?
#include <stdio.h>
int main() {
int input, maxDiv;
int div = 2;
char found = 0;
scanf("%d", &input);
for ( ; div <= input/2 && !found ; div += 1 ) {
if ( input % div == 0 ) {
maxDiv = input / div;
found = 1;
} else {
maxDiv = 0;
}
}
printf("%d\n", maxDiv);
return 0;
}
You can stop the loop when you reach sqrt(input)... it's not that difficult to find a perfectly good integer sqrt function.
There's not a lot of point dividing by all the even numbers after 2. In fact there's not a lot of point dividing by anything except the primes. It's not hard to find the primes up to sqrt(INT_MAX) (46340, for 32-bit integer)... there are tables of primes freely available if you don't want to run a quick sieve to generate same.
And the loop...
maxdiv = 0 ;
i = 0 ;
sq = isqrt(input) ;
while ((maxdiv == 0) && (prime[i] < sq))
{
if ((input % prime[i]) == 0)
maxdiv = input / prime[i] ;
i += 1 ;
} ;
assuming a suitable integer sqrt function and a table of primes... as discussed.
Since you are looking for the largest divisor, is there a reason you're not looping backward to 2? If there isn't, then there should be no need for a break statement or any special logic to exit the loop as you should keep looping until div is greater than input / 2, testing every value until you find the largest divisor.
maxDiv = -1;
for (div = input / 2;
div >= 2 && maxDiv == -1;
--div)
{
if (input % div == 0)
maxDiv = div;
}
maxDiv += (maxDiv == -1);
printf ("%d\n", maxDiv);
I added the extra condition of maxDiv being -1, which is like adding a conditional break statement. If it is still -1 by the end of the loop, then it becomes 0 because maxDiv += 1 is like writing maxDiv = -1 + 1, which is 0.
Without any jump statement such as break, this sort of test is what you must do.
Also, regarding your code, if I input 40, the if statement will be triggered when div is 2, and the program will end. If the return 0 is changed to a break, maxDiv will be 2, not 20. Looping backward will find 20 since 40/2=20, and 40%20==0.
Let us denote D to the max divisor of a given composite number N > 1.
Then, obviously, the number d = N / D is the min non-trivial divisor of N.
If d would not a primer number, then d would have a non-trivial divisor p < d.
By transitivity, this implies that p is a divisor of N, but this fact would contradict the fact that d is the min divisor of N, since p < d.
So, d must be a prime number.
In particular, it is enouth to search over those numbers which are less than sqrt(N), since, if p is a prime number greater than sqrt(N) which divies N, then N / p <= sqrt(N) (if not, *p * (N / p) > sqrt(N)sqrt(N) == N, wich is absurd).
This shows that it's enough to do the search the least divisor d of N just within the range of primer numbers from 2 to sqrt(N).
For efficiency, the value sqrt(N) must be computed just once before the loop.
Moreover, it is enough a rough approximation of sqrt(N), so we can write:
#include <math.h>
#include <stdio.h>
int main(void)
{
int N;
scanf("%d",&N);
// First, we discard the case in that N is trivial
// 1 is not prime, but indivisible.
// Change this return if your want.
if (N == 1)
return 0;
// Secondly, we discard the case in that N is even.
if (N % 2 == 0)
return N / 2;
// Now, the least prime divisor of N is odd.
// So, we increment the counter by 2 in the loop, by starting in 3.
float sqrtN = fsqrt(N); // square root of N in float precision.
for(d = 3; d <= sqrtN; d += 2)
if (N % d == 0)
return N/d;
// If the loop has reached its end normally,
// it means that N is prime.
return 0;
}
I think that the problem is not well stated, since I consider that a better flag to signalize that N is prime would be a returned value of 1.
There are more efficient algorithms to determine primality, but they are beyond the scope of the present question.
What is the efficient way in C program to check if integer is one in which each digit is either a zero or a one ?
example 100 // is correct as it contains only 0 or 1
701 // is wrong
I tried for
int containsZero(int num) {
if(num == 0)
return 0;
if(num < 0)
num = -num;
while(num > 0) {
if(num % 10 == 0)
return 0;
num /= 10;
}
return -1;
}
int containsOne(int num) {
if(num == 0)
return 0;
if(num < 0)
num = -num;
while(num > 0) {
if(num % 10 == 1)
return 0;
num /= 10;
}
return -1;
}
You can peel of every digit and check it. This takes O(n) operations.
int input;
while (input != 0)
{
int digit = input %10; //get last digit using modulo
input = input / 10; //removes last digit using div
if (digit != 0 && digit != 1)
{
return FALSE;
}
}
return TRUE;
Well, in the worst case you have to check every digit, so you cannot have an algorithm better than O(d), where d is the number of digits.
