django-haystack won't index my data - solr

I'm following instructions on haystack documentation.
I'm getting no results for SearchQuerySet().all().
I think the problem is here
$ ./manage.py rebuild_index
WARNING: This will irreparably remove EVERYTHING from your search index in connection 'default'.
Your choices after this are to restore from backups or rebuild via the `rebuild_index` command.
Are you sure you wish to continue? [y/N] y
Removing all documents from your index because you said so.
All documents removed.
Indexing 0 notes. // <-- here 0 notes!
mysite/note/search_indexes.py looks like
import datetime
import haystack
from haystack import indexes
from note.models import Note
class NoteIndex(indexes.SearchIndex, indexes.Indexable):
text = indexes.CharField(document=True, use_template=True)
author = indexes.CharField(model_attr='user')
pub_date = indexes.DateTimeField(model_attr='pub_date')
def get_model(self):
return Note
def index_queryset(self):
"""Used when the entire index for model is updated."""
return self.get_model().objects.filter(pub_date__lte=datetime.datetime.now())
and I have mysite/note/templates/search/indexes/note/Note_text.txt
{{ object.title }}
{{ object.user.get_full_name }}
{{ object.body }}
Debugging haystack document mentions
Do you have a search_sites.py that runs haystack.autodiscover?
Have you registered your models with the main haystack.site (usually
within your search_indexes.py)?
But none of search_sites.py , haystack.autodiscover, haystack.site was mentioned in the first article.
I'm so confused. Are their docs dealing with different haystack versions?
My setups are..
haystack version 2.0.0.beta
django 1.3.1
solr 3.6.0
sqlite 3

def index_queryset(self):
"""Used when the entire index for model is updated."""
return self.get_model().objects.filter(pub_date__lte=datetime.datetime.now())
was the culprit.
I don't know why, but commenting out fixes the problem.
I guess 'time' in my system is somehow messed up.

It should be...
def index_queryset(self, using=None):
I don't know if this will fix your issue or not, but that is the correct signature for the method.

Removing def index_queryset(self) makes sense. It builds a regular Django ORM QuerySet, which decides which objects get put into the full-text index. Your sample index_queryset limits the objects to past timestamps only (before now).
So, you really have a datetime handling problem. Check your SQL database's timezone and how it stores times.
A timestamp in UTC locale is about +5 hours ahead of New York, and most of the USA. SQLite caused the same problem for me by choosing UTC times in the future.

Related

How to use indexed properties of NodeModels in cypher queries of Neo4django?