The straight-forward approach satisfies this:
int n = 701;
while ( n != 0 && (n % 10) <= 1 )
{
n /= 10;
}
if ( (n % 10) > 1 )
{
printf("Bad number\n");
}
else
{
printf("Good number\n");
}
This assumes positive numbers though. To put it into a general function:
int tester(int n)
{
if ( n < 0 )
{
n = -n;
}
while ( n != 0 && (n % 10) <= 1 )
{
n /= 10;
}
return ( (n % 10) <= 1 );
}
Demo: http://ideone.com/jWyLdl
What are we doing here? We check if the last decimal digit (n % 10) is either 0 or 1, then cut of the last digit by dividing by ten until the number is 0.
Now of course there is also another approach.
If you are guaranteed to have e.g. always 32bit integers, a look-up table isn't that large. I think it may be around 2048 entries, so really not that big.
You basically list all valid numbers:
0
1
10
11
100
101
110
111
...
Now you simply search through the list (a binary search is possible, if the list is sorted!). The complexity with linear search would be, of course, worse than the approach above. I suspect binary search beeing still worse in actual performance, as you need to jump a lot in memory rather than just operating on one number.
Anything fancy for such a small problem is most probably overkill.
The best solution I can think of, without using strings:
while(n)
{
x = n%10;
if(x>1)
return -1;
n /= 10;
}
return 0;
Preamble
Good straightforward algorithms shown in other answer are O(n), being n the number for the digits. Since n is small (even using 64bit integer we won't have more than 20 digits), implementing a "better" algorithm should be pondered, and meaning of "efficient" argued; given O(n) algorithms can be considered efficient.
"Solution"
We can think about sparse array since among 4 billions of numbers, only 2^9 (two symbols, 9 "positions") have the wanted property. I felt that some kind of pattern should emerge from bits, and so there could be a solution exploiting this. So, I've dumped all decimal numbers containing only 0 and 1 in hex, noticed a pattern and implemented the simplest code exploiting it — further improvements are surely possible, e.g. the "table" can be halved considering that if x is even and has the property, then x+1 has the property too.
The check is only
bool only01(uint32_t n)
{
uint32_t i = n & 0xff;
uint32_t r = n >> 8;
return map01[i][0] == r || map01[i][1] == r;
}
The full table (map01) and the test code are available at this gist.
Timing
A run of the test ("search" for numbers having the property between 0 and 2 billions — no reason to go beyond) with my solution, using time and redirecting output to /dev/null:
real 0m4.031s
user 0m3.948s
A run of the same test with another solution, picked from another answer:
real 0m15.530s
user 0m15.221s
You work with base 10, so, each time check the % 10:
int justOnesAndZeros(int num) {
while ( num )
{
if ( ( num % 10 != 1 ) && ( num % 10 != 0 ) )
{
return FALSE;
}
num /= 10;
}
return TRUE;
}
I need to find
The prime factors of 13195 are 5, 7, 13 and 29.
/ * Largest is 377. * /
What is the largest prime factor of the number 600851475143 ?
#include<stdio.h>
int main()
{
int i, j = 0;
/*Code works really fine for 13195 or 26*/
long value, large = 600851475143 /*13195*/;
for(value = (large - 1) ; value >= 3; value--)
{
if(large % value == 0)
{
/*printf("I am here \n");*/
if((value % 2 != 0) && (value % 3 != 0) && (value % 5 != 0) && (value % 7 != 0) )
{
j = 1;
break;
}
}
}
if (j == 1)
{
printf("%ld", value);
}
return 0;
}
Where it is going wrong?
600851475143 is too big to fit in 32 bit integer. long may be 32 bit on your machine. You need to use 64 bit type. The exact data type will be dependent on your platform, compiler.
Your prime checking code is wrong. You are assuming that if something is not devided by 2, 3, 5, 7 then that is prime.
The most important thing that is wrong here is that your code is too slow: even if you fix other issues, such as using a wrong data type for your integers and trying out some divisors that are definitely not prime, iterating by one down from 10^11 will simply not finish in your computer's lifetime is extremely wasteful.
I highly recommend that you read through the example on page 35 of this classic book, where Dijkstra takes you through the process of writing a program printing the first 1000 prime numbers. This example should provide enough mathematical intuition to you to speed up your own calculations, including the part where you start your search from the square root of the number that you are trying to factor.
600851475143 is probably above the precision of your platform's long data type. It requires at least 40 bits to store. You can use this to figure out how many bits you have:
#include <limits.h>
printf("my compiler uses %u bits for the long data type\n", (unsigned int) (CHAR_BIT * sizeof (long)));
#include<stdio.h>
//Euler problem #3
int main(){
long long i, sqi;
long long value, large = 600851475143LL;
long long max = 0LL;
i = 2LL;
sqi = 4LL; //i*i
for(value = large; sqi <= value ; sqi += 2LL * i++ + 1LL){
while(value % i == 0LL){
value /= (max=i);
}
}
if(value != 1LL && value != large){
max = value;
}
if(max == 0LL){
max = large;
}
printf("%lld\n", max);
return 0;
}
You need to add an L as suffix to a number that overflow MAX INT, so this line:
long value, large = 600851475143;
Should be:
long value, large = 600851475143L;
// ^
In order to do this you need to establish that the value is prime - i.e. that is has no prime factors.
Now your little piece of code checking 3/5/7 simply isn't good enough - you need to check is value has ANY lower prime factors (for example 11/13/17).
From a strategic perspective if you want to use this analysis you need to check a list of every prime factor you have found so far and check against them as you are checking against the first 3 primes.
An easier (but less efficient) method would be to write an IsPrimeFunction() and check the primality of the each divisor and store the largest.
public class LargeFactor{
public static void main(String []args){
long num = 600851475143L;
long largestFact = 0;
long[] factors = new long[2];
for (long i = 2; i * i < num; i++) {
if (num % i == 0) { // It is a divisor
factors[0] = i;
factors[1] = num / i;
for (int k = 0; k < 2; k++) {
boolean isPrime = true;
for (long j = 2; j * j < factors[k]; j++) {
if (factors[k] % j == 0) {
isPrime = false;
break;
}
}
if (isPrime && factors[k] > largestFact) {
largestFact = factors[k];
}
}
}
}
System.out.println(largestFact);
}
}
Above code utilises the fact that we only need to check all numbers up to the square root when looking for factors.
I am trying to generate all the prime factors of a number n. When I give it the number 126 it gives me 2, 3 and 7 but when I give it say 8 it gives me 2, 4 and 8. Any ideas as to what I am doing wrong?
int findPrime(unsigned long n)
{
int testDivisor, i;
i = 0;
testDivisor = 2;
while (testDivisor < n + 1)
{
if ((testDivisor * testDivisor) > n)
{
//If the test divisor squared is greater than the current n, then
//the current n is either 1 or prime. Save it if prime and return
}
if (((n % testDivisor) == 0))
{
prime[i] = testDivisor;
if (DEBUG == 1) printf("prime[%d] = %d\n", i, prime[i]);
i++;
n = n / testDivisor;
}
testDivisor++;
}
return i;
}
You are incrementing testDivisor even when you were able to divide n by it. Only increase it when it is not divisible anymore. This will result in 2,2,2, so you have to modify it a bit further so you do not store duplicates, but since this is a homework assignment I think you should figure that one out yourself :)
Is this based on an algorithm your professor told you to implement or is it your own heuristic? In case it helps, some known algorithms for prime factorization are the Quadratic Sieve and the General Number Field Sieve.
Right now, you aren't checking if any divisors you find are prime. As long as n % testDivisor == 0 you are counting testDivisor as a prime factor. Also, you are only dividing through by testDivisor once. You could fix this a number of ways, one of which would be to replace the statement if (((n % testDivisor) == 0)) with while (((n % testDivisor) == 0)).
Fixing this by adding the while loop also ensures that you won't get composite numbers as divisors, as if they still divide n, a smaller prime factor must have also divided n and the while loop for that prime factor wouldn't have left early.
Here is code to find the Prime Factor:
long GetPrimeFactors(long num, long *arrResult)
{
long count = 0;
long arr[MAX_SIZE];
long i = 0;
long idx = 0;
for(i = 2; i <= num; i++)
{
if(IsPrimeNumber(i) == true)
arr[count++] = i;
}
while(1)
{
if(IsPrimeNumber(num) == true)
{
arrResult[idx++] = num;
break;
}
for(i = count - 1; i >= 0; i--)
{
if( (num % arr[i]) == 0)
{
arrResult[idx++] = arr[i];
num = num / arr[i];
break;
}
}
}
return idx;
}
Reference: http://www.softwareandfinance.com/Turbo_C/Prime_Factor.html
You can use the quadratic sieve algorithm, which factors 170-bit integers in second and 220-bit integers in minute. There is a pure C implementation here that does not require GMP or an external library : https://github.com/michel-leonard/C-Quadratic-Sieve, it's able to provide you a list of the prime factors of N. Thank You.
I am accepting a composite number as an input. I want to print all its factors and also the largest prime factor of that number. I have written the following code. It is working perfectly ok till the number 51. But if any number greater than 51 is inputted, wrong output is shown. how can I correct my code?