I'm a newbie to Django as well as neo4j. I'm using Django 1.4.5, neo4j 1.9.2 and neo4django 0.1.8
I've created NodeModel for a person node and indexed it on 'owner' and 'name' properties. Here is my models.py:
from neo4django.db import models as models2
class person_conns(models2.NodeModel):
owner = models2.StringProperty(max_length=30,indexed=True)
name = models2.StringProperty(max_length=30,indexed=True)
gender = models2.StringProperty(max_length=1)
parent = models2.Relationship('self',rel_type='parent_of',related_name='parents')
child = models2.Relationship('self',rel_type='child_of',related_name='children')
def __unicode__(self):
return self.name
Before I connected to Neo4j server, I set auto indexing to True and and gave indexable keys in conf/neo4j.properties file as follows:
# Autoindexing
# Enable auto-indexing for nodes, default is false
node_auto_indexing=true
# The node property keys to be auto-indexed, if enabled
node_keys_indexable=owner,name
# Enable auto-indexing for relationships, default is false
relationship_auto_indexing=true
# The relationship property keys to be auto-indexed, if enabled
relationship_keys_indexable=child_of,parent_of
I followed Neo4j: Step by Step to create an automatic index to update above file and manually create node_auto_index on neo4j server.
Below are the indexes created on neo4j server after executing syndb of django on neo4j database and manually creating auto indexes:
graph-person_conns lucene
{"to_lower_case":"true", "_blueprints:type":"MANUAL","type":"fulltext"}
node_auto_index lucene
{"_blueprints:type":"MANUAL", "type":"exact"}
As suggested in https://github.com/scholrly/neo4django/issues/123 I used connection.cypher(queries) to query the neo4j database
For Example:
listpar = connection.cypher("START no=node(*) RETURN no.owner?, no.name?",raw=True)
Above returns the owner and name of all nodes correctly. But when I try to query on indexed properties instead of 'number' or '*', as in case of:
listpar = connection.cypher("START no=node:node_auto_index(name='s2') RETURN no.owner?, no.name?",raw=True)
Above gives 0 rows.
listpar = connection.cypher("START no=node:graph-person_conns(name='s2') RETURN no.owner?, no.name?",raw=True)
Above gives
Exception Value:
Error [400]: Bad Request. Bad request syntax or unsupported method.
Invalid data sent: (' expected but-' found after graph
I tried other strings like name, person_conns instead of graph-person_conns but each time it gives error that the particular index does not exist. Am I doing a mistake while adding indexes?
My project mainly depends on filtering the nodes based on properties, so this part is really essential. Any pointers or suggestions would be appreciated. Thank you.
This is my first post on stackoverflow. So in case of any missing information or confusing statements please be patient. Thank you.
UPDATE:
Thank you for the help. For the benefit of others I would like to give example of how to use cypher queries to traverse/find shortest path between two nodes.
from neo4django.db import connection
results = connection.cypher("START source=node:`graph-person_conns`(person_name='s2sp1'),dest=node:`graph-person_conns`(person_name='s2c1') MATCH p=ShortestPath(source-[*]->dest) RETURN extract(i in nodes(p) : i.person_name), extract(j in rels(p) : type(j))")
This is to find shortest path between nodes named s2sp1 and s2c1 on the graph. Cypher queries are really cool and help traverse nodes limiting the hops, types of relations etc.
Can someone comment on the performance of this method? Also please suggest if there are any other efficient methods to access Neo4j from Django. Thank You :)
Hm, why are you using Cypher? neo4django QuerySets work just fine for the above if you set the properties to indexed=True (or not, it'll just be slower for those).
people = person_conns.objects.filter(name='n2')
The neo4django docs have some other querying examples, as do the Django docs. Neo4django executes those queries as Cypher on the backend- you really shouldn't need to drop down to writing the Cypher yourself unless you have a very particular traversal pattern or a performance issue.
Anyway, to more directly tackle your question- the last example you used needs backticks to escape the index name, like
listpar = connection.cypher("START no=node:`graph-person_conns`(name='s2') RETURN no.owner?, no.name?",raw=True)
The first example should work. One thought- did you flip the autoindexing on before or after saving the nodes you're searching for? If after, note that you'll have to manually reindex the nodes either using the Java API or by re-setting properties on the node, since it won't have been autoindexed.
HTH, and welcome to StackOverflow!

GQL Query Not Returning Results on StringProperty Query Test for Equality

class MyEntity(db.Model):
timestamp = db.DateTimeProperty()
title = db.StringProperty()
number = db.FloatProperty()
db.GqlQuery("SELECT * FROM MyEntity WHERE title = 'mystring' AND timestamp >= date('2012-01-01') AND timestamp <= date('2012-12-31') ORDER BY timestamp DESC").fetch(1000)
This should fetch ~600 entities on app engine. On my dev server it behaves as expected, builds the index.yaml, I upload it, test on server but on app engine it does not return anything.
Index:
- kind: MyEntity
properties:
- name: title
- name: timestamp
direction: desc
I try splitting the query down on datastore viewer to see where the issue is and the timestamp constraints work as expected. The query returns nothing on WHERE title = 'mystring' when it should be returning a bunch of entities.
I vaguely remember fussy filtering where you had to call .filter("prop =",propValue) with the space between property and operator, but this is a GqlQuery so it's not that (and I tried that format with the GQL too).
Anyone know what my issue is?
One thing I can think of:
I added the list of MyEntity entities into the app via BulkLoader.py prior to the new index being created on my devserver & uploaded. Would that make a difference?
The last line you wrote is probably the problem.
Your entities in the actual real datastore are missing the index required for the query.
As far as I know, when you add a new index, App Engine is supposed to rebuild your indexes for you. This may take some time. You can check your admin page to check the state of your indexes and see if it's still building.
Turns out there's a slight bug in the bulkloader supplied with App Engine SDK - basically autogenerated config transforms strings as db.Text, which is no good if you want these fields indexed. The correct import_transform directive should be:
transform.none_if_empty(str)
This will instruct App Engine to index the uploaded field as a db.StringProperty().

GQL query with "like" operator [duplicate]

Simple one really. In SQL, if I want to search a text field for a couple of characters, I can do:
SELECT blah FROM blah WHERE blah LIKE '%text%'
The documentation for App Engine makes no mention of how to achieve this, but surely it's a common enough problem?
BigTable, which is the database back end for App Engine, will scale to millions of records. Due to this, App Engine will not allow you to do any query that will result in a table scan, as performance would be dreadful for a well populated table.
In other words, every query must use an index. This is why you can only do =, > and < queries. (In fact you can also do != but the API does this using a a combination of > and < queries.) This is also why the development environment monitors all the queries you do and automatically adds any missing indexes to your index.yaml file.
There is no way to index for a LIKE query so it's simply not available.
Have a watch of this Google IO session for a much better and more detailed explanation of this.
i'm facing the same problem, but i found something on google app engine pages:
Tip: Query filters do not have an explicit way to match just part of a string value, but you can fake a prefix match using inequality filters:
db.GqlQuery("SELECT * FROM MyModel WHERE prop >= :1 AND prop < :2",
"abc",
u"abc" + u"\ufffd")
This matches every MyModel entity with a string property prop that begins with the characters abc. The unicode string u"\ufffd" represents the largest possible Unicode character. When the property values are sorted in an index, the values that fall in this range are all of the values that begin with the given prefix.
http://code.google.com/appengine/docs/python/datastore/queriesandindexes.html
maybe this could do the trick ;)
Altough App Engine does not support LIKE queries, have a look at the properties ListProperty and StringListProperty. When an equality test is done on these properties, the test will actually be applied on all list members, e.g., list_property = value tests if the value appears anywhere in the list.
Sometimes this feature might be used as a workaround to the lack of LIKE queries. For instance, it makes it possible to do simple text search, as described on this post.
You need to use search service to perform full text search queries similar to SQL LIKE.
Gaelyk provides domain specific language to perform more user friendly search queries. For example following snippet will find first ten books sorted from the latest ones with title containing fern
and the genre exactly matching thriller:
def documents = search.search {
select all from books
sort desc by published, SearchApiLimits.MINIMUM_DATE_VALUE
where title =~ 'fern'
and genre = 'thriller'
limit 10
}
Like is written as Groovy's match operator =~.
It supports functions such as distance(geopoint(lat, lon), location) as well.
App engine launched a general-purpose full text search service in version 1.7.0 that supports the datastore.
Details in the announcement.
More information on how to use this: https://cloud.google.com/appengine/training/fts_intro/lesson2
Have a look at Objectify here , it is like a Datastore access API. There is a FAQ with this question specifically, here is the answer
How do I do a like query (LIKE "foo%")
You can do something like a startWith, or endWith if you reverse the order when stored and searched. You do a range query with the starting value you want, and a value just above the one you want.
String start = "foo";
... = ofy.query(MyEntity.class).filter("field >=", start).filter("field <", start + "\uFFFD");
Just follow here:
init.py#354">http://code.google.com/p/googleappengine/source/browse/trunk/python/google/appengine/ext/search/init.py#354
It works!
class Article(search.SearchableModel):
text = db.TextProperty()
...
article = Article(text=...)
article.save()
To search the full text index, use the SearchableModel.all() method to get an
instance of SearchableModel.Query, which subclasses db.Query. Use its search()
method to provide a search query, in addition to any other filters or sort
orders, e.g.:
query = article.all().search('a search query').filter(...).order(...)
I tested this with GAE Datastore low-level Java API. Me and works perfectly
Query q = new Query(Directorio.class.getSimpleName());
Filter filterNombreGreater = new FilterPredicate("nombre", FilterOperator.GREATER_THAN_OR_EQUAL, query);
Filter filterNombreLess = new FilterPredicate("nombre", FilterOperator.LESS_THAN, query+"\uFFFD");
Filter filterNombre = CompositeFilterOperator.and(filterNombreGreater, filterNombreLess);
q.setFilter(filter);
In general, even though this is an old post, a way to produce a 'LIKE' or 'ILIKE' is to gather all results from a '>=' query, then loop results in python (or Java) for elements containing what you're looking for.
Let's say you want to filter users given a q='luigi'
users = []
qry = self.user_model.query(ndb.OR(self.user_model.name >= q.lower(),self.user_model.email >= q.lower(),self.user_model.username >= q.lower()))
for _qry in qry:
if q.lower() in _qry.name.lower() or q.lower() in _qry.email.lower() or q.lower() in _qry.username.lower():
users.append(_qry)
It is not possible to do a LIKE search on datastore app engine, how ever creating an Arraylist would do the trick if you need to search a word in a string.
#Index
public ArrayList<String> searchName;
and then to search in the index using objectify.
List<Profiles> list1 = ofy().load().type(Profiles.class).filter("searchName =",search).list();
and this will give you a list with all the items that contain the world you did on the search
If the LIKE '%text%' always compares to a word or a few (think permutations) and your data changes slowly (slowly means that it's not prohibitively expensive - both price-wise and performance-wise - to create and updates indexes) then Relation Index Entity (RIE) may be the answer.
Yes, you will have to build additional datastore entity and populate it appropriately. Yes, there are some constraints that you will have to play around (one is 5000 limit on the length of list property in GAE datastore). But the resulting searches are lightning fast.
For details see my RIE with Java and Ojbectify and RIE with Python posts.
"Like" is often uses as a poor-man's substitute for text search. For text search, it is possible to use Whoosh-AppEngine.

What's your experience developing on Google App Engine?

Is GQL easy to learn for someone who knows SQL? How is Django/Python? Does App Engine really make scaling easy? Is there any built-in protection against "GQL Injections"? And so on...
I'd love to hear the not-so-obvious ups and downs of using app engine.
Cheers!
My experience with google app engine has been great, and the 1000 result limit has been removed, here is a link to the release notes:
app-engine release notes
No more 1000 result limit - That's
right: with addition of Cursors and
the culmination of many smaller
Datastore stability and performance
improvements over the last few months,
we're now confident enough to remove
the maximum result limit altogether.
Whether you're doing a fetch,
iterating, or using a Cursor, there's
no limits on the number of results.
The most glaring and frustrating issue is the datastore api, which looks great and is very well thought out and easy to work with if you are used to SQL, but has a 1000 row limit across all query resultsets, and you can't access counts or offsets beyond that. I've run into weirder issues, with not actually being able to add or access data for a model once it goes beyond 1000 rows.
See the Stack Overflow discussion about the 1000 row limit
Aral Balkan wrote a really good summary of this and other problems
Having said that, app engine is a really great tool to have at ones disposal, and I really enjoy working with it. It's perfect for deploying micro web services (eg: json api's) to use in other apps.
GQL is extremely simple - it's a subset of the SQL 'SELECT' statement, nothing more. It's only a convenience layer over the top of the lower-level APIs, though, and all the parsing is done in Python.
Instead, I recommend using the Query API, which is procedural, requires no run-time parsing, and makes 'GQL injection' vulnerabilities totally impossible (though they are impossible in properly written GQL anyway). The Query API is very simple: Call .all() on a Model class, or call db.Query(modelname). The Query object has .filter(field_and_operator, value), .order(field_and_direction) and .ancestor(entity) methods, in addition to all the facilities GQL objects have (.get(), .fetch(), .count()), etc.) Each of the Query methods returns the Query object itself for convenience, so you can chain them:
results = MyModel.all().filter("foo =", 5).order("-bar").fetch(10)
Is equivalent to:
results = MyModel.gql("WHERE foo = 5 ORDER BY bar DESC LIMIT 10").fetch()
A major downside when working with AppEngine was the 1k query limit, which has been mentioned in the comments already. What I haven't seen mentioned though is the fact that there is a built-in sortable order, with which you can work around this issue.
From the appengine cookbook:
def deepFetch(queryGen,key=None,batchSize = 100):
"""Iterator that yields an entity in batches.
Args:
queryGen: should return a Query object
key: used to .filter() for __key__
batchSize: how many entities to retrieve in one datastore call
Retrieved from http://tinyurl.com/d887ll (AppEngine cookbook).
"""
from google.appengine.ext import db
# AppEngine will not fetch more than 1000 results
batchSize = min(batchSize,1000)
query = None
done = False
count = 0
if key:
key = db.Key(key)
while not done:
print count
query = queryGen()
if key:
query.filter("__key__ > ",key)
results = query.fetch(batchSize)
for result in results:
count += 1
yield result
if batchSize > len(results):
done = True
else:
key = results[-1].key()
The above code together with Remote API (see this article) allows you to retrieve as many entities as you need.
You can use the above code like this:
def allMyModel():
q = MyModel.all()
myModels = deepFetch(allMyModel)
At first I had the same experience as others who transitioned from SQL to GQL -- kind of weird to not be able to do JOINs, count more than 1000 rows, etc. Now that I've worked with it for a few months I absolutely love the app engine. I'm porting all of my old projects onto it.
I use it to host several high-traffic web applications (at peak time one of them gets 50k hits a minute.)
Google App Engine doesn't use an actual database, and apparently uses some sort of distributed hash map. This will lend itself to some different behaviors that people who are accustomed to SQL just aren't going to see at first. So for example getting a COUNT of items in regular SQL is expected to be a fast operation, but with GQL it's just not going to work the same way.
Here are some more issues:
http://blog.burnayev.com/2008/04/gql-limitations.html
In my personal experience, it's an adjustment, but the learning curve is fine.

Google App Engine: Is it possible to do a Gql LIKE query?

Simple one really. In SQL, if I want to search a text field for a couple of characters, I can do:
SELECT blah FROM blah WHERE blah LIKE '%text%'
The documentation for App Engine makes no mention of how to achieve this, but surely it's a common enough problem?
BigTable, which is the database back end for App Engine, will scale to millions of records. Due to this, App Engine will not allow you to do any query that will result in a table scan, as performance would be dreadful for a well populated table.
In other words, every query must use an index. This is why you can only do =, > and < queries. (In fact you can also do != but the API does this using a a combination of > and < queries.) This is also why the development environment monitors all the queries you do and automatically adds any missing indexes to your index.yaml file.
There is no way to index for a LIKE query so it's simply not available.
Have a watch of this Google IO session for a much better and more detailed explanation of this.
i'm facing the same problem, but i found something on google app engine pages:
Tip: Query filters do not have an explicit way to match just part of a string value, but you can fake a prefix match using inequality filters:
db.GqlQuery("SELECT * FROM MyModel WHERE prop >= :1 AND prop < :2",
"abc",
u"abc" + u"\ufffd")
This matches every MyModel entity with a string property prop that begins with the characters abc. The unicode string u"\ufffd" represents the largest possible Unicode character. When the property values are sorted in an index, the values that fall in this range are all of the values that begin with the given prefix.
http://code.google.com/appengine/docs/python/datastore/queriesandindexes.html
maybe this could do the trick ;)
Altough App Engine does not support LIKE queries, have a look at the properties ListProperty and StringListProperty. When an equality test is done on these properties, the test will actually be applied on all list members, e.g., list_property = value tests if the value appears anywhere in the list.
Sometimes this feature might be used as a workaround to the lack of LIKE queries. For instance, it makes it possible to do simple text search, as described on this post.
You need to use search service to perform full text search queries similar to SQL LIKE.
Gaelyk provides domain specific language to perform more user friendly search queries. For example following snippet will find first ten books sorted from the latest ones with title containing fern
and the genre exactly matching thriller:
def documents = search.search {
select all from books
sort desc by published, SearchApiLimits.MINIMUM_DATE_VALUE
where title =~ 'fern'
and genre = 'thriller'
limit 10
}
Like is written as Groovy's match operator =~.
It supports functions such as distance(geopoint(lat, lon), location) as well.
App engine launched a general-purpose full text search service in version 1.7.0 that supports the datastore.
Details in the announcement.
More information on how to use this: https://cloud.google.com/appengine/training/fts_intro/lesson2
Have a look at Objectify here , it is like a Datastore access API. There is a FAQ with this question specifically, here is the answer
How do I do a like query (LIKE "foo%")
You can do something like a startWith, or endWith if you reverse the order when stored and searched. You do a range query with the starting value you want, and a value just above the one you want.
String start = "foo";
... = ofy.query(MyEntity.class).filter("field >=", start).filter("field <", start + "\uFFFD");
Just follow here:
init.py#354">http://code.google.com/p/googleappengine/source/browse/trunk/python/google/appengine/ext/search/init.py#354
It works!
class Article(search.SearchableModel):
text = db.TextProperty()
...
article = Article(text=...)
article.save()
To search the full text index, use the SearchableModel.all() method to get an
instance of SearchableModel.Query, which subclasses db.Query. Use its search()
method to provide a search query, in addition to any other filters or sort
orders, e.g.:
query = article.all().search('a search query').filter(...).order(...)
I tested this with GAE Datastore low-level Java API. Me and works perfectly
Query q = new Query(Directorio.class.getSimpleName());
Filter filterNombreGreater = new FilterPredicate("nombre", FilterOperator.GREATER_THAN_OR_EQUAL, query);
Filter filterNombreLess = new FilterPredicate("nombre", FilterOperator.LESS_THAN, query+"\uFFFD");
Filter filterNombre = CompositeFilterOperator.and(filterNombreGreater, filterNombreLess);
q.setFilter(filter);
In general, even though this is an old post, a way to produce a 'LIKE' or 'ILIKE' is to gather all results from a '>=' query, then loop results in python (or Java) for elements containing what you're looking for.
Let's say you want to filter users given a q='luigi'
users = []
qry = self.user_model.query(ndb.OR(self.user_model.name >= q.lower(),self.user_model.email >= q.lower(),self.user_model.username >= q.lower()))
for _qry in qry:
if q.lower() in _qry.name.lower() or q.lower() in _qry.email.lower() or q.lower() in _qry.username.lower():
users.append(_qry)
It is not possible to do a LIKE search on datastore app engine, how ever creating an Arraylist would do the trick if you need to search a word in a string.
#Index
public ArrayList<String> searchName;
and then to search in the index using objectify.
List<Profiles> list1 = ofy().load().type(Profiles.class).filter("searchName =",search).list();
and this will give you a list with all the items that contain the world you did on the search
If the LIKE '%text%' always compares to a word or a few (think permutations) and your data changes slowly (slowly means that it's not prohibitively expensive - both price-wise and performance-wise - to create and updates indexes) then Relation Index Entity (RIE) may be the answer.
Yes, you will have to build additional datastore entity and populate it appropriately. Yes, there are some constraints that you will have to play around (one is 5000 limit on the length of list property in GAE datastore). But the resulting searches are lightning fast.
For details see my RIE with Java and Ojbectify and RIE with Python posts.
"Like" is often uses as a poor-man's substitute for text search. For text search, it is possible to use Whoosh-AppEngine.

Resources