#include<stdio.h>
void main()
{
int i, j, b=2, c;
printf("\nEnter a composite number: ");
scanf("%d", &c);
printf("Factors: ");
for(i=1; i<=c/2; i++)
{
if(c%i==0)
{
printf("%d ", i);
for(j=1; j<=i; j++)
{
if(i%j > 0)
{
b = i;
}
if(b%3==0)
b = 3;
else if(b%2==0)
b = 2;
else if(b%5==0)
b = 5;
}
}
}
printf("%d\nLargest prime factor: %d\n", c, b);
}
This is a bit of a spoiler, so if you want to solve this yourself, don't read this yet :). I'll try to provide hints in order of succession, so you can read each hint in order, and if you need more hints, move to the next hint, etc.
Hint #1:
If divisor is a divisor of n, then n / divisor is also a divisor of n. For example, 100 / 2 = 50 with remainder 0, so 2 is a divisor of 100. But this also means that 50 is a divisor of 100.
Hint #2
Given Hint #1, what this means is that we can loop from i = 2 to i*i <= n when checking for prime factors. For example, if we are checking the number 100, then we only have to loop to 10 (10*10 is <= 100) because by using hint #1, we will get all the factors. That is:
100 / 2 = 50, so 2 and 50 are factors
100 / 5 = 20, so 5 and 20 are factors
100 / 10 = 10, so 10 is a factor
Hint #3
Since we only care about prime factors for n, it's sufficient to just find the first factor of n, call it divisor, and then we can recursively find the other factors for n / divisor. We can use a sieve approach and mark off the factors as we find them.
Hint #4
Sample solution in C:
bool factors[100000];
void getprimefactors(int n) {
// 0 and 1 are not prime
if (n == 0 || n == 1) return;
// find smallest number >= 2 that is a divisor of n (it will be a prime number)
int divisor = 0;
for(int i = 2; i*i <= n; ++i) {
if (n % i == 0) {
divisor = i;
break;
}
}
if (divisor == 0) {
// we didn't find a divisor, so n is prime
factors[n] = true;
return;
}
// we found a divisor
factors[divisor] = true;
getprimefactors(n / divisor);
}
int main() {
memset(factors,false,sizeof factors);
int f = 1234;
getprimefactors(f);
int largest;
printf("prime factors for %d:\n",f);
for(int i = 2; i <= f/2; ++i) {
if (factors[i]) {
printf("%d\n",i);
largest = i;
}
}
printf("largest prime factor is %d\n",largest);
return 0;
}
Output:
---------- Capture Output ----------
> "c:\windows\system32\cmd.exe" /c c:\temp\temp.exe
prime factors for 1234:
2
617
largest prime factor is 617
> Terminated with exit code 0.
I presume you're doing this to learn, so I hope you don't mind a hint.
I'd start by stepping through your algorithm on a number that fails. Does this show you where the error is?
You need to recode so that your code finds all the prime numbers of a given number, instead of just calculating for the prime numbers 2,3, and 5. In other words, your code can only work with the number you are calculating is a prime number or is a multiple of 2, 3, or 5. But 7, 11, 13, 17, 19 are also prime numbers--so your code should simply work by finding all factors of a particular number and return the largest factor that is not further divisible.
Really, this is very slow for all but the smallest numbers (below, say, 100,000). Try finding just the prime factors of the number:
#include <cmath>
void addfactor(int n) {
printf ("%d\n", n);
}
int main()
{
int d;
int s;
int c = 1234567;
while (!(c&1)) {
addfactor(2);
c >>= 1;
}
while (c%3 == 0) {
addfactor(3);
c /= 3;
}
s = (int)sqrt(c + 0.5);
for (d = 5; d <= s;) {
while (c % d == 0) {
addfactor(d);
c /= d;
s = (int)sqrt(c + 0.5);
}
d += 2;
while (c % d == 0) {
addfactor(d);
c /= d;
s = (int)sqrt(c + 0.5);
}
d += 4;
}
if (c > 1)
addfactor(c);
return 0;
}
where addfactor is some kind of macro that adds the factor to a list of prime factors. Once you have these, you can construct a list of all the factors of the number.
This is dramatically faster than the other code snippets posted here. For a random input like 10597959011, my code would take something like 2000 bit operations plus 1000 more to re-constitute the divisors, while the others would take billions of operations. It's the difference between 'instant' and a minute in that case.
Simplification to dcp's answer(in an iterative way):
#include <stdio.h>
void factorize_and_print(unsigned long number) {
unsigned long factor;
for(factor = 2; number > 1; factor++) {
while(number % factor == 0) {
number = number / factor;
printf("%lu\n",factor);
}
}
}
/* example main */
int main(int argc,char** argv) {
if(argc >= 2) {
long number = atol(argv[1]);
factorize_and_print(number);
} else {
printf("Usage: %s <number>%<number> is unsigned long", argv[0]);
}
}
Note: There is a number parsing bug here that is not getting the number in argv correctly